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Pain without presence: a
narrative review of the
pathophysiological landscape
of phantom limb pain
Hong Wu1*, Chandan Saini1, Roi Medina1, Sharon L. Hsieh2,
Aria Meshkati3 and Kerry Sung3

1Department of Physical Medicine and Rehabilitation, Rush University Medical Center, Chicago, IL,
United States, 2Department of Physical Medicine and Rehabilitation, Emory University School of
Medicine, Atlanta, GA, United States, 3Rush University Medical College, Chicago, IL, United States
Phantom limb pain (PLP) is defined as the perception of pain in a limb that has
been amputated. In the United States, approximately 30,000–40,000
amputations are performed annually with an estimated 2.3 million people
living with amputations. The prevalence of PLP among amputees is
approximately 64%. Over the years, various theories regarding the etiology of
PLP have been proposed, with some gaining more prominence than others.
Yet, there is a lack of consensus on PLP mechanisms as the current literature
exploring the pathophysiology of PLP is multifactorial, involving complex
interactions between the central and peripheral nervous systems, psychosocial
factors, and genetic influences. This review seeks to enhance the
understanding of PLP by exploring its multifaceted pathophysiology, including
genetic predispositions. We highlight historical aspects of pain theories and
PLP, examining how these theories have expanded to include psychosocial
dimensions associated with chronic pain in amputees. Additionally, we present
significant findings from both human and animal studies focused on
neuroaxial systems and recent advances in molecular research to further
elucidate the complex and multifactorial nature of PLP. Ultimately, we hope
that the integration of current theoretical frameworks and findings will lay a
more robust foundation for future research on PLP.
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1 Introduction

Phantom limb pain (PLP) is defined as the pain in a limb that has been amputated, but

it can also occur following the loss of other body parts, such as an eye, breast, or tooth

(1, 2). This phenomenon was first documented by the French barber-surgeon Ambroise

Paré in 1551, who observed the condition in soldiers who had undergone battlefield

amputations (3, 4). In 1797, British Admiral Horatio Nelson, after losing an arm in a

battle, described the vivid sensation of his missing arm and the transient pain in his

stump (5, 6). It was not until the 19th century, during the American Civil War, that

neurologist Silas Weir Mitchell contributed significantly to the understanding of the

PLP (7, 8).
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In the United States, the annual incidence of limb amputations

is approximately 464,644 (9), and the global prevalence of PLP

among amputees is estimated at 64% (10). Projections indicate

that by 2050, over 3.6 million individuals may be living with

limb loss (11). PLP is not only physically debilitating but also

profoundly impacts mental health, often leading to decreased

quality of life, depression, and anxiety (12–14).

Despite extensive research, the origin of PLP remains elusive.

Several mechanisms have been proposed to explain its

development, with early theories focusing on religious, psychiatric,

and psychological interpretations (15, 16). Subsequently,

neurobiological and psycho-cognitive models emerged, suggesting

a complex interplay of both psychological and physiological

factors. Early studies primarily attributed the cause of PLP to the

peripheral nervous system (PNS), particularly based on the

discovery of ectopic discharges originating from the neuroma at

the stump (17, 18). Later research identified the involvement of

the central nervous system (CNS) in PLP, highlighting the role of

maladaptive cortical plasticity in PLP’s development (19–21).

More recent advances point to multifactorial pathophysiology,

with PLP likely arising from the convergence of multiple

interconnected mechanisms (2, 22, 23).

Although previous reviews have addressed the contributions

of the PNS, CNS, and psychological mechanisms to the

development of PLP (24–28), and have offered historical

perspectives (28, 29), our review aims to provide an overview of

both pathophysiological and historical insights. We focus on

important human and animal studies across neuroaxial systems

and the latest advancements in molecular, psychosocial, and

genetic factors—areas that have been less thoroughly explored in

previous literature. Furthermore, we examine other predisposing

risk factors that influence the development and persistence of PLP.
1.1 Peripheral nervous system

Early models of PLP proposed that abnormal firing of sensory

nerves in the stump led to misinterpretation by the brain as

sensations from the missing limb. PLP was thought to arise from

disrupted sensory input after amputation, with peripheral nerve

mechanisms playing a central role (30–32). The discovery that

neuromas—abnormal nerve tissue growths—generate ectopic

discharges further supported the idea that the stump may be a

major source of pain. Ectopic activity, characterized by

spontaneous neuronal firing, was observed in neuromas at the

amputation site and appeared to contribute to PLP (33–41).
1.2 Nerve damage and neuroma formation

After amputation, nerve fibers at the distal end undergo

retrograde degeneration, while nerve fibers at the proximal end

undergo sprouting to elongate to reconnect to the distal end (42,

43). During the sprouting process, axon regeneration may occur

in an unstructured manner leading to neuroma formation at the

amputation site (44, 45). Histopathological studies using light
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and electron microscopy have extensively examined neuroma

formation (46–49). During the early weeks post-injury, most

axons terminate in smooth, elliptical swellings known as

“neuroma end bulbs,” with minimal regenerative sprouting.

Interestingly, the period of greatest electrical hyperexcitability in

the neuroma coincides with this minimal sprouting, suggesting

that the end bulbs, rather than extensive axonal regrowth, are the

primary source of abnormal impulse discharges associated with

neuropathic pain (46, 48, 49).

Oliveira et al. observed a cascade of regenerative events

following peripheral nerve injury, including neuronal sprouting

and neuroma formation, with associated abnormal afferent

activity (47). These neuromas exhibited increased ectopic activity

and heightened sensitivity to mechanical stimuli, changes

attributed to altered ion channel dynamics, such as upregulation

of voltage-gated sodium channels (Nav) (50–53). In a similar

study, Wall et al. induced neuroma formation in rats by

sectioning the femoral nerve, finding that stimulation at the tip

of the neuroma elicited a significant response, unlike stimulation

at the proximal nerve or dorsal root ganglion (DRG). This

response was attributed to fine nerve fibers within the neuroma

that exhibited spontaneous activity without external stimuli, a

phenomenon not seen in intact roots. These fibers were also

sensitive to mechanical pressure and could be inhibited by

lidocaine, further highlighting the neuroma’s role in generating

spontaneous, abnormal nerve impulses (54). These peripheral

mechanisms, including ectopic activity, ion channel dysregulation,

and disrupted sensory input, collectively contribute to the onset

and persistence of PLP.
1.3 Sympathetic involvement

In addition to neuroma formation contributing to the

development of PLP, the sympathetic nervous system (SNS) also

plays a role in the development of PLP through several

mechanisms including ephaptic transmission, activation of

nociceptors and low-threshold mechanoreceptors, and sympathetic

coupling in the periphery and DRG (55).

In animal studies, beta-adrenergic blockade leads to reduced

sensation of PLP while adrenaline injections into neuromas lead

to heightened sensation of pain and paresthesia, providing

support for the sympathetic involvement in PLP (56–58).

Sympathetic dysregulation in the stump of amputee patients has

also been supported by evidence indicating that reduced surface

blood-flow may be a physiologic correlate of the burning

sensation in PLP (59). In addition, animal studies suggest

increased postsynaptic norepinephrine release during emotionally

stressful situations correlates with hyperalgesia and heightened

spinal nociception. Changes in catecholamine levels and alpha-

adrenoreceptor involvement have been implicated in the pain

associated with neuroma formation, further underscoring the

complexity of peripheral contributions to post-amputation pain

syndromes (59, 60). Given the early onset of pain immediately

after amputation and the inability of anesthetic blocks to

eliminate PLP entirely, peripheral factors and the SNS alone
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cannot be considered the sole factors contributing to PLP but

should be regarded as key factors.
1.4 Peripheral sensitization

Peripheral sensitization is a process where the peripheral nerves

become more sensitive to stimuli following injury or inflammation

and is believed to be influenced by the formation of neuromas. As

mentioned above, neuromas can produce spontaneous ectopic

discharges and lead to hyperexcitability and enhanced sensitivity

to normally non-painful stimuli, a phenomenon known as

allodynia (61, 62). Additionally, peripheral sensitization can

result from the release of inflammatory mediators and

neurotransmitters that further sensitize the nerves, creating a

cycle of pain amplification (63–65). Although the exact

mechanism for development and maintenance of chronic ectopic

firing is not fully understood, Nav has been shown to contribute

towards increased ectopic firing (66–69).

Additionally, recent investigations into the molecular pathways

following peripheral nerve injury have revealed the release of

adenosine triphosphate (ATP), by primary sensory and dorsal

horn neurons, that bind to P2X receptors expressed by microglia

adjacent to the dorsal horn (DH) (70). The binding of ATP leads

to the release of brain-derived neurotrophic factor (BDNF) into

the DH, increasing neuronal hyperexcitability and nullifying the

inhibitory responses, as discussed above. Another recent study

using mice models has further delineated this understanding

(71). In this study, wild-type mice were compared to mutant

mice who had a deletion of a gene that codes for a microglia-

specific ATP releasing channel. The examiners found that the

mutant mice, who lacked the ATP-releasing channels, had

reduced allodynia in comparison to the wild-type mice (71).

Several animal and human studies have demonstrated the role

of Nav in nociceptive sensation and expressivity/peripheral

sensitization following peripheral nerve injury (72, 73). These

findings suggest that the upregulation of the Nav channels leads

to increased nerve excitability that manifests as hyperalgesia. One

potential mechanism for the accumulation of these receptors

within neuromas is through membrane remodeling following

axotomy (66, 67). Immunostaining of human neuroma tissue has

demonstrated that individuals with neuropathic pain have

increased expression of Nav channels and ankyrin G, which is a

protein involved in regulating Nav (74).

In addition to molecular mechanisms involving the PNS in the

development of PLP, there is evidence suggesting that re-

innervation by motor neurons of residual proximal muscles

contributes to abnormal nerve firing. Animal studies have

demonstrated that motor neurons, which formerly innervated

distal target muscles, survive and re-innervate new targets in

residual muscles (75, 76). Sensory afferent neurons from both the

residual stump and skin have been observed re-innervating

territories in the cuneate nucleus (77, 78). Because the cuneate

nucleus relays sensory information to the somatosensory cortex,

its stimulation by stump muscles can lead to phantom limb

sensations (PLS) and possibly PLP (77).
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2 Central nervous system

As the complexity of PLP became more apparent, researchers

began to integrate the CNS’s involvement. It became clear that

PLP was not solely explained by peripheral mechanisms or

simple gate modulation. The concept of cortical reorganization

emerged as a key factor in the development of PLP. Studies,

including those by Flor et al., demonstrated that after

amputation, the brain’s somatosensory cortex, which once

represented the missing limb, undergoes reorganization (79). The

cortical areas that previously mapped the amputated limb may

become “invaded” by adjacent body areas, such as the face or

residual limb. This reorganization may lead to the perception of

sensations or pain in the absent limb (i.e., phantom limb

sensations). This maladaptive plasticity in the brain could

underlie the chronic pain and sensory disturbances often

experienced in PLP.
2.1 Cortical reorganization

The understanding of PLP has evolved significantly through

two main theoretical frameworks: Melzack and Wall’s gate

control theory (80) and Melzack’s later neuromatrix theory (81).

Both emphasize the CNS’ role in modulating pain. The gate

control theory posited that pain is not simply the result of

sensory input but involves modulation within the spinal cord

and brain. The theory introduced the concept of “gates” in the

spinal cord that can either inhibit or facilitate pain transmission

to the brain. In PLP, these gates can become sensitized after

amputation, allowing abnormal pain signals to reach the brain

(80). Building on this, Melzack’s “neuromatrix” theory proposed

that pain arises from a “neurosignature,” produced by a

genetically determined synaptic architecture (neuromatrix) in the

CNS. This theory expanded pain perception to include sensory,

emotional, and cognitive components, explaining how the loss of

sensory input from the amputated limb leads to abnormal brain

activity, which misinterprets this activity as pain or sensation in

the missing limb (81).

The concept of maladaptive cortical reorganization has been

widely debated as a key mechanism in the CNS origin of

PLP (19, 21, 81–83). This process occurs in the primary

somatosensory cortex (S1) and primary motor cortex (M1),

where reduced sensory input, such as from limb amputation,

leads to a decreased cortical representation of the amputated

body part and the subsequent expansion of adjacent body parts’

cortical representations (84–86). The phenomenon arises when

distal axons of the DRG become disconnected from their targets

following amputation, generating ectopic activity in the residual

limb. This abnormal signaling within the spinothalamic tract

triggers cortical reorganization, as neighboring cortical regions

invade the deafferented areas. These changes can manifest as

both non-painful and painful sensations, such as PLS and PLP,

in the absence of peripheral input (81). Early animal studies,

such as Rasmusson’s work on raccoons, demonstrated that the
frontiersin.org

https://doi.org/10.3389/fpain.2025.1419762
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


Wu et al. 10.3389/fpain.2025.1419762
loss of a digit led to cortical changes, with the sensory map

corresponding to the missing digit being taken over by the

neighboring cortical area, leading to heightened sensitivity (86).

Kaas et al. (84) showed that sensory cortical maps in primates

reorganized after injury (85). Similar results were obtained in adult

monkeys, owls, and squirrels, where sensory maps underwent

significant alterations in response to sensory loss (87–90).

Human studies further elucidated the role of cortical

reorganization in PLP. In a landmark 1995 study, Flor et al.

utilized magnetoencephalography (MEG) and magnetic resonance

imaging (MRI) to demonstrate that cortical reorganization in

upper-limb amputees was associated with shifts in the locus of

cortical responsiveness, particularly in those experiencing PLP

(79). Flor’s later work on congenital limb absence revealed that

individuals born without limbs exhibited minimal cortical

reorganization and no PLP (21), suggesting that reorganization

is critical for PLP development. Furthermore, advanced

neuroimaging, particularly functional MRI (fMRI), has challenged

the idea that cortical reorganization alone accounts for PLP

(20, 91–93). Makin et al. found that despite preserved cortical

maps in amputees with PLP, disrupted inter-regional connectivity

may contribute to PLP (94). Similarly, Andoh et al. observed

increased activation in motor and sensory cortices, but this

activation was not correlated with PLP intensity, suggesting a

multi-factorial nature of the condition (93).

However, this static model of the cortical reorganization theory

did not fully account for the variable and sometimes reversible

nature of PLP, such as fluctuation of PLP and changes of PLP

responding to interventional treatments. These observations

suggest that cortical changes are not static but can be modulated

or dynamically reorganized. In the late 1990–2000s, the theory of

dynamic cortical reorganization emerged, and refers to a

continuous reshaping of the cortical maps in response to

external stimuli, motor and sensory feedback, proposing that

reorganization involves both structural and functional changes,

particularly in how the brain processes sensory and pain signals.

Flor et al. 1995 showed that the cortical changes in response to

somatosensory evoked potentials (SEPs) were related to the

intensity of PLP (79). The pioneering work on mirror therapy

from Ramachandran et al. in 1996 (95) revealed that visual

feedback can reduce PLP by alternating the cortical map in real-

time. Schwenkreis et al. used transcranial magnetic stimulation

(TMS) to show that the motor cortex reorganizes to incorporate

adjacent body parts after amputation, supporting the notion of

dynamic brain plasticity (96). Additionally, studies demonstrated

that emotional and cognitive activities can also influence the

brain’ response to pain suggesting a role of cognitive-behavioral

therapy (CBT) in treating PLP (55).
2.2 The thalamic contributions

Thalamus, a critical relay center for sensory and motor

information, plays a key role in the CNS origin of PLP (97, 98).

In a typical nervous system, primary afferent pain signals from

peripheral nociceptors synapse at the DH of the spinal cord and
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ascend via the spinothalamic or spinoreticular tracts (79,

99–101). These signals pass through the brainstem, where

facilitatory or inhibitory signals modulate pain transmission

before reaching the thalamus for further processing (102–105).

After amputation, the thalamus undergoes reorganization similar

to cortical changes, with neurons initially responsible for the

amputated limb’s sensory processing now responding to inputs

from neighboring body areas (78, 93, 106, 107). This leads to the

misperception of pain in the missing limb. The thalamus can

become sensitized through an increase in Na + channels in

thalamic neurons, akin to peripheral sensitization (108, 109).

Studies show that the thalamic representation of the residual

limb is enlarged in amputees compared to individuals with intact

limbs, and micro-stimulation of the thalamus in the absence of

peripheral stimuli can evoke phantom sensations and PLP (78,

86, 110, 111). This central sensitization, coupled with altered

thalamic representations, contributes to the chronic nature and

intensity of PLP (89, 105, 109, 112).

Additionally, the thalamus plays a key role in modulating pain

perception. Changes in thalamic activity and connectivity affect

how pain is processed, contributing to phenomena such as

allodynia (pain from non-painful stimuli) and hyperalgesia

(amplified pain responses) (113–115). The thalamus interacts with

cortical and subcortical regions, including the somatosensory

cortex, anterior cingulate cortex, and insula, which are involved in

the sensory and emotional components of pain (116, 117).

Deep brain stimulation (DBS) and transcranial stimulation

(TCS) targeting the thalamus have shown efficacy in reducing

PLP and other neuropathic pain conditions (118–124). These

treatments support the thalamus’s involvement in PLP, and

ongoing research into their mechanisms may reveal new

neuromodulation strategies to alleviate PLP symptoms.
2.3 Centralization of pain and windup
phenomenon

Centralization refers to the increased sensitivity and

responsiveness of neurons within the CNS, dorsal horns, and

primary afferent fibers (125, 126). As mentioned previously, the

DRG becomes hyperexcitable with increases in Nav, leading to

ectopic firings that cause pain in the absence of stimuli (51–54,

127, 128). The process of central sensitization also involves

sensitized C-fibers, which release glutamate and interact with

neuropeptides and N-methyl-D-aspartate (NMDA) receptors to

amplify spinal cord responses (126, 129–132).

The “wind-up” phenomenon, characterized by frequency-

dependent increases in spinal cord neuron excitability due to

C-fiber stimulation, serves as a precursor to central sensitization.

Repetitive stimulation during wind-up can lead to an expanded

receptive field, a significant feature of central sensitization (133,

134). Wind-up differs from central sensitization in its temporal

nature, ceasing after the stimulus ends, while central sensitization

can persist (126, 133, 134). This process, critical in demonstrating

spinal cord plasticity, amplifies pain signaling and sets the stage

for chronic pain conditions such as PLP (126, 133, 134).
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In amputees, increased nociceptive activity is attributed to the

loss of descending inhibitory control, particularly through reduced

gamma-aminobutyric acid (GABA) and glycine-mediated

inhibition due to nerve injury (105, 135–137). This disinhibition

occurs both in the spinal cord and cortex, as GABAergic

interneurons are damaged by axotomy, contributing to

spinal hyperexcitability (136–139). Additionally, brain-derived

neurotrophic factor (BDNF) plays a role in post-injury

neuroplasticity, promoting excitatory effects on nociception

through NMDA receptor modulation (140–145). Animal studies

have shown that spinal BDNF infusion enhances nociceptive

responses, which can be mitigated by NMDA antagonists

(143, 146). The interplay between disinhibition, BDNF, and

NMDA receptors contributes to the complex mechanisms

underlying PLP, underscoring the need for further investigation

into these molecular pathways.
2.4 Proprioceptive memory

Proprioceptive memory, or the brain’s ability to retain

awareness of body position. Even after amputation, amputees

often report sensations of proprioception in the missing limb

(147, 148). One theory suggests that proprioceptive information

is consolidated as long-term memory during repeated motor

tasks, allowing these memories to persist despite the absence of

the limb (148, 149). This theory is supported by studies where

individuals could sense the position of their amputated limbs

even after regional anesthesia (150, 151).

The connection between proprioceptive memory and PLP is

further highlighted by the phenomenon of frozen phantom

limbs, which often mimic the limb’s position prior to

amputation, suggesting that these proprioceptive imprints remain

intact (152–154). This preservation could explain therapeutic

interventions like mirror therapy (MT), which aim to align visual

and proprioceptive inputs, potentially clearing mismatched

proprioceptive memories and alleviating PLP (95, 155). Mirror

therapy has been shown to reduce PLP by providing visual

feedback that matches proprioceptive input, addressing the

sensory conflict that contributes to pain (156).

Moreover, PLP may arise from a mismatch between visual and

proprioceptive inputs. The brain integrates visual cues with tactile

and proprioceptive sensations to create body ownership, and any

discrepancy between these signals may lead to the experience of

PLP (157–160). These findings emphasize the complex

relationship between proprioceptive memory and PLP and

suggest that therapies targeting this interaction could offer novel

ways to manage chronic pain following amputation.
3 Psychological factors

PLP is not only influenced by mechanisms involving the CNS

and PNS but also by significant psychosocial components.

Emotional and cognitive factors can influence the dynamics of

cortical reorganization involved in PLP (79, 156, 161),
Frontiers in Pain Research 05
contributing to maladaptive cortical reorganization and increased

pain perception.
3.1 Stress and PLP

Chronic stress is one of the key psychological factors implicated

in the exacerbation of PLP. Stress can influence neuroplastic

changes in the brain, particularly in areas related to sensory and

motor processing. Lotze et al. (162) demonstrated that stress was

associated with cortical reorganization, thereby contributing to

the sensation of PLP. Additionally, higher stress levels were

linked to more intense pain in PLP patients (163, 164),

suggesting that stress may exacerbate cortical maladaptation,

leading to persistent pain. Furthermore, several studies (165, 166)

have shown that psychological stress could modulate pain

perception, including phantom pain. Stress-induced activation of

brain areas involved in emotional regulation and pain processing,

such as the anterior cingulate cortex, may increase sensitivity to

pain stimuli, contributing to the experience of PLP.
3.2 Depression and PLP

Depression is another significant psychological factor

associated with the onset and intensity of PLP. Depressive

symptoms often co-occur with PLP, and patients with depression

tend to report more severe PLS (13). Larbig et al. (167) found

that higher levels of depression were associated with more severe

PLP, and the presence of depression appeared to increase

sensitivity to pain. This finding suggests that depression could

alter pain processing mechanisms, potentially through

disruptions in brain structures that regulate pain, such as the

periaqueductal gray and serotonergic pathways. Additionally,

Ahmed et al. (168) demonstrated that depressed amputees were

significantly more likely to experience chronic PLP. They linked

depression to lower serotonin levels, which are known to play a

crucial role in pain modulation, thus reinforcing the idea that

mood disorders contribute to the persistence and intensity of PLP.
3.3 Anxiety and PLP

Anxiety, particularly post-traumatic anxiety, is another

important factor that can exacerbate PLP. Ramachandran and

Hirstein (148) proposed that anxiety and fear might amplify the

perception of PLP through increased central nervous system

sensitivity. Anxiety related to the loss of a limb or concerns

about complications may heighten the brain’s pain processing

capacity, making PLP more intense. Further supporting this

notion, Desmond et al. (169) found that anxiety was correlated

with more frequent and intense PLP and suggested that anxiety

could enhance pain perception by activating brain regions

involved in both emotional processing and pain, such as the

amygdala and somatosensory cortex, which may increase the

salience of pain and contribute to its persistence.
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3.4 Emotional and cognitive factors in PLP

Cognitive and emotional factors, such as catastrophizing and

negative emotions, could contribute to central sensitization

(170, 171)—a phenomenon where the central nervous system

becomes hyper-responsive to pain signals. This increased

sensitivity may make PLP more intense and persistent. Several

studies (171–174) found that negative emotional states and

cognitive distortions could amplify the perception of pain

through increased central sensitization. Individuals with post-

traumatic stress disorder (PTSD) often report higher levels of

PLP through neurobiological changes, such as the sensitization of

pain pathways and emotional dysregulation (13). Numerous

studies (175–177) supported this notion by showing that

psychological interventions targeting depression and anxiety

significantly reduced the intensity of chronic pain. This suggests

that the psychological well-being of patients is crucial in

managing PLP, as mental health treatment may help alleviate

both the emotional burden and the neuroplastic changes

associated with PLP.
4 Genetic influences

Previous studies have established the genetic associations with

chronic neuropathic pain syndromes, specifically identifying

associations within genes coding for voltage-gated ion channels,

calcium binding genes, and mitochondrial phosphate caries

(178–181). Identification of genetic involvement in neuropathic

pain suggests a possible role of genetic predisposition in PLP,

which could significantly enhance the clinical management and

treatment outcomes of this condition. Devor et al. 2005

demonstrated heritable traits for neuropathic pain in rodents

with sciatic nerve ligations, where specific genetic loci on

chromosome 15 were linked to pain sensitivity and neuroma-

related pain (182). These findings highlight the role of genetic

variation in modulating pain responses and provide a framework

for understanding the genetic underpinnings of PLP. Human

genetic research on PLP is still in its early stages but has shown

promising results. Notably, studies by Nissenbaum et al. and

Bortsov et al. identified polymorphisms in the CACNG2 gene

(calcium voltage-gated channel auxiliary subunit gamma 2) on

chromosome 22, which regulates AMPA receptor trafficking

(183, 184). Specific polymorphisms in CACNG2 were associated

with chronic neuropathic pain, such as postmastectomy pain,

suggesting a potential link to PLP (184). This discovery marks

one of the first genetic associations with PLP in humans, though

further research is needed to confirm these findings.

While a direct link between genetics and PLP remains

unestablished, the studies in this area hold promise and could

significantly benefit future exploration into the genetic factors

contributing to PLP. The exploration of epigenetic mechanisms,

such as microRNA regulation, in chronic neuropathic pain also

holds promise for PLP research (185–187). These epigenetic

factors may offer new insights into how environmental factors
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and genetic predispositions interact to influence pain perception

and could lead to novel therapeutic strategies targeting gene

expression (185–187).
5 Conclusion

PLP remains one of the most challenging and poorly

understood conditions in the field of amputation, primarily due

to the absence of a comprehensive consensus on its underlying

pathophysiology. The multifactorial nature of PLP has led to

ongoing debate regarding the specific mechanisms involved in its

onset. Insights from cerebral, spinal, and peripheral perspectives

provide critical evidence, suggesting that PLP likely results from

the complex interaction of these diverse systems, rather than

from a single etiological cause. Beyond the neurobiological

underpinnings, recent advancements in psychology and genetics

have shed light on the multifaceted mechanisms contributing to

PLP’s pathogenesis, further highlighting the intricate nature of

the disorder.

This review has aimed to synthesize these diverse lines of

research, providing an integrative overview of the physiological,

psychological, and genetic factors implicated in PLP. By examining

key human and animal studies, we have highlighted recent

progress in molecular, psychological, and genetic research that is

reshaping our understanding of this condition. A multidimensional

approach to PLP, integrating these findings, holds the promise of

more personalized treatment strategies that address the diverse and

individualized needs of patients. Ultimately, such an approach has

the potential to improve treatment outcomes, enhance patient

well-being, and drive innovations in both PLP research and

therapeutic interventions in the future.
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