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The neuraxial delivery of drugs for the management of pain and other spinal
pathologies is widely employed and is the subject of a large volume of
ongoing research with several thousand papers appearing in the past 5 years
alone on neuraxial delivery. Several learned texts have been recently published.
A number of considerations have contributed to this widespread interest in the
development of the use of neuraxial therapeutics to manage pain. In the
following section, major topics relevant to spinal encoding and in the use of
neuraxial therapeutics are considered by the Frontiers in Pain Research editors
of the research topic: “Neuraxial Therapeutics in Pain Management: Now and
Future”. This paper seeks to serve as a perspective to encourage the
submission of manuscripts reflecting research in this exciting area.
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1 Why neuraxial delivery?

Three condition may justify neuraxial delivery as a therapeutic intervention (1) The

therapeutic target, in this case complex aspects of the pain experience, lies at the spinal

level, as reviewed below. (2) The drug can reach the spinal parenchyma but achieves

effective concentrations at doses which have adverse systemic effects (opiate, alpha2

agonists); and (3) the drug has no target access because of the blood brain barrier

(ziconotide, viral transfection platforms). Under these common conditions (1–4),

neuraxial delivery can be appreciated to have an important role in pain management.
1.1 Related research topics

• Historical commentary on the evolution of neuraxial therapeutics in. research and

clinical practice

• Risk-benefit consideration governing neuraxial therapeutic delivery.

• Cost points for the use of neuraxial delivery in acute and chronic pain states.
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2 The pivotal role played by spinal
encoding complexities of a pain
phenotype

This focus on neuraxial interventions in pain reflects the pivotal

role played by the dorsal root ganglion (DRG) and the dorsal horn

circuitry in many aspects of the pain states generated by tissue and

nerve injury from the encoding and decoding of the content of the

line labeled afferent message, to primary and secondary

hyperpathia, to the anomalous events that result in pain secondary

to activation of low threshold mechanoreceptors, and to the

persistent presence of pain after resolution of the initiating injury

leading to a chronic pain phenotype. Of equal importance, we

appreciate that the pain state is composed not only of encoding

that define the sensory-discriminative properties of the initiating

stimulus, but directly contribute to input driving higher order

functions that underlie the affective aspects of the pain stimulus

which we consider relevant to the intense emotional components

of pain (5–8). The efficacy of ventrolateral cordotomies in

managing the crossed pain state was early evidence that such

ascending information played a pivotal role in the pain experiences

(9, 10). In addition to the ascending projections which exhibit

somatotopy and projections into the somatosensory cortex, other

projections reach the old limbic forebrain, long associated with

affective aspects of behavior and to regions such as the

hypothalamus, amygdala, and hippocampus reflecting connectivity

involved in trophic regulation, learning and memory (11, 12).

Thus, the evident therapeutic efficacy of neuraxial interventions in

managing pain states generated by acute and chronic conditions

secondary to tissue and nerve injury has pointed to the evident role

that such control of the spinofugal message has profound effects

not only on pain intensity but the emotive and autonomic aspects

of the pain experience. It appears that these afferent-spinofugal

linkages have a discrete pharmacology, suggesting specific targeting

by spinal therapeutics of the components of pain information they

process (12–14).
2.1 Related research topics

• Dorsal horn linkages regulating input-output function of

distinct populations of spinofugal axons.

• Role of identified spinofugal projections into brainstem,

diencephalon and forebrain in the encoding of nociceptive

stimuli and their higher order projections to areas associated

with somatic, autonomic or affective behavioral components.

• Supraspinal linkages activating. descending pathways that up- or

down-regulate nociceptive signaling, e.g., reflecting hyper- or

hypo-algesia, respectively.

3 Neuraxial targets

Many states of severe pain and spasticity reflect processes

regulated at the spinal cord. Preclinical models for neuraxial
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delivery, in conjunction with sophisticated behavioral assessments

strategies for pain phenotypes, has permitted characterization of the

role of pharmacologically defined targets on nociceptive processing

across species (15). These study models have permitted systematic

characterization of virtually all current therapeutics regulating pain

(such as opiates and alpha 2 agonists; NaV 1.7, CaV2.2 channel

blockers) (15–17) or spasticity (GABA A agonism) (18) acting at

the spinal level to regulate this processing (19–21).

Earlier studies emphasized the role of a myriad of neuropeptides

in the spinal cord and in the dorsal root ganglion (22), forming local

circuits though eponymous receptors on second order interneurons

and projection neurons for cholecystoknin, gastrin-releasing

peptide, substance P, Neurotensin, neuropeptide FF (23). The role

of these local circuits in nociceptive processing has become

increasingly appreciated as potential targets (24). As an example,

local CCK circuits have been identified (25). Blocking spinal CCK

receptors prevents allodynic states (26–28) and serves to prevent up

regulation of proinflammatory signaling (29). Aside from neurons,

DRG macrophages and satellite cells and dorsal horn astrocytes and

microglia play a crucial role in regulating the excitability of the

dorsal horn input-output function (30–33). There is a growing

appreciation of the role of innate and adaptive immunity in

mediating pain phenotypes evoked by circulating immune

complexes (34, 35) and the ability of these products to reach the

DRG after intrathecal and systemic delivery though its unique

ganglion-blood barrier (36) points to the evolution of neuraxial

pain biology that may be directly addressed by neuraxial delivery.

Based on behavioral studies with neuraxial therapeutics, regulation

of this diverse neuraxial biology has relevance to pain phenotypes

identified as nociceptive, neuropathic and nociplastic (37).
3.1 Related research topics

• Advances in development of neuraxial delivery models to permit

study of the effects of acute and chronic delivery of neuraxially

targeted therapeutics in the animal.

• Specific assessment of role of neuraxial targets in regulating

complex pain behaviors and phenotypes.

• Changes in higher order function as defined by non-invasive

imaging and electrophysiology produced by neuraxial therapeutics.

4 Therapeutic delivery platforms and
formulations for neuraxial delivery

Neuraxial delivery commonly employs small molecules

delivered in a water based vehicle. The pharmacokinetics of such

formulations has been suitable for short to moderately long

lasting therapeutic effects. Maintenance of drug action for longer

periods has required multiple deliveries or infusions though

implanted devices. The current area of therapeutic platforms has

been markedly broadened with the development of transfection

motifs such as antisense oligonucleotides and viral transfection

platforms or targeted neurotoxins, which permits the targeting of

neuraxial specific genes to increase or decrease protein expression to
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address neurological pathologies such as in pain, spasticity or

neurodegenerative disorders (38–43). These platforms provide an

opportunity to address the cause of pathology and thus qualify as

disease modifying. Transfection of transducer protein activated by

novel designer ligand [DREADD: (44)], light [optogenetics: (45)] or

ultrasound [sonogenetics: (46)] permits creation of novel

interventions to regulate nerve, DRG and spinal function. Future

development of these approaches will witness the ability to regulate

the duration of the induced alterations by making the changes

conditional and subject to on/off regulation. Such capabilities

promise to robustly expand the use of these neuraxial modalities to

meet the clinical pain phenotype (e.g., acute: day to weeks- post

surgical; semi chronic: weeks to months—trauma, burn; and,

chronic: non reversible- terminal, genetic, degenerative pathologies).
4.1 Related research topics

• Delivery formulations which alter bioavailability and

pharmacokinetics of neuraxial therapeutics.

• Targeting platforms that alter for varying intervals neuraxial

processing though transfection and toxins motifs and/or are

subject to regulation (e.g., conditional Knock in/Knock outs).

5 Neuraxial CSF/parenchyma drug
distribution

The fluid filled intrathecal space is confined within a

moderately compliant dural sac which undergoes limited,

periodic, oscillatory-movement. This movement is driven by

pressure gradients that arise from: (i) changes in the non-

compliant intracranial blood volume, forcing caudal movement

of ventricular cerebrospinal fluid (CSF) (46–52); (ii) compression

of the spinal thecal sac by fluctuations in blood volume in the

perispinal venous plexus (Batson’s plexus) induced by inhalation

and expiration (53–56) and (iii) arterial pulsations along the

neuraxis (e.g., via the intercostal and radicular arteries (57, 58).

In accord with these properties, intrathecal injectates delivered

at low rates or in small volumes display minimal pericatheter or

rostrocaudal redistribution (59–63). As will be noted in the

following section, these low flow patterns and their associated

gradient are associated with restricted redistribution of the

injected therapeutic and delivery strategies to enhance

distribution are of interest. An additional variable regarding CSF-

solute movement of the drug following intrathecal delivery is

into the parenchyma or to the DRG. Current thinking has

emphasized that the physicochemical properties of the molecule

(lipid partition coefficient, molecular weight, etc.) serve to define

the facility of moving from the CSF into the parenchyma. In this

regard, the pia represents a surprisingly substantial barrier for

diffusion of larger molecules and particle, as with viral

transfection (64, 65). Once in the parenchyma, molecules exhibit

diffusion properties defined by physical characteristics of the

molecule, including molecular weight and lipid solubility

(66, 67). Of note, after IT delivery there is substantial movement
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of even large molecules or particles into the dorsal root ganglion.

This selectivity is widely appreciated for the ability of intrathecal

adenoviruses to result in DRG transfection (17).
5.1 Related research topics

• Assessment of the intrinsic flow patterns in the extracranial

neuraxial space and physiological factors (respiratory/

cardiovascular) altering that flow pattern.

• Characterization of factors such as respiratory and cardiac cycles

and changes in thoracic/abdominal pressures influencing CSF

flow patterns.

• Consideration of factors governing distribution of intrathecal/

epidural molecules to and into the CSF, meninges,

parenchyma and DRG (e.g., lipid partition coefficient,

molecular weight, formulation/encapsulation)

• Characterization of route by which intrathecal molecules/

particles reach the DRG.

6 Interventions to regulate spinal drug
distribution

As reviewed above, movement of cerebrospinal fluid within the

extracranial neuraxial, while present, is restricted. In accord with

these properties, intrathecal injectates delivered in low volumes

and low rates often display minimal pericatheter or rostrocaudal

redistribution (59–63). These injected solutions typically show a

gradient away from the site of focal drug delivery with only

modest lateral movement (20, 59, 68, 69). Here, issues of interest

relate to increasing local spread of the injectate away from the

injection or infusion sites, reducing local tissue exposure and (ii)

promoting, as required, the degree of rostrocaudal spread.

(i) Pericatheter redistribution. As reviewed below, neuraxial

formulations may employ high concentrations. The absence

of a robust redistribution away from the catheter means that

local tissue is exposed to that concentration, enhancing the

likelihood of local toxicity (69). Strategies to increase lateral

movement involve increasing exit velocity of the solute from

the catheter/needle). This is practically accomplished by

increasing the delivery rate (e.g., bolus vs. infusion) and

increasing exit resistance from the catheter (20, 21, 69).

(ii) Rostrocaudal distribution. Spinal nociceptive processing from

a segmental input is not limited to a single spinal segment.

Afferent traffic from a single nerve root may communicate

with spinal levels as much as 5–10 spinal segments distant

(70). Accordingly, a spinal drug, which is believed to act on

the afferent terminal, such as a mu opioid or alpha 2

adrenergic (15), must reach spinal levels spanning this

distance at effective doses to prove efficacious. The issue of

achieving extended rostrocaudal redistribution is particularly

important for neuraxial pathologies (infection/cancer) or

neurodegenerative processes (e.g., Somatomotor Atrophy/

Amyotrophic Lateral Sclerosis) where the delivery of the
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therapeutic requires sacral to cervical distribution (71, 72). Not

surprisingly, Increased rostrocaudal redistribution of the

injected drug may be achieved by greater injection volumes or

higher rates of infusion. In vivo studies (monkeys) show that

acute high-volume injections of tracers can generate greater

distribution across the neuraxis (73) as a result of (1): higher

injection volume leading to a wider initial spread, followed by

(i) rapid dispersion mediated by natural CSF pulsation of a

given amplitude and frequency around spinal microanatomical

features which give rise to geometry-induced mixing effects

especially around nerve roots and trabeculae (74, 75).

Lipophilic agents are typically cleared from the CSF into

adjacent tissues and therefore show less rostrocaudal

movement than non-diffusive tracers that are not taken up.

Volume restrictions and effects upon neuraxial pressure are

limiting factors in a volume based protocols (76) and higher

rates of delivery from a point source may have limited effects

upon rostral-caudal distribution due to the anatomical

complexity of the intrathecal space (20). Further, the increased

rostrocaudal effect is achieved at the cost of much higher doses

of drug exposure at the site of injection with consequences as

noted below. Alternate possibilities have focused on the

catheter itself, using catheters with multiple high resistance exit

sites, e.g., valves leading to increased exit velocities (20, 21) or

multiple orifices (77).

(iii) In vitro modeling. Current work to model delivery parameters

and their impact upon distribution has taken advantage of

mathematical and physical models to predict the effects of

formulation and delivery parameters to produce defined

degrees of redistribution (74, 75, 78–81). These models can

be dimensionally comparable to the anatomy and possess the

physiologically relevant characteristics, including the sources

of pressure gradients (vascular, respiratory) and the

compliance of the intrathecal space as defined by the local

arterial and venous vasculature and dural compliance). A 3D

printed subject-specific deformable phantom models of the

human central nervous system has been used to study

intrathecal infusion under realistic physiological conditions

(81). This model showed strong micro-mixing effects due to

anatomical features in the spinal subarachnoid space which

served as active drivers of intrathecal drug dispersion. The

effect of infusion parameters (injection rate volume and

solute dilution) and physiological factors (CSF volume,

amplitude and frequency) can be quantified over an entire

range of physiological ranges in human CNS. Moreover, the

effective dispersion coefficient as a function of CSF

properties (mainly amplitude and frequency) can be

determined with optical techniques.
6.1 Related research topics

• Device (catheters, ports and pumps) design and functional

properties promoting local redistribution of a neuraxial drug
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and the effects of such variables on therapeutic efficacy,

efficiency and safety.

• Neuraxial delivery protocols to facilitate pericatheter and

rostrocaudal injectate. distribution

• Role of injection formulation (baricity, encapsulation), volume

and rate of delivery on distribution.

• Strategies to enhance supraspinal redistribution after

extracranial neuraxial delivery.

• Development of models to assess and predict

neuraxial distribution.

7 Clinical issues in the use of neuraxial
therapeutics

Intrathecal delivery of therapeutics is used for the efficacious

management of acute and chronic pain of a somatic or

neuropathic origin (82). Advancing an agent for intrathecal drug

delivery (IDD) through regulatory agencies is more challenging

than for systemic applications. Thus, clinical implementation of

intrathecal drugs has lagged. This slower development reflects

safety concerns, patient population size, regulatory requirements,

manufacturing and stability, cost of development and

reimbursement potential (15). Hence, only two agents have

gained regulatory approval for IDD for chronic pain:

preservative-free morphine and N-type calcium channel blocker

ziconotide. Intrathecal morphine displays varying degree of

tolerance in animal models and in humans (83–85). Ziconotide

has a narrow therapeutic window and significant neurocognitive

side effects. Hence, practitioners have resorted to identifying

clinical patient and drug factors that are important for

optimizing IDD and have additionally used several off label

intrathecal adjuvants, which while not approved for IDD, have

become a standard of care in clinical practice (20). These

therapeutics include other opioids (hydromorphone, fentanyl and

sufentanil) as well as a local anesthetic (bupivacaine) and an

alpha-2 adrenergic agonist (clonidine). For reasons outlined

below (Neuraxial safety), the safety of agents used for neuraxial

use in humans requires systematic preclinical assessment. These

off label agents are employed with the rationale that their long

use with little evidence of adverse events renders them

acceptable. Clinical parameters that are favorable for minimizing

intrathecal opioid dose escalation include older patient age (86)

and minimal to no baseline systemic opioid prior to initiation of

IDD (87, 88). Co-administering the local anesthetic bupivacaine

from the outset of opioid IDD may blunt opioid dose escalation

(89). For ziconotide, use of low doses and slow titration without

other concomitant agents in the pump may prove valuable in

effecting pain relief (90). Given the large number of management

permutations and limited clinical data, consensus statements

have been developed regarding best practices for patients

suffering with cancer related pain and those with refractory

chronic non-cancer pain (82). In general, and given limited CSF

flow dynamics both rostrocaudally and circumferentially (see

above), clinicians strive to place IDD catheters in the dorsal

intrathecal space in close proximity to putative segmental targets.
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This may be more important for lipophilic agents than

hydrophobic agents (68, 91). Nonetheless, significant challenges

remain with efficacy and tolerability of commonly used agents

highlighting the need for novel agents and improved

delivery techniques.
7.1 Related research topics

• Appropriately powered and controlled clinical trials

reflecting the effects of neuraxial therapeutics on the spectrum

of pain states

• Clinical implementation of neuraxial therapeutics for chronic

delivery using catheters accessed by subcutaneous ports

or pumps.

• Optimization of site of injection/drug delivery based on the

pain distribution.

8 Neuraxial safety

It is appreciated that local anesthetics can produce DRG

neurolysis, and morphine can induce meningeally-derived

granulomas (92–95). These phenomena have been shown to

evolve in a concentration dependent fashion, which is

compounded by the dilemma of maldistribution. It is of great

importance that appropriate safety be determined in validated

preclinical models before it is moved to the human platform.

Variables impacting safety include the molecule itself, its

concentration (vs. total dose where volume of delivery of a given

concentration is increased) and its formulation constituents (e.g.,

adjuvants). This issue of concentration is an important

consideration in the determination of safety. Increases in

concentration above those studied must be considered as literally

a novel therapeutic and its safety must be assessed. This criteria

for clinical neuraxial use is recognized by many pain and

anesthesia journals as a minimum criteria for publishing related

results (96). The limited local pericatheter redistribution of

intrathecal injectate, in view of the high solute concentrations

employed in preclinical and clinical studies (97–99) with the

relatively limited redistributional forces, leads to high persistent

local peri-catheter solute concentrations proximal to the delivery

site and accounts for many issues of local toxicity (see below)

(69, 100, 101).
8.1 Related research topics

• Considerations of epidural or intrathecal therapeutics on local

(DRG, root, Meninges and Parenchyma neuraxial toxicity in

preclinical models.

• Role of concentrations vs. total local doses

• Patient associated pathology after neuraxial delivery.
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The above brief overview reflects nonexclusively the primary

areas of interest of the respective editors that this topical

specialty seeks to address. We invite basic clinical and preclinical

research and reviews with a focus on issues pertinent to

neuraxial delivery of therapeutics in general and pain in

particular. We point to a previous overview of this subject matter

that was previously published in our journal (20).
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