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Phytochemical-based
therapeutics from traditional
eastern medicine: analgesic
effects and ion
channel modulation
Sung Eun Kim, Geehoon Chung* and Sun Kwang Kim*

Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
Pain management remains a major challenge in the healthcare system. While
synthetic analgesics are widely used for pain management, their effectiveness
in managing chronic pain is often limited due to low efficacy or side effects.
Thus, there is growing interest in exploring alternative pain relief methods,
particularly using medicinal plants from traditional Eastern medicine and their
phytochemicals. Previous studies have demonstrated the modulatory effects of
various phytochemicals derived from herbal medicine on pain-related ion
channels, such as voltage-gated sodium channels (Nav), calcium channels
(Ca2+), and transient receptor potential (TRP) channels. Since these ion
channels are integral to the transmission and modulation of pain signals, the
ability of specific phytochemicals to activate or inhibit these channels presents
a promising avenue for the development of novel analgesics. The goal of this
review is to merge herbal insights with ion channel research to highlight the
potential of natural compounds for safe and effective pain management. In
this regard, we summarize the discovery and characterization of pain-relieving
phytochemicals from herbal medicine, and we discuss their mechanisms of
action and their potential to mimic or enhance the effects of conventional
analgesics through ion channel modulation.
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1 Introduction

Pain is a complex and multifaceted experience, serving as both a vital protective

mechanism and, in many instances, as a persistent, debilitating condition. Defined as an

unpleasant sensory and emotional experience associated with actual or potential tissue

damage, pain is a multidimensional phenomenon that poses significant challenges in

effective management (1, 2). While acute pain functions as a critical alert system for

injury, chronic pain—often resulting from nerve damage or dysfunction in the nervous

system—affects millions globally, severely disrupting physical, emotional, social, and

psychological health. It remains one of the leading causes for seeking medical care. It

imposes an immense societal and economic burden, reducing work productivity,

increasing healthcare costs, and diminishing sufferers’ quality of life (3). Despite the

availability of numerous pain management options, current treatments for chronic pain

are often insufficient, underscoring the urgent need for new therapeutic strategies that

offer effective and sustainable relief (4). Pharmacological treatments, including opioids
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and nonsteroidal anti-inflammatory drugs (NSAIDs), remain the

primary approaches to pain relief. However, these options are

associated with significant drawbacks (5–7). Opioids, while highly

effective for managing moderate to severe pain, carry high risks

of addiction, tolerance, and physical dependence, often requiring

escalating doses and increasing the likelihood of overdose,

respiratory depression, and opioid use disorder (3, 8). On the

other hand, NSAIDs are commonly used for inflammatory and

mild to moderate pain but pose serious risks with long-term use,

including gastrointestinal complications, cardiovascular events,

and kidney damage—particularly in vulnerable populations such

as the elderly or those with pre-existing conditions (9, 10).

Gabapentin is widely used for pain and generally considered safe,

but it has limitations, including the risk of respiratory

depression, especially when combined with CNS depressants like

opioids (11). These drawbacks emphasize the critical need for

safer, more effective, and long-term pain management strategies

that minimize harm while improving patients’ quality of life (12).

Pain perception and its chronic manifestation are intricately

linked to the function and dysregulation of ion channels, which

play a pivotal role in transmitting pain signals within the

nervous system. These channels, responsible for regulating the

flow of ions such as sodium (Na+), potassium (K+), calcium (Ca2

+), and chloride (Cl−) across cell membranes, are essential for

maintaining neuronal excitability and synaptic transmission (13,

14). Dysregulation or sustained activation of these channels,

frequently observed in chronic pain states, results in heightened

neuronal excitability and abnormal pain signaling. Consequently,

targeting ion channels has emerged as a promising therapeutic

approach for pain management, with the potential to modulate

pain pathways more precisely and with fewer side effects

compared to conventional pharmacological treatments (15).

Understanding the dynamics of ion channels is, therefore, critical

for developing innovative, effective, and safer analgesics for

chronic pain relief.

There has been growing interest in alternative pain

management therapies, particularly those derived from natural

sources such as traditional Eastern medicinal herbs (16). Eastern

medicinal herbs have been used for centuries to treat pain and

inflammation, offering a plant-based alternative that is gaining

recognition for its potential efficacy and safety (17–19). These

herbs contain bioactive compounds that can influence pain

pathways, making them especially promising for managing

chronic conditions (20–22). Recent studies highlight the role of

ion channels in pain mechanisms and reveal the molecular

pathways mediating the analgesic effects of herbal extracts. These

compounds can exert their pain-relieving effects by targeting a

single ion channel or simultaneously acting on multiple ion

channels, enhancing their analgesic potential.

This review seeks to provide a comprehensive analysis of the

efficacy of medicinal herbs in pain management by examining a

wide range of scientific studies. It will explore the key ion

channels involved in pain transmission and their interactions

with specific medicinal herbs that contribute to analgesic effects.

Additionally, this review will systematically address how these
Frontiers in Pain Research 02
interactions influence various types of pain. By elucidating the

relationship between medicinal herbs and pain-related ion

channels, this study aims to identify potential alternatives to

conventional pain treatments and pave the way for alternative

therapeutic strategies.
2 Ion channels in pain pathways

Many ion channels including voltage-gated sodium channels

(Nav), voltage-gated calcium channels (Cav), ATP-sensitive

potassium channels (KATP), voltage-gated potassium channels

(Kv), transient receptor potential (TRP) channels, purinergic

receptors such as P2X3, P2X4 and P2X7, acid-sensing ion

channels (ASICs), play significant roles in pain signaling. Herbal

medicines contain multiple bioactive compounds that can

simultaneously interact with these ion channels, not only

targeting individual channels but also providing a multi-faceted

approach to pain management. By modulating multiple ion

channels involved in pain transmission, these natural compounds

offer a broader and more effective approach to analgesia (23).

Understanding these channels paves the way for developing more

targeted pain therapies (24–26).
2.1 Voltage-gated sodium channels (Nav)

One of the most prominent ion channels involved in pain

signaling is the voltage-gated sodium channel (Nav) family,

which facilitates the rapid influx of Na+ during the

depolarization phase of action potential (AP) (27). Nav channels

are divided into tetrodotoxin-sensitive (TTX-S) channels such as

Nav1.1, Nav1.2, Nav1.3, Nav1.6, and Nav1.7, and tetrodotoxin-

resistant (TTX-R) channels such as Nav1.8 and Nav1.9. While

Nav1.1, Nav1.2 are primarily expressed in the central nervous

system (CNS) and involved in central sensitization, Nav1.7 is

predominantly expressed in the peripheral nervous system (PNS)

and is critical for pain transmission (28). Nav1.6 channels are

expressed in both the central and peripheral nervous systems,

functioning as the major Nav isoform at the nodes of Ranvier

while also being present in unmyelinated fibers and at the nerve

terminals of certain sensory neuron subsets (29). TTX-R

channels, including Nav1.8 and Nav1.9, are predominantly found

in PNS, mediating inflammatory and neuropathic pain. Nav1.8

propagates AP under inflammatory conditions, while Nav1.9

modulates chronic pain excitability. Nav1.5, though mainly

cardiac, may have a peripheral role requiring further study.

Alterations in their expression or function contribute to chronic

pain sensitization, with Nav 1.7, Nav 1.8, and Nav 1.9 gene

variants linked to pain disorders, making them promising targets

for pain management (27, 30, 31). Recent studies aim to develop

selective Nav channel inhibitors for effective pain relief with

fewer systemic side effects, highlighting their importance in pain

signaling and potential for targeted pain management

strategies (32).
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2.2 Voltage-gated calcium channels (Cav)

Voltage-gated calcium channels (Cav) play a pivotal role in the

process of pain perception by regulating the release of

neurotransmitters at synaptic terminals. These channels facilitate

the entry of calcium ions into neurons in response to membrane

depolarization, which is essential for the release of

neurotransmitters such as glutamate, a key excitatory

neurotransmitter in the pain pathway (33). L-type calcium

channels, as high-voltage-activated channels, contribute to central

sensitization and chronic pain by enhancing synaptic

transmission and neuronal excitability. While not directly

involved in acute pain, their dysregulation can amplify pain

signals in neuropathic and inflammatory pain (34, 35). T-type

calcium channels, especially Cav3.2, are low-voltage-activated and

play a critical role in nociceptive transmission. Highly expressed

in peripheral sensory neurons, they facilitate neuronal

hyperexcitability in acute and chronic pain states, making them

promising therapeutic targets for pain relief (35–38). Both L-type

and T-type channels are crucial in pain signaling, with L-type

channels contributing to chronic pain and T-type channels

driving nociception and sensitization, offering distinct yet

complementary roles in pain modulation (34, 39).
2.3 ATP-sensitive potassium channels (KATP)
& voltage-gated potassium channels (Kv)

K+ channels are integral in maintaining the resting membrane

potential and controlling the excitability of neurons, including

those involved in pain transmission. They include various

subtypes, such as ATP-sensitive potassium channels (KATP) and

voltage-gated potassium channels (Kv) (40). Activation of these

channels generally results in an efflux of K+ from neurons, leading

to hyperpolarization of the membrane, which makes it less likely

for the neuron to reach the threshold required for AP generation.

KATP channels, found in both peripheral and central neurons, are

modulated by metabolic states and have been shown to play a role

in the pain associated with ischemic conditions (41). Kv channels,

such as Kv7 (KCNQ), are also critical in stabilizing neuronal

membrane potential. Modulation of Kv7 channels has emerged as

a promising approach for pain relief, as selective activators of these

channels can reduce hyperexcitability in nociceptive neurons (42).

Their activation generally reduces neuronal excitability, making

them a potential therapeutic target for conditions characterized by

hyperexcitability, such as chronic pain. By modulating potassium

channel activity, it is possible to reduce the firing of nociceptive

neurons, thereby decreasing pain perception.
2.4 Transient receptor potential (TRP)
channels

TRP channels form a diverse family of ion channels that are

sensitive to various physical and chemical stimuli, making them
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key players in pain detection and transmission. Among the TRP

family, transient receptor potential vanilloid 1 (TRPV1), transient

receptor potential ankyrin 1 (TRPA1), and transient receptor

potential melastatin 8 (TRPM8) are particularly relevant to pain

research, as they mediate responses to noxious heat, cold, and

chemical irritants. TRPV1 is activated by noxious heat (above

43°C), capsaicin, and acidic conditions, which are often

associated with tissue injury and inflammation (23). Interestingly,

prolonged TRPV1 activation leads to desensitization, reducing

pain signaling, which is exploited in treatments like capsaicin

cream for neuropathic pain. However, excessive activation can

paradoxically cause hyperalgesia or inflammation, highlighting its

dual role in pain modulation (43). TRPA1 is typically co-

localized with TRPV1 and is activated by irritants, inflammatory

mediators, cold, and mechanical stimuli, serving as a molecular

integrator for pain and neurogenic inflammation (43, 44). On the

other hands, TRPM8 utilizes a distinct analgesic mechanism,

being activated by cool temperatures and menthol, which

contribute to the sensation of cooling and cold-induced pain

relief. Modulating TRPM8 activity has been investigated as a

therapeutic approach, particularly for alleviating conditions

associated with burning pain or heat hyperalgesia (45–47).

Together, these channels represent critical targets for the

development of novel analgesic therapies, offering distinct and

complementary mechanisms for addressing various types of pain.
2.5 Acid-sensing ion channels (ASICs)

ASICs are proton-gated ion channels that are activated by

decreases in extracellular pH, which often occur in response to

tissue damage or inflammation. These channels are highly

expressed in peripheral sensory neurons, where they play a role

in detecting pain associated with acidosis, such as that seen in

ischemic or inflammatory conditions. When tissue injury leads to

a drop in pH, ASICs open, allowing Na+ to enter the neuron,

which contributes to the sensation of pain (48–50). The

contribution of ASICs to hyperalgesia has made them a target of

interest for pain research, as blocking these channels can reduce

pain in conditions where tissue acidosis is a major factor. For

example, in animal models of inflammatory pain,

pharmacological inhibition of ASICs has been shown to alleviate

hyperalgesia, indicating their potential as therapeutic targets for

treating chronic pain (51).
2.6 Purinergic receptors P2X3, P2X4 and
P2X7

ATP released from damaged or inflamed tissues activates P2X

receptors on primary afferent neurons, leading to depolarization

and the initiation of pain signals. These ATP-dependent ligand-

gated cation channels are upregulated following nerve injury.

P2X3 receptors, expressed in small-diameter sensory neurons,

contribute to acute nociception, while P2X2/3 receptors modulate

prolonged sensitivity associated with nerve injury or
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TABLE 1 The effects of roots on pain models and ion channels.

Herbs & active
compounds

Pain model (type of pain induced) & in
vitro

Dosage (mg/kg) & route Targeted ion
channel& receptor

Ref

Aconiti Brachypodi Hot plate test, writhing test, formalin test in female mice
In vitro rat DRG neurons

1–20 mg kg, i.g. TTX-S Nav ↓ (57, 58)

Aconitum (Bulleyaconitine A) Paclitaxel-induced neuropathic pain 0.1, 0.4, 0.8 mg/kg, i.g. Nav1.7, Nav1.8 ↓ (59)

Allium macrostemon Acetic-induced &formalin-induced model, hot plate test,
In vitro HEK-293T cells, mouse DRG neurons

50, 100 mg/kg, i.p.
in vitro 50 mg/L

Nav1.7 ↓ (60)

Angelica dahurica (Osthole) CFA-induced pain, heat and capsaicin-induced pain
model
In vitro mouse DRG neurons

100 mg/kg, 600 mg/kg, p.o. TRPV1 ↓ (61)

Angelica dahurica
(Furanocoumarins)

Formalin-induced pain, capsaicin-induced pain in rats
In vitro DRG neurons form TRPV1 −/− mice

3.45 µM; 30 µl, s.c. 400 µM; 40 µl
(directly into the right eye)
in vitro 50 µM

TRPV1 ↓ (62)

Angelica sinensis (Ferulate) CCI in rats 50 mg, 100 mg/kg, i.p. P2X3 ↓ (63)

Angelicae pubescentis (Coumarin) SNI in rats 20 mg/kg, i.g. TRPV1 ↓ (64)

Angelicae pubescentis
(Columbianadin, Osthole)

In vitro mouse DRG neurons in vitro 100 µM T-,L- type Ca2+ ↓ (65)

Asarum sieboldii (Eugenol) In vitro transfected in CHO cells in vitro 625 µM Nav1.7 ↓ (66)

Bupleurum chinense
(Saikosaponins)

CCI in rats, formalin-induced pain in mice 2.5, 5.0, 10.0 mg/kg, i.p. Nav1.7 ↓ (67)

Cinnamomum (Coumarin,
Cinnamaldehyde)

In vitro mouse DRG neurons in vitro 15, 30, 60 µM TRPV1↑, TRPM8↓
TRPA1↑

(68)

Corydalis yanhusuo extracts Formalin-induced pain in mice
In vitro transfected in CHO cells

3.6, 6, 10, 20, 40 mg/kg, i.p. Nav1.7↓ (69)

Curcuma (Curcumin) Formalin-induced flinching behavior, vincristine-
induced model
In vitro rat DRG neurons

3.1–100 mg/kg, p.o. KATP ↑ TRPA1↓
P2X3↓

(70, 71)

Dioscorea bulbifera (Diosbulbin) CFA induced model in mice, PSNL models 250–500 mg/kg, p.o. NO-cGMP-ATP sensitive K+ ↑ (72)

Ginseng (Ginsenosides,
Gintonin)

In vitro rat DRG neurons Xenopus oocytes expressing
hKv1.2

in vitro 100 µg/ml L-, N- type Ca2+ ↓
Kv1.2↓

(73, 74)

Glycyrrhiza uralensis Fisch
(Licorice)

Formalin-induced pain model in mice
In vitro DRG neurons transfected on HEK293T cells

25 mg/kg, s.c.
in vitro 30 µM

Nav1.7 ↓ (75)

Ligusticum Chuanxiong Hort
(Ligustrazine)

In vitro mouse DRG neurons in chronic venous disease
model

in vitro 600 µM TRPA1 ↓ (76)

Scutellaria baicalensis (Baicalein,
Wogonin)

In vitro transfected rat TREK-2 in COS-7 cells in vitro 100 µM TREK-2 ↑ (77)

Sinomenium acutum
(Sinomenine)

Formalin-induced pain model in vitro mouse DRG
neurons

50 mg/kg, i.p. Nav ↓ (78)

Sophorae radix (Sophora
flavanone G)

In vitro Cav3.1 or Cav3.2 stably expressed in HEK 293
cells

in vitro 3 µM Cav3.2 T-type Ca2+ ↓ (79)

Pueraria montana (Puerarin) Von Frey test, Hargreaves’ test in CCI rats
In vitro DRG neurons from paclitaxel-induced pain rats

in vitro 1 µM, 10 µM Nav1.8, P2X3 ↓ (80, 81)

Paeonia lactiflora (Paenoiflorin) In vitro DRG neurons from CFA-induced pain in mice
NG108-15 cells

30 mg/kg, i.p.
in vitro 30 µM

TRPV1, L-type Ca2+ ↓ (82, 83)

Kim et al. 10.3389/fpain.2025.1537154
inflammation (52). The P2X7 receptor, expressed in both the

nervous and immune systems, plays a critical role in pain

development by mediating the release of inflammatory cytokines

through ATP activation and intracellular signaling. Its

involvement in inflammatory responses and pain modulation has

been widely recognized and validated (53). Inhibiting P2X4

receptor function or expression, as well as targeting its regulatory

molecules, has shown promise in suppressing neuropathic pain,

making P2X4 receptors a critical therapeutic target (54, 55). P2X3

receptors contribute to acute nociception, while P2X2/3 receptors

modulate prolonged sensitivity linked to nerve injury or

inflammation. In neuropathic pain, P2X4 on microglia maintains

nociceptive sensitivity via neuronal-glial interactions, and

antagonists targeting these receptors have shown efficacy in

reducing pain (56). Further research into the structure, function,
Frontiers in Pain Research 04
and pharmacological inhibitors of P2X4 receptors could advance

targeted therapies for chronic pain, addressing a significant

challenge in pain medicine.
3 Phytochemicals and ion channels:
insights from herbal medicine for pain
management

We classify plants into four main types based on the parts used

—roots, stems, leaves, and fruits. This categorization highlights the

diverse compounds found in each plant part and their specific

interactions with ion channels, which contribute to their

analgesic effects (Tables 1–3).
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TABLE 3 The effects of fruits & flowers on pain models and ion channels.

Herbs & active
compounds

Pain model (type of pain induced) &
in vitro

Dosage (mg/kg)
& route

Targeted ion channel &
receptor

Ref

Crataegus pinnatifida (Vitexin) Acetic acid-induced writhing, formalin-induced, CFA-
induced model in mice

1, 3, 10 mg/kg, i.p. TRPV1↓ (95)

Lycium barbarum DSS-induced ulcerative colitis in rats 100 mg/kg via gavage TRPV1, TRPA1↓ (96)

Inula Britannica
(Essential oil, Patuletin)

Tail-flick, writhing, formalin-induced, and glutamate-
induced tests in mice

25, 50, 100 mg/kg, i.p.
30 mg/kg, i.p.

NO-cyclic GMP-protein kinase
G/ATP-sensitive K+↑

(12, 122)

Garcinia mangostana
(α-Mangostin)

In vitro DRG neuron in mice, ND7/23 cells,
Overexpressed K2P channels in HEK 293 cells

in vitro 0.3–3 mM TRPV1, TTX-S Nav ↓
TREK- 1/2, TRAAK↑

(97)

Tetradium daniellii (Pellitorine) In vitro transfected HaCa-T cells in vitro 3.75 mM TRPV1 ↓ (98)

Rhododendron molle G. Don
(Rhodojaponin III)

Hot plate, tail-immersion, acetic acid writhing, and
formalin tests in mice and rats
In vitro hNav1.5-CHL, hNav 1.7-HEK293, and hNav
1.8-HEK293

0.025–0.30 mg/kg, i.g.
in vitro 22.22–200 µM

Nav1.7, Nav1.8, Nav1.5↓ (99)

TABLE 2 The effects of stems & leaves on pain models and ion channels.

Herbs & active compounds Pain model (type of pain
induced) & in vitro

Dosage (mg/kg)
& route

Targeted ion
channel& receptor

References

Artemisia annua (Artemisinin) CCI rat models
In vitro transfected in HEK293 cells & DRG
neuron in CCI models

5 mg/kg, i.p.
in vitro 0.1–10 µM

P2X4 ↓ (84)

Boswellia carterii and Commiphora myrrha
(Frankincense and myrrh)

CCI in mice
In vitro DRG neuron from CCI models in mice

1.5 g/kg, i.g. TRPV1↓ (85, 86)

Camellia sinensis (Epigallocatechin gallate) Acetic acid-induced pain model in mice 100 µM/L, i.pl. ASIC3↓ (87)

Citrus reticulata extracts In vitro hTRPV1 overexpressed HaCaT-
TRPV1-overexpressed cells
HEK293 cells transfected hTRPA1, rTRPV1
DRG neuron in TRPV1/TRPA1(−/−) rats

TRPV1, TRPM3, TRPA1 ↓
Nav1.7, Nav1.8 ↓

(88, 89)

Ephedra sinica (Ephedrine) Capsaicin-induced pain in mice 700 mg/kg, p.o. TRPV1↓ (90)

Hericium erinaceus extracts SNL induced pain in mice
SH-SY5Y cells

100 mg/kg, p.o. P2X4, P2X7 ↓ (91)

Magnolia officinalis (Magnolol, Honokiol) Tail-flick, hot-plate, formalin tests in mice
In vitro NG108-15 cells

5, 10 mg/kg, i.p.
in vitro 30 µM

Nav, Kv ↓ (92, 93)

Mentha arvensis (Menthol) Von Frey test in mice
In vitro rat DRG neurons
F11 cells

20 µl of 1 mM stock, s.c.
in vitro
125 µM–500 µM

Nav1.8, Nav1.9↓
TTX-S Nav ↓

(94)
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3.1 Roots

3.1.1 Aconitum (neoline, bulleyaconitine A)
Aconitum which has traditionally been used for pain relief,

including rheumatism and neuralgia, due to their potent anti-

inflammatory and analgesic effects, making them valuable for

managing chronic and inflammatory pain conditions (100, 101).

Aconitum species have been used as medicinal herbs, and their

various components have been reported to demonstrate analgesic

effects. Aconiti Brachypodi Radix, derived from the dried roots of

Aconitum brachypodum Diels (Family Ranunculaceae), is

particulary renowned for its anti-rheumatic and analgesic

properties. Extracts from Aconiti Brachypodi Radix show

analgesic effects in vivo, demonstrated through hot-plate,

writhing, and formalin tests. In vitro, it suppresses TTX-S

sodium currents in rat DRG neurons. These results suggest that

the analgesic effect may be linked to the modulation of TTX-S

sodium currents in sensory neurons (57, 58). Neoline, an active

ingredient, effectively alleviates oxaliplatin-induced neuropathic

pain, including mechanical and cold hyperalgesia, by improving

neurite elongation in DRG neurons. It modulates pain-related
Frontiers in Pain Research 05
ion channels and relieves pain without causing sedation or motor

impairment (102, 103). Bulleyaconitine A, an active ingredient of

Aconitum bulleyanum, is known for its long-lasting analgesic

effects by modulating voltage-gated sodium channels, particularly

Nav1.7 and Nav1.8, and blocking TTX-S sodium channels in

DRG neurons through protein kinase C (PKC) inhibition,

effectively reducing neuropathic and chronic pain (59). Its action

is more potent in neuropathic conditions due to upregulated

sodium channels and PKC. Also, as well as Neoline,

Bulleyaconitine A attenuates paclitaxel-induced neuropathic pain

(104). Additionally, it modulates spinal microglia, enhances

morphine’s analgesic effects without affecting acute pain, and

induces antinociception in rats and mice through alkaloids from

Aconitum (105, 106).
3.1.2 Allium macrostemon
Allium macrostemon is traditionally used for thoracic pain and

heart-related conditions, known for antioxidant and vasodilatory

benefits, though its analgesic effects are unstudied. Recent

findings, using HEK293T cells and formalin-induced, acetic
frontiersin.org
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acid-induced, and thermal pain models, support its potential for

pain relief and development as a Nav1.7-targeted analgesic (60).

3.1.3 Angelica dahurica (imperatorin, osthole)
Angelica dahurica, a traditional herb from the Apiaceae family,

is commonly used for treating headaches, toothaches, and skin

issues. Angelica dahurica extract effectively reduces mechanical

and thermal hypersensitivity in CFA-induced inflammatory pain

in mice. Osthole, an extract from Angelica dahurica, directly

inhibits TRPV1 activity in DRG neurons and reduces noxious

heat- and capsaicin-induced pain in mice, with calcium imaging

studies further demonstrating its potential as a promising

analgesic for chronic inflammatory pain (61). Furanocoumarin

imperatorin is the main active component that inhibits formalin-

and capsaicin-induced pain in rats by acting as a weak agonist of

the TRPV1 channel, likely binding near the capsaicin site and

delaying desensitization recovery. These findings highlight

imperatorin’s potential as a lead compound for developing

TRPV1-targeted pain treatments (62).

3.1.4 Angelica sinensis (ferulate)
The roots of Angelica sinensis are famous for their use in pain

relief, particularly for gynecological conditions and inflammation

(107). Sodium ferulate, a major active compound known for its

antioxidant and anti-inflammatory properties, has been widely

used in the treatment of cardiovascular and cerebrovascular

diseases. Recent studies have investigated its effects on

hyperalgesia in a chronic constriction injury (CCI) rat model. It

significantly increased the mechanical withdrawal threshold and

thermal withdrawal latency, indicating reduced pain sensitivity.

Moreover, Sodium ferulate’s effect on hyperalgesia was mediated

through the modulation of the P2X3 receptor in primary sensory

afferents. While CCI elevated P2X3 receptor expression in DRG

neurons, Sodium ferulate effectively reduced this upregulation,

suggesting its potential for alleviating thermal and mechanical

hyperalgesia during chronic neuropathic pain (63).

3.1.5 Angelicae pubescentis (columbianadin,
osthole)

The roots of Angelicae pubescentis have been widely used in

traditional medicine to relieve pain associated with arthritis,

rheumatism, and muscular discomfort (108). The extracts of

Angelicae pubescentis reduce behaviors of acute pain, formalin-

induced inflammatory pain, and neuropathic pain in a spared

nerve injury (SNI) model and coumarins in the extract are the

active anti-nociceptive components (109, 110). The coumarins,

key active components derived from roots, are renowned for

their anti-inflammatory and analgesic properties. They have been

shown to significantly alleviate neuropathic pain and suppress

the development of mechanical hypersensitivity induced by SNI.

The anti-nociceptive effects of coumarins are linked to their

regulation of pro-inflammatory cytokines, including TNF-α, IL-

1β, and IL-6, as well as their modulation of TRPV1 and pERK

pathways in the peripheral nervous system (64). Among the

components of coumarins with demonstrated analgesic effects,

columbianadin has been shown to inhibit acute and
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inflammatory pain behaviors. It also suppresses mechanical and

cold hypersensitivity induced by oxaliplatin (109). Additionally,

osthole, another coumarin compound, may reduce neuropathic

pain behaviors by inhibiting T- and L-type calcium channels in

nociceptive DRG neurons in mice (65).

3.1.6 Asarum sieboldii (eugenol)
The roots of Asarum sieboldii are used for local anesthetics

treat to toothache, headache, and inflammatory diseases. Methyl

eugenol (4-allyl-1,2-dimethoxybenzene), a major component

extracted from Asarum sieboldii exhibits antinociceptive effects in

mice, as shown in the formalin-induced pain test, and reduces

NMDA receptor-mediated hyperalgesia through GABA receptors

(111). Nav1.7 channels which are TTX-S channels were inhibited

by methyl eugenol, demostrated by whole-cell patch clamp

experiments in CHO cells (66).

3.1.7 Bupleurum chinense (saikosaponins)
Bupleurum chinense are rich in compounds like saponins,

volatile oils, and flavonoids. Its main active ingredient,

saikosaponin, has shown various pharmacological effects,

including anti-inflammatory, analgesic, and hepatoprotective

actions. Saikosaponin, reduces neuropathic pain in CCI rats via

p38 MAPK and NF-κB pathways, while saikosaponin A and

D alleviate inflammatory pain in carrageenan-induced rats by

inhibiting the NF-κB pathway, producing pro-inflammatory

mediators (112, 113). Saikosaponin inhibited Nav1.7, reducing

thermal pain and decreased pain responses in phase 2 of the

formalin-induced pain model in vivo (67).

3.1.8 Cinnamomum cassia (coumarin, cinnamic
acid, cinnamaldehyde)

Cinnamomi Cortex (bark of Cinnamomum cassia Presl)

effectively alleviates oxaliplatin-induced cold allodynia in rats. It

reduces cold allodynia and suppresses spinal glial and pro-

inflammatory cytokine activation, with coumarin contributing to

these effects. Cinnamic acid, a major component of

Cinnamomum cassia, is particularly effective in reducing cold

and mechanical hypersensitivity by inhibiting spinal pain

transmission (114, 115). Cinnamomi Cortex has warming

properties and influences pain-related pathways by modulating

TRP channels. Key compounds like cinnamaldehyde increase

TRPV1 and decrease TRPM8 expression in DRG neurons (116),

and activate cold-sensitive TRPA1 channels, which raises

cytoplasmic Ca2+ levels, enhancing cellular function and warmth

effects (68, 117).

3.1.9 Cordyalis yanhusuo
Corydalis yanhusuo extracts and its active component,

tetrahydropalmatine, alleviate neuropathic pain. Tetrahydropalmatine

has antinociceptive effects in acute and chronic pain models,

specifically inhibiting the second phase of formalin-induced pain

when administered intraperitoneally (118). Corydalis yanhusuo

contains active alkaloid components that target Na+ ion channels,

particularly Nav1.7 and Nav1.5, which may contribute to its

analgesic and anti-arrhythmic effects (69). Molecular docking and
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patch clamp studies revealed that dihydrosanguinarine and

dihydrochelerythrine, other active compounds, inhibit peak currents

and modulate activation phases of these channels, supporting

potential therapeutic applications in pain (119).

3.1.10 Curcuma (curcumin)
The rhizomes of Curcuma longa (turmeric) are widely used

for their potent anti-inflammatory, anti-cancer, antioxidant,

and analgesic properties. Curcumin [1,7-bis(4-hydroxy-3-

methoxyphenyl)-1,6-heptadiene-3,5-dione], the primary active

compound, not only activates KATP channels, contributing to its

antinociceptive effects but also specifically modulates the TRPA1

by activating and desensitizing it. This dual action on KATP and

TRPA1 channels, both critical in pain perception, underscores

curcumin’s analgesic potential in managing various chronic pain

conditions (70). Curcumin significantly attenuated vincristine-

induced neuropathy, likely due to its combined antinociceptive,

calcium-inhibitory, and antioxidant effects (120). Also, some

studies have shown that curcumin effectively reduces

neuroinflammation-driven chronic pain by modulating microglia

and astrocytes and suppressing pathways like MAPK, NF-κB,

and JAK-STAT. This modulation decreases pro-inflammatory

mediators and enhances anti-inflammatory responses, making

curcumin effective in treating neuropathic and inflammatory

pain (121). Furthermore, nanoparticle-encapsulated curcumin

(nano curcumin) has shown efficacy in reducing mechanical and

thermal hyperalgesia in HIV-gp120-induced pain models by

inhibiting P2X3 receptor activation and decreasing ERK1/2

phosphorylation in rat DRG neurons. This suggests that nano

curcumin may be an effective strategy for mitigating neuropathic

pain through P2X3-mediated pathways (71).

3.1.11 Dioscorea bulbifera (diosbulbin)
The methanolic extract of Dioscorea bulbifera var sativa

showed significant antinociceptive effects in both inflammatory

and neuropathic pain models. It effectively reduced persistent

pain induced by CFA and neuropathic pain through partial

sciatic nerve ligation (PSNL). The extract also inhibited

acute LPS-induced pain, although it had limited effects on

thermal hyperalgesia and capsaicin-induced nociception. The

antinociceptive effects in the PGE2-induced hyperalgesia model

were reversed by L-NAME and glibenclamide, indicating a

mechanism involving activation of the NO–cGMP–ATP-sensitive

potassium channels pathway. Dioscorea bulbifera may offer

therapeutic potential for managing both inflammatory and

neuropathic pain (72, 122).

3.1.12 Ginseng (ginsenosides, gintonin)
The primary active molecules in ginseng are ginsenosides, also

known as ginseng saponins. Ginseng has been shown to modulate

pain through its effects on ion channels, specifically by influencing

high-voltage-activated Ca2+ channels in rat DRG neurons. Total

saponins from ginseng dose-dependently suppressed Ca2+

channel currents, particularly affecting L-, N- channels. Among

ginseng’s active components, ginsenoside Rg3 was identified as a

key inhibitor of Ca2+ channels, likely contributing to ginseng’s
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antinociceptive effects (73). Gintonin, extracted from ginseng

root, modulates pain-related ion channels by inhibiting Kv1.2

channel activity in a calcium-dependent manner. This inhibition,

which involves phospholipase C and receptor protein tyrosine

phosphatase α (RPTPα) pathways, highlights gintonin’s potential

role in regulating neuronal activity and pain signaling (74).

3.1.13 Glycyrrhiza uralensis Fisch (licorice)
Licorice, made from roots of Glycyrrhiza uralensis Fisch, is

used for its stomach and spleen-protective, pain-relieving, cough-

alleviating, and phlegm-reducing effects (123). Licorice contains

licochalcone A and licochalcone B, key compounds with

potential analgesic effects. In DRG neurons, licochalcone A was

found to inhibit Nav1.7 channel, reducing neuronal excitability,

whereas licochalcone B, did not affect Nav. In animal models of

formalin-induced pain, licochalcone A inhibited pain responses

in both phases of the test, while licochalcone B, only reduced

pain in phase 2. Licochalcones, particularly licochalcone A, could

be promising candidates for developing Nav channel-targeted

analgesic drugs (75).

3.1.14 Ligusticum chuanxiong Hort (ligustrazine)
Ligusticum chuanxiong Hort has long been used to treat

cardiovascular conditions and related pain, including headaches,

chest pain, and neuropathic pain (124). Ligustrazine, a primary

active compound from Ligusticum chuanxiong, has demonstrated

analgesic effects across various pain types, including angina,

neuropathic, inflammatory, and burn pain, and has been shown

to alleviate pain hypersensitivity caused by chronic venous

disease in mice. Ligustrazine reduced pain responses to

mechanical, cold, and thermal stimuli and desensitized TRPA1

channel activity in DRG neurons, thereby decreasing neuronal

excitability (76).

3.1.15 Scutellaria baicalensis (baicalein, wogonin)
The root of Scutellaria baicalensis has been widely used in Asia

and the West for its health benefits, traditionally treating

cardiovascular diseases, inflammation, and tumors. Scutellaria

baicalensis is renowned for its high flavonoid content, containing

four primary flavones: baicalin, baicalein, wogonoside and wogonin

(125, 126). Baicalein and wogonin were found to activate the

TREK-2 potassium channel, potentially contributing to

neuroprotection. In COS-7 cells expressing TREK-2, both

compounds increased channel opening frequency without affecting

conductance or open time. Baicalein provided continuous

activation, while wogonin activated TREK-2 transiently. These

findings suggest that baicalein and wogonin may help regulate

resting membrane potential (RMP) under pathological conditions,

supporting their neuroprotective effects (77).

3.1.16 Sinomenium acutum (sinomenine)
Sinomenium acutum, traditionally used for rheumatic arthritis

and neuralgia, contains sinomenine, an active compound with

immunosuppressive, anti-inflammatory, and analgesic properties

that effectively alleviates both neuropathic and inflammatory pain

(127, 128). Sinomenine, the active ingredient in Sinomenium
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acutum, shows analgesic effects in a formalin-induced

inflammatory pain model in mice. Intraperitoneal administration

of sinomenine reduced pain behaviors and suppressed c-Fos

expression in the spinal cord. In DRG neurons, sinomenine

increased the spike threshold, reduced firing frequency, and

inhibited Nav currents dose-dependently, suggesting that its

peripheral analgesic effect involves inhibition of Na+ channels (78).

3.1.17 Sophorae radix (sophora flavanone G)
Sophorae radix, derived from the roots of Sophora species, is

traditionally used for pain relief and as an anti-inflammatory

agent in conditions like arthritis (129). Cav3.2 T-type Ca2+

channels are known for their role in pain signaling. Sophora

flavanone G from Sophorae Radix and hop-derived analogues,

(2S)-6-PNG and (2S)-8-PNG, are effective T-channel blockers.

(2R/S)-6-PNG showed significant effects in reducing mechanical

and visceral pain, as well as neuropathic allodynia in mice,

without noticeable side effects on motor or cardiovascular

function (79).

3.1.18 Pueraria montana (puerarin)
Puerarin has shown analgesic effects in neuropathic pain

models. It alleviates paclitaxel-induced pain by blocking Nav
channels, especially TTX-R Nav1.8 channels, in a β1 subunit-

dependent manner. In CCI model, puerarin also reduced pain by

downregulating P2X3 receptor expression in DRG neurons,

increasing pain thresholds. These findings highlight puerarin’s

potential in managing neuropathic pain through modulation of

Nav1.8 and P2X3 channels in sensory neurons (80, 81).

3.1.19 Paeonia lactiflora (paenoiflorin)
Paeoniflorin, derived from the roots of Paeonia lactiflora, is

widely used for pain relief and to treat conditions such as

gynecological disorders, liver disease, neuroinflammation and

rheumatoid arthritis (130, 131). Its anti-inflammatory,

immunoregulatory, and antioxidant properties enhance its role in

managing autoimmune diseases (132). Paeoniflorin acts as an

analgesic by modulating ion channels involved in pain

transmission, particularly through its stable binding to TRPV1,

which directly suppresses the response of DRG neurons to

capsaicin (82). It also inhibits L-type voltage-dependent calcium

currents in a concentration-dependent manner and shifts the

inactivation curve to more negative potentials in NG108-15 cells,

indicating its role in modulating neuronal excitability and

neuroendocrine functions (83). These channels regulate neuronal

excitability and Ca2+ influx, which are crucial for nociceptive

signal propagation. By inhibiting these channels, paeoniflorin

effectively reduces pain perception and mitigates hyperalgesia,

making it a potent agent for managing chronic and

neuropathic pain.

3.1.20 Rhododendron molle (grayanoids)
Grayanoids, derived from the dried roots of Rhododendron

molle, are traditionally used for pain relief and modulate voltage-

gated Na+ channels. They exhibit strong anti-nociceptive effects

in pain models, such as the acetic acid-induced writhing, hot-
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plate, and formalin tests, with voltage-gated Na+ channels serving

as key targets for their analgesic and toxic effects (133).
3.2 Stems&leaves

3.2.1 Artemisia annua (artemisinin)
Artemisia annua, part of the Asteraceae family, has long been

used in traditional medicine for malaria and fever treatment (134).

Artemisia species and artemisinin exhibit various pharmacological

effects, including antibacterial, antifungal, antioxidant and anti-

inflammatory properties (135, 136). Artemisinin and its

derivatives have shown significant pain-relieving effects by

modulating ion channels like the P2X4 receptor in the DRG,

associated with neuropathic pain. It demonstrated stronger

antinociceptive effects, while artemisinin exhibited notable anti-

inflammatory properties, reducing key pro-inflammatory

cytokines (84, 137).

3.2.2 Boswellia carterii and Commiphora myrrha
(frankincense and myrrh)

Frankincense and myrrh are traditional resins used to relieve

pain. Frankincense, from Boswellia carterii, may help regulate

immune function, while myrrh, from Commiphora myrrha, has

anti-inflammatory and antimicrobial effects (138, 139).

Frankincense and myrrh, traditionally used together for

synergistic pain relief, were studied for their mechanisms in

neuropathic pain using mouse models. In a CCI model, a water

extract of frankincense and myrrh effectively alleviated thermal

hypersensitivity and mechanical allodynia (85). The studies

highlighted the role of the TRPV1 receptor and the TLR4/

MyD88 pathway in neuropathic pain. A water extract of

frankincense and myrrh treatment reduced TRPV1 expression at

both mRNA and protein levels and decreased calcium response

in DRG neurons, while also inhibiting neuroinflammatory TLR4/

MyD88 signaling in the spinal cord. These findings suggest that

a water extract of frankincense and myrrh alleviates neuropathic

pain by modulating TRPV1 and reducing neuroinflammation

through the TLR4/MyD88 pathway, offering a potential approach

for neuropathic pain treatment targeting ion channels and

inflammatory signaling (86).

3.2.3 Camellia sinensis (epigallocatechin gallate)
The leaves of Camellia sinensis, commonly consumed as green

and black tea, contain polyphenols like epigallocatechin-3-gallate, a

primary compound in green tea that has shown promise in

preclinical studies for neuropathic pain treatment due to its anti-

inflammatory and antioxidant effects, and has also demonstrated

the ability to reduce bone cancer pain (140). In neuropathic pain

caused by peripheral nerve injury, epigallocatechin-3-gallate and

its derivatives were tested for analgesic effects. They effectively

reduced thermal hyperalgesia long-term by inhibiting fatty acid

synthase and lowering inflammatory protein levels, making it a

promising candidate for neuropathic pain treatment in preclinical

development (141). Epigallocatechin gallate inhibited ASIC3

currents effectively at low concentrations and reduced acid-
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induced pain behaviors in mice, highlighting its potential as a

structural basis for developing pain-targeted drugs that modulate

ASIC3 channels (87).
3.2.4 Citrus reticulata
Citrus plants that have compounds including narirutin,

naringenin, limonene, diosmetin, and newly studied TRPM3

blockers like Isosakuranetin, show promising potential for

neuropathic pain management by targeting pain-related ion

channels. Narirutin and Naringenin inhibit Nav1.7 and Nav1.8

Na+ channels, respectively, to reduce pain signaling. Limonene

modulates TRPA1 channels, inducing pain topically but

inhibiting pain systemically. Diosmetin acts as a TRPV1

antagonist, effectively reducing heat- and capsaicin-induced pain.

Isosakuranetin, identified as a potent TRPM3 blocker, and

hesperetin decrease responses to noxious heat and chemical pain

in mice. Together, these compounds offer novel mechanisms for

pain relief, targeting TRPV1, TRPA1, Nav1.7, Nav1.8, and

TRPM3 channels, and highlight the potential for citrus-derived

compounds in developing selective and effective analgesics (88,

89, 142–144).
3.2.5 Ephedra sinica (ephedrine)
Ephedrine, derived from Ephedra sinica, E. intermedia, or E.

equisetina, is known for its anti-inflammatory properties which

contribute to its analgesic effects (145–147). These medicines are

commonly used to treat pain conditions, primarily due to their

anti-inflammatory actions. Interestingly, ephedra herb extracts

not only activate the TRPV1 channel, a key mediator of pain

sensation, but also induce its desensitization. This desensitization,

observed in vivo, reduces capsaicin-induced pain by suppressing

TRPV1 activity in peripheral sensory neurons, highlighting a

dual mechanism where initial activation of TRPV1 is followed by

a loss of channel sensitivity, ultimately leading to analgesia.

These findings suggest ephedra herb extracts that may exert its

pain-relieving effects through a combination of anti-

inflammatory properties and modulation of TRPV1 signaling (90).
3.2.6 Hericium erinaceus
The extracts and chemical components of the genus Hericium,

a group of medicinal mushrooms traditionally used in

herbal medicine, is actively progressing, revealing various

pharmacological activities such as anticancer, antioxidant, anti-

inflammatory, and nerve growth-promoting properties. Notably,

H. erinaceus has gained attention for its potential to treat

Alzheimer’s disease, cancer, inflammation, depression, and nerve

injury, highlighting its diverse health-promoting effects (148,

149). Erinacine-S, a small active component derived from H.

erinaceus inhibits P2R-mediated Ca2+ signaling and reduces

neuropathic pain and neuroinflammation in cell and mouse

models through the modulation of P2X4 and P2X7. Ethanol

extracts and erinacine-S showed potential for treating

neuropathic pain (91).
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3.2.7 Magnolia officinalis (magnolol, honokiol,
magnolin)

Magnolol, a polyphenolic compound from the bark of

Magnolia officinalis, exhibits multiple pharmacological effects. It

has anti-inflammatory properties by inhibiting NF-κB,

antioxidative effects useful for skin disorders, and anticancer

effects in thyroid, bladder, and glioblastoma cells (150–152).

Magnolol inhibited Nav and Kv channels. These inhibitory effects

on Nav and Kv channels may contribute to magnolol’s

neuroprotective properties (92). Honokiol and magnolol, two

active compounds from the bark of Magnolia officinalis, were

tested for pain relief in mice. While they did not reduce pain in

the tail-flick, hot-plate, or neurogenic phase of the formalin test,

both compounds significantly reduced pain in the inflammatory

phase of the formalin-induced response. They decreased

formalin-induced c-Fos expression in the spinal cord’s dorsal

horn without affecting motor coordination or memory. These

findings suggest that honokiol and magnolol may effectively treat

inflammatory pain without causing motor or cognitive side

effects (93). Magnolin, the major tetrahydrofurofuranoid lignan

from Magnolia denudata, significantly alleviated paclitaxel-

induced CIPN, which is characterized by sensory disturbances

and neuropathic pain, through the suppression of ERK

phosphorylation in the DRG (153).
3.2.8 Mentha arvensis (menthol)
The leaves of Mentha arvensis are rich in menthol. Menthol,

known for activating the TRPM8 channel to produce a cooling

sensation, is widely used in topical analgesics (154). A previous

study tested whether menthol also blocks Nav, which are critical

in pain sensation. Results showed that menthol inhibits Nav1.8,

Nav1.9, and TTX-S channels in a concentration-, voltage-, and

frequency-dependent manner, promoting inactivation and

reducing high-frequency neuronal firing. Low concentrations of

menthol provided pain relief in mice, suggesting that its analgesic

effect involves selective Na+ channel blockade (94). However,

high doses of menthol increase neuron excitability by inhibiting

leak K+ channels, likely K2P channels, in dural afferent neurons.

This inhibition leads to membrane depolarization and lowers the

threshold for AP generation, which may explain menthol’s

pronociceptive effect at high concentrations (155). That means,

menthol’s dual role in pain modulation, with lower doses

providing analgesia and higher doses enhancing pain responses.
3.3 Fruits&flowers

3.3.1 Crataegus pinnatifida (vitexin)
Vitexin, a C-glycosylated flavone (5, 7, 4-trihydroxyflavone-

8-glucoside), is a primary bioactive compound in the traditional

herb Crataegus pinnatifida (156). Vitexin reduces mechanical and

thermal hyperalgesia and inhibits pain-like behaviors in various

inflammatory pain models in mice. Its antinociceptive effects

against inflammatory pain may be partially mediated by targeting
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the TRPV1 channel, reducing oxidative stress, and modulating

cytokine production (95).

3.3.2 Lycium barbarum
Lycium barbarum, commonly known as goji berry or

wolfberry, has been widely used in medicine and contains

bioactive compounds like polysaccharides, carotenoids, and

betaine (157). The therapeutic effects of Lycium barbarum

polysaccharides and capsaicin were investigated in a dextran

sulfate sodium (DSS)-induced colitis model in rats. The

treatments, administered via gavage, significantly reduced

oxidative stress, inflammatory responses, and pain signaling.

Specifically, both Lycium barbarum polysaccharides and capsaicin

downregulated the expression of TRPV1 and TRPA1 ion

channels in the colon, which are closely associated with pain and

inflammation (96).

3.3.3 Inula britannica (patuletin)
Inula britannica, traditional medicine for arthritis and back

pain, was studied for its pain-relieving effects. The flower

essential oil and its major component, patuletin, demonstrated

significant antinociceptive effects in male mice across various

pain models (tail-flick, writhing, formalin-induced, and

glutamate-induced tests). Essential oil effects were reduced by

opioid antagonists and blocked by methylene blue and

glibenclamide, suggesting the involvement of opioid receptors

and activation of the NO-cyclic GMP-protein kinase G/ATP-

sensitive potassium channel signaling pathway (12, 122).

3.3.4 Garcinia mangostana (α-mangostin)
Garcinia mangostana (mangosteen) has fruit-derived products

used in traditional medicine for treating infections and reducing

fever (158, 159). α-Mangostin, a primary xanthone from

mangosteen pericarps, exhibits antioxidant, anti-inflammatory,

and analgesic effects, likely by modulating ion channels in

nociceptive neurons. α-Mangostin enhances K+ conductance,

activates TREK/TRAAK channels, inhibits TRPV1 currents, and

partially suppresses TTX-S Nav channels, which reduces neuronal

excitability and pain. This demonstrates that α-Mangostin exerts

multi-target analgesic effects by modulating pain-related ion

channels expressed in DRG neurons. Also, molecular docking

and in silico ADME analyses support its stable interactions with

these channels and its potential as a safe, multi-target analgesic

agent without crossing the blood-brain barrier (97).

3.3.5 Tetradium daniellii (pellitorine)
Pellitorine, from the fruits of Tetradium daniellii, as the first

TRPV1 antagonist derived from the Evodia species. Through

bioactivity-guided extraction and isolation, pellitorine blocks

capsaicin-induced Ca2+ uptake. While other isolated compounds

(e.g., N-isobutyl-4,5-epoxy-2E-decadienamide) showed no TRPV1

activity, pellitorine emerged as a competitive inhibitor. This

compound, structurally analogous to capsaicin, may help inhibit

inflammation-related pain (98). It also alleviated cold allodynia

in an oxaliplatin-induced model (160).
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3.3.6 Rhododendron molle G. Don
(Rhodojaponin III)

The flowers and fruits from Rhododendron molle G. Don, a

traditional medicinal herb, are well-known for their pain-

relieving properties. Rhodojaponin III, the primary active and

toxic component extracted from this plant, has been

investigated for its antinociceptive effects, underlying

mechanisms, and subacute toxicity. Rhodojaponin III showed

significant pain-relieving effects in nociceptive pain models,

including hot plate, tail-immersion, acetic acid writhing, and

formalin tests, as well as reduction in hyperalgesia in a CCI

model. Molecular docking and electrophysiological studies

revealed that Rhodojaponin III mildly inhibits Nav1.7, Nav1.8,

and Nav1.5 (99).
4 Discussion

Pain management remains a complex and persistent challenge

in both clinical and research settings, primarily due to the

multifaceted nature of pain signaling pathways and the diverse

origins of pain conditions. Opioids, NSAIDs, and gabapentin are

commonly used pharmacological therapies, widely recognized for

their effectiveness in pain relief. However, their uses often come

with significant side effects. Opioids are associated with risks of

addiction and tolerance (3, 6); NSAIDs can lead to

gastrointestinal irritation, cardiovascular events, and renal

dysfunction (7, 9); Gabapentin, while effective for neuropathic

pain, may cause dizziness, sedation, and dependency in some

cases (5, 10, 11). These adverse effects not only limit the long-

term usability of these medications but also highlight the

necessary need for alternative therapeutic strategies. These

challenges underscore the importance of exploring alternative

therapeutic strategy that can effectively manage pain while

offering improved safety profiles.

Medicinal herbs may offer a promising solution to this issue.

These herbs have been performed for their analgesic properties

in traditional medicine, and recent advancements in scientific

research have begun to unravel their molecular mechanisms of

action (Figure 1). Plant-based compounds derived from a

single herb often include multiple extracts, each contributing

to analgesic effects. Even a single phytochemical adopts a

multi-targeted approach, rather than targeting a single ion

channel as seen in conventional single-target therapies (68, 82,

83, 89, 97). For instance, α-mangostin applied to DRG

neurons significantly inhibited TRPV1 currents in the

micromolar (µM) range and TTX-S Nav currents in the

millimolar (mM) range. Furthermore, α-mangostin activated

K2P channels in the µM range, hyperpolarizing the RMP of

DRG neurons (97). This highlights that a single molecule like

α-mangostin can exert broad effects by simultaneously

modulating various ion channels associated with pain

transmission, providing comprehensive and potent pain relief.

Since pain involves complex pathophysiological mechanisms,

targeting a single pathway is insufficient to address and treat it

fully. From this perspective, the diverse analgesic mechanisms
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FIGURE 1

Diagram of mechanisms linking plant-derived medicines, ion channels, and pain modulation. Illustrating the potential mechanisms of pain modulation
by plant-derived compounds through sensory neuronal ion channels. The image depicts how bioactive compounds from plants may target ion
channels, such as Na+, Ca2+, TRP, Kv, KATP ASICs, and P2X, in dorsal root ganglion (DRG) neurons to alleviate pain signals. The integration of
natural products and ion channel regulation in pain pathways is highlighted.
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of natural compounds make them a promising option for

treating multifaceted pain conditions.

Interestingly, different parts of a plant, such as fruits, flowers,

stems, leaves, and roots, are rich in varying levels of

phytochemicals with analgesic properties, making them

promising candidates for pain management applications. Fruits

and flowers, include flavonoids, phenolic acids, essential oils, and

alkaloids (161, 162). Stems and leaves commonly harbor tannins

and terpenoids (163, 164), and roots frequently contain saponins

and polysaccharides (67, 165). Understanding these specific

phytochemical profiles allows for more targeted research and

application in pain management. Moving forward, the botanical

and pharmaceutical industries are likely to emphasize the

systematic utilization of these plant components, optimizing

extraction and formulation methods to maximize their

therapeutic potential in analgesics.

Despite their potential, only a small fraction of herb-related

compounds has successfully been translated into clinical

practice. Among these, certain herbal medicines have

demonstrated clinical efficacy as analgesics. For example,

curcumin, widely used for managing pain and inflammation, is

safely administered at 400–600 mg of standardized powder up

to three times daily or 1–3 g of dried powdered root (166,

167). Similarly, clinical trials recommend 100–250 mg of

Boswellia carterii extract daily for at least 4 weeks to improve

pain, stiffness, and joint function (168). Menthol, commonly

used to alleviate cold symptoms such as nasal congestion and

nighttime cough, is safely applied topically in ointments (5–

10 ml) to the chest and neck, making it suitable for

individuals aged 2 years and older (169). However, several

factors limit the broader clinical application of these

compounds, with one significant challenge being the lack of
Frontiers in Pain Research 11
standardization for active compounds. The multi-component

and complex nature of herbal extracts make it difficult to

standardize specific active ingredients and clearly define their

effects (170–173).

Integrating medicinal herbs into recent clinical pain

management protocols remains a formidable challenge. Key areas

requiring further research include the standardization of dosages,

ensuring the consistency and quality of herbal extracts, and

optimizing delivery methods to maximize therapeutic benefits.

Moreover, large-scale clinical trials are essential to validate the

efficacy and safety of these herbal compounds across diverse

patient populations. Addressing these issues could pave the way

for the successful clinical translation of medicinal herbs, providing

safer and more effective alternatives for pain management.
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