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Mechanisms of complex regional
pain syndrome
Jagan Devarajan1, Shayla Mena1 and Jianguo Cheng2*
1Department of Pain Management, Neurological Institute, Cleveland Clinic, Cleveland, OH, United
States, 2Department of Pain Management and Neurosciences, Neurological Institute, Cleveland Clinic,
Cleveland, OH, United States
Complex Regional Pain Syndrome (CRPS) is a chronic pain disorder characterized
by a diverse array of symptoms, including pain that is disproportionate to the initial
triggering event, accompanied by autonomic, sensory, motor, and sudomotor
disturbances. The primary pathology of both types of CRPS (Type I, also known
as reflex sympathetic dystrophy, RSD; Type II, also known as causalgia) is
featured by allodynia, edema, changes in skin color and temperature, and
dystrophy, predominantly affecting extremities. Recent studies started to unravel
the complex pathogenic mechanisms of CRPS, particularly from an
autoimmune and neuroimmune interaction perspective. CRPS is now
recognized as a systemic disease that stems from a complex interplay of
inflammatory, immunologic, neurogenic, genetic, and psychologic factors. The
relative contributions of these factors may vary among patients and even within
a single patient over time. Key mechanisms underlying clinical manifestations
include peripheral and central sensitization, sympathetic dysregulation, and
alterations in somatosensory processing. Enhanced understanding of the
mechanisms of CRPS is crucial for the development of effective therapeutic
interventions. While our mechanistic understanding of CRPS remains
incomplete, this article updates recent research advancements and sheds light
on the etiology, pathogenesis, and molecular underpinnings of CRPS.
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Introduction

Complex Regional Pain Syndrome (CRPS) is a debilitating chronic pain condition that

often perplexes both patients and healthcare professionals with its complex array of

symptoms and poorly understood mechanisms. Characterized by disproportionate pain

relative to the initial injury or trauma, along with a myriad of autonomic, sensory,

motor, and sudomotor disturbances, CRPS presents significant challenges in diagnosis

and management. The disorder manifests in two main types: CRPS Type I, occurring

without a discernible nerve injury, and CRPS Type II, following a distinct nerve injury.

Recent studies have begun to unravel its multifaceted nature, highlighting autoimmune

mechanisms and neuroimmune interactions. We have recently reviewed the role of

neuroinflammation in CRPS (1). Here we aim to provide a comprehensive review of the

enigmatic nature of CRPS, setting the stage for further exploration into its complexities

and advancements in understanding and treating this debilitating condition.

The identification and evolution of CRPS represent a significant journey of

understanding and addressing a complex and often misunderstood condition. Over time,

advancements in research, diagnostic techniques, and multidisciplinary approaches have

led to improved recognition and management of CRPS. Through collaborative efforts
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among clinicians, researchers, and patients, there has been a growing

understanding of the underlying mechanisms, contributing factors,

and treatment modalities for CRPS. However, ongoing research

and education are essential to further enhance our understanding

and refine therapeutic strategies for individuals affected by this

debilitating condition.

The legacy of identifying CRPS exemplifies a milestone in

medical discovery, showcasing the intricate nature of diagnosing

and understanding complex diseases. Ambroise Paré, often called

the “Father of Modern Surgery” was the first to describe a disorder

seemingly like CRPS in the sixteenth century (2). However, it

wasn’t until the American Civil War that physician Sila Wier

Mitchell described several cases of what is now believed to be

CRPS. His monograph, “Gunshot Wounds and Other Injuries,”

would go on to become the benchmark for diagnosing nerve

damage until World War I (3). Mitchell later coined the term

“causalgia” for this disease in 1872 (4). Following that in 1900,

German surgeon Paul Sudeck presented a paper at the 29th

Congress of the German Society of Surgery (“Acute inflammatory

bone atrophy”) describing a particular type of bone atrophy (5).

The following year, his student called this pathologic phenomenon

“Sudeck’s atrophy” (5, 6). Over the following decades, various

surgeons and physicians recognized the role of sympathetic activity

and sympathectomy in several chronic pain syndromes (7–9).

John Bonica published “The Management of Pain”, and

proposed staging for RSD in 1953 (10), and later started the first

scientific society devoted exclusively to the study of pain in 1973

(The International Association for the Study of Pain, IASP) (5).

Bonica renamed the disease as “Complex Regional Pain

Syndrome” during the 1993 IASP Orlando Conference to

emphasize that the predominant aspect of the disease was the

localization of pain in a particular anatomic region (11). The

Orlando Conference Criteria yielded a high sensitivity (close to

90%), but a low specificity (less than 50%) resulting in

misdiagnosing diseases as CRPS (5). It wasn’t until the Budapest

Conference in 2003 that what is now known as the most accepted

diagnostic criteria for CRPS was developed (Appendix 1). The

Budapest Criteria enhanced the specificity of earlier criteria (99%

sensitivity and 68% specificity), although some literature suggests

it may not be generalizable to all populations, particularly post-

stroke CRPS (12, 13). Other diagnostic criteria that have been

proposed for CRPS include those by Dutch surgeon Peter

Veldman and British surgeon Roger Michael Atkins (14, 15).
Clinical manifestations, progression,
and diagnosis

CRPS is the current diagnostic label for the constellation of

signs and symptoms that has historically been referred to as

RSD, reflex neurovascular dystrophy, causalgia, Sudeck’s atrophy,

algodystrophy, algoneurodystrophy, and shoulder-hand syndrome

(16). It is a chronic pain disorder that is distinguished by its

autonomic as well as structural features (17). CRPS typically

affects an extremity after a traumatic injury, with a propensity
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for spreading to alternate anatomical sites (18), including the

contralateral side, as recognized by the National Institute of

Neurological Disorders and Stroke (https://www.ninds.nih.gov/

health-information/disorders/complex-regional-pain-syndrome).

Knowledge of the spreading pattern of CRPS may lead to

hypotheses about underlying mechanisms (19). Predominantly,

CRPS occurrences manifest in the extremities, yet instances have

been documented in the orofacial and neck regions (20–22).

CRPS can even arise spontaneously without an instigating event

or known cause. Interestingly, CRPS has been described in

patients who have suffered strokes, indicating the complexity of

the pathophysiology involved in the disease process (23).

The manifestations of Type I and Type II CRPS are similar

despite the diagnostic distinction between the two types. In

addition to the pain characteristics (e.g., burning pain,

hyperalgesia, and allodynia), local edema, skin discoloration,

altered sweating, temperature abnormalities in the affected region,

trophic changes (e.g., change in skin, hair, or nail growth), and

altered motor function (e.g., loss of strength, decreased active

range of motion, and tremor) can all occur. The goals and

strategies for the treatment of CRPS remain the same irrespective

of the types. The objectives of the intervention are not only

achieving amelioration of pain and discomfort but also restoration

of functionality and mitigation of disability. Treatment of CRPS

does not differ between the two types. However, treatment of

CRPS Type II, in addition, may include treating the underlying

nerve injury whenever possible (24). Early diagnosis and treatment

typically lead to better outcomes. Studies also indicate that pain

and motor dysfunction are the most dominant long-term features

of CRPS, persisting for 51%–89% of patients greater than or equal

to 12 months from symptom onset (25).
Epidemiology, genetic and
environmental risk factors

The variability in the prevalence of CRPS can be attributed to

inconsistencies in the employed diagnostic criteria. The differing

sensitivity and specificity of these criteria influence the reported

incidence. For instance, the Orlando criteria demonstrate a high

sensitivity with low specificity, while the Budapest criteria maintain a

high sensitivity while significantly enhancing specificity (26). This

disparity in diagnostic criteria contributes to the observed variation

in reported incidence rates, particularly in studies published before

the compilation of the Budapest criteria. It is worth highlighting that

the mentioned data specifically pertains to CRPS Type I, excluding

CRPS Type II from consideration in many studies (27).

CRPS is almost three or four times more common in women

than in men, and peaks in onset between the ages of 50 and 70

years (28). Given the changes in diagnostic criteria and the

evolving understanding of the disease process, studies vary on

the actual incidence of CRPS. The overall incidence rates of

CRPS can range anywhere from approximately 5 to 29 per

100,000 people each year, with the highest incidence typically

occurring in females between 61 and 70 years of age (13, 29, 30).
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FIGURE 1

Mechanisms of CRPS highlight the three key components:
neuroimmune interactions, genetic predisposition, and
environmental exposure. CRPS is the result of complex interplay
between inciting events, the immune system, the neural system,
genetic predisposition, and other independent risk factors.

Devarajan et al. 10.3389/fpain.2024.1385889
Based on the epidemiological studies available, it appears to be

more common in patients of North European ancestry, although

it does appear to occur frequently in those of South Korean

ancestry as well (29, 30). In the United States, it is estimated that

there are at least 50,000 cases of CRPS type I each year (31).

Similarly, with the variation in CRPS diagnostic criteria over the

years the incidence among patients with fractures is anywhere

from 0.05% to 0.2% in older studies and 3% to 7% in more

recent studies (32). The upper extremity is affected more

frequently than the lower extremity (29). Although CRPS can

develop after any injury, the most common initiating events are

fractures, surgery, crush injuries, and sprains (33).

Genetic factors have been increasingly shown to play a role in the

development of CRPS. It’s known to occur in multiple family

members. When comparing patients with sporadic CRPS to families

where two or more patients are affected, familial CRPS patients had

a younger age at onset and more often had multiple affected

extremities and dystonia (34). A recent study demonstrated that a

single nucleotide polymorphism in four genes, ANO10, P2RX7,

PRKAG1, and SLC12A9, is associated with developing CRPS Type I

with males typically expressing these rare alleles (35). Other genetic

studies have demonstrated associations between CRPS and several

major histocompatibility complex alleles, including human leukocyte

antigen (HLA)-DR6, HLA-DR13, HLA-DR2, HLA-DQ1, HLA-B62,

and HLA-DQ8 (36). Genome-wide expression profiling of the whole

blood has shown that HLA-A29.1, matrix metallopeptidase 9

(MMP9), alanyl aminopeptidase (AAP), histidine decarboxylase

(HDC), granulocyte colony-stimulating factor 3 receptor (G-CSF3-

R), and signal transducer and activator of transcription 3 genes

(STAT-3) were highly expressed when compared to unaffected

controls (37). Further genetic and transcriptomic studies hold the

promise to predict patient predispositions to CRPS, unravel the

molecular mechanisms of CRPS pathogenesis, and discover novel

therapeutic targets for CRPS (38).

Psychosocial and environmental factors may predispose patients

to developing CRPS. Patients who experience more stressful life

events have higher chances of developing CRPS (39). In children,

CRPS is more likely to be associated with a higher number of

stressful life events when compared to chronic primary headaches

and functional abdominal pain (40). Individuals with post-

traumatic stress disorder (PTSD) exhibit a markedly higher

occurrence of CRPS in comparison to control groups (41).

Moreover, individuals diagnosed with CRPS who exhibit elevated

levels of anxiety, perception of disability, fear of movement

(kinesiophobia), and apprehension towards pain have been

discovered to experience a deteriorating trajectory of their

condition (42). This observation can potentially be attributed to

the heightened activity of catecholamines, thus exacerbating the

process of nociceptive sensitization. Catastrophizing, in a similar

vein, has also been associated with heightened pain intensity

among individuals with CRPS. However, in contrast to the above

studies, a prospective and comprehensive study conducted across

multiple centers did not establish any correlation between the

existence of psychological elements (such as agoraphobia) and

CRPS (43). Thus, while psychological or personality traits cannot

be considered independent risk factors for CRPS, preexisting
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anxiety and mood disorders are risk factors for CRPS Type I after

upper or lower extremity fractures (44, 45). Overall, Axis I

disorders, and particularly major depression are present in up to

49% of CRPS patients (46). However, there is no evidence that

comorbid psychiatric disorders are more common in patients with

CRPS when compared to other patients who have chronic pain (46).

In a systematic review, risk factors for CRPS Type I from studies

with higher quality evidence were: being female (particularly

postmenopausal), fracturing the distal radius, suffering an ankle

dislocation or intra-articular fracture, and reports of higher than

usual levels of pain in the early phases after trauma (44). For

poststroke CRPS, a meta-analysis identified being female, left

hemiparesis, shoulder subluxation, spasticity, a lower Brunnstrom

stage of the distal upper limb, and inferior Barthel index as risk

factors (47). However, contradicting findings from a study suggest

that CRPS is not more prevalent among individuals with radius

fractures compared to the general population (48). This highlights

the complexity of the relationship between injury type, severity,

and the subsequent development of CRPS.
Pathophysiology

CRPS symptomatology varies, and the diversity of the symptoms

cannot be adequately explained by a single pathophysiological

mechanism. The etiology and pathogenesis of CRPS may exhibit

inter-individual heterogeneity and even intra-individual variability

over time (44, 49, 50). The most common inciting events are

surgery, nerve compression, fractures, tissue trauma, ischemia, and

sprains (27, 51).4 Inflammation (52), oxidative stress (53), and

neuronal mechanisms have been postulated as pivotal factors in the

pathogenesis of CRPS (50, 54). Current evidence suggests that the

development of CRPS involves multiple mechanisms originating

from a complex interplay between the immune system, the neural

systems (including the peripheral nervous system (PNS), central

nervous system (CNS), and autonomic nervous system), and

genetic predisposition (55) (Figure 1).
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CRPS is a form of “nociplastic pain”, a concept newly introduced

by the IASP pain taxonomy (56, 57). This is supported by evidence

of changes in cerebral connectivity affecting nociception, even

without any discernable tissue damage or alterations in the

somatosensory system (58). As aforementioned, it is also likely

that psychological, environmental, and genetic factors play a role

in influencing CRPS symptoms. The hallmark of the initial phase

of CRPS is an exaggerated inflammatory response to the initial

trauma. CRPS manifests with all the cardinal signs of

inflammation, including pain, edema, erythema, increased

temperature, and impaired function (49, 59). Pro-inflammatory

cytokines such as interleukin (IL)-1β, IL-2, IL-6, and tumor

necrosis factor-α (TNF-α), as well as neuropeptides like calcitonin

gene-related peptide (CGRP), bradykinin, and substance P,

contribute to the intense inflammatory response following trauma

or injury, ultimately instigating the development of CRPS (60, 61).
Injury

Various injury mechanisms leading to tissue damage, subsequent

inflammation, and even the distinct recovery process contribute to the

risk of developing CRPS. There is an intricate correlation between the

onset of CRPS and injury, its location, and its mechanism.

Interestingly, the severity of the initial injury does not correlate

with the likelihood of developing CRPS or the subsequent pain

intensity (32, 62). Even seemingly minor injuries like intramuscular

injections have been documented as evolving into CRPS.

Trauma and other injuries constitute 75% of total cases of

CRPS. Fractures account for approximately 45% of reported

triggering events, followed by sprains at around 18% and elective

surgery at approximately 12% (49, 63). On the other hand,

spontaneous onset, which manifests with a similar clinical

presentation, is rare and occurs in less than 10% of cases (29).

Trauma-induced tissue injury increases the risk of the

development of CRPS by nearly threefold (odds ratio, 2.96; 95%

confidence interval, 2.18–4.02; p < 0.05), independent of factors

such as age, sex, and other associated risk factors. In addition,

tissue injury exhibited a positive correlation with various other

risk factors, including headache, osteoporosis, myofascial pain,

anxiety, and preexisting neuropathy (64). After adjustment for

confounding variables, it was noted that specific types of injuries,

including open wounds of the upper limbs, sprains, and strains

of the joints and adjacent muscles, superficial injuries, contusions

with intact skin surfaces, as well as injuries to nerves and the

spinal cord, were associated with an elevated risk of developing

CRPS. While CRPS Type II is typically categorized by identifiable

nerve injury, a notable proportion of trauma- and surgery-related

CRPS cases are classified as Type I, despite demonstrable

peripheral nerve fiber damage associated with injury. This caveat

further precipitates the lack of studies available to investigate

both CRPS Type I and Type II since the latter is infrequently

diagnosed. However, pathological investigations of chronically

affected CRPS limbs, including amputated tissue and skin

biopsies, have provided unequivocal evidence of small nerve fiber

(C and Aδ) degeneration. This reveals direct small-fiber nerve
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damage due to injuries (65). Furthermore, CRPS is suspected to

arise from an imbalance between pro-inflammatory and anti-

inflammatory cytokines. The longer this imbalance persists, the

greater the likelihood of developing CRPS. Among CRPS

patients, elevated skin TNF-α levels were observed and endured

for months following limb trauma (66). In contrast, in patients

with burns, the imbalance peaks but does not endure for an

extended period, resulting in a lower risk of CRPS.
Immobilization

Immobilization is suggested as a potential risk factor for the

onset of CRPS (67). Several hallmark features of CRPS such as

altered temperature, mechano-sensitivity, and thermos-sensitivity

can be transiently induced in healthy limbs solely through

immobilization. Healthy volunteers exhibited mild CRPS-like

symptoms (excluding pain) when they were subjected to four

weeks of limb immobilization even without trauma (68). In a rat

model of tibial fracture, immobilization led to increased levels of

substance P and IL-1β. Inflammasome multiprotein complexes

containing caspase-1 and NACHT leucine-rich-repeat protein 1

(NALP1), activated by NK1 receptors, were expressed in

keratinocytes, indicating the involvement of innate immunity in

the development of CRPS (69). Furthermore, topical capsaicin

application, known to induce neurogenic inflammation, resulted

in mechano-sensitivity, thermal sensitivity, and perceptual

disturbances only when followed by 24 h of limb immobilization.

The above signs did not appear if the limb was mobilized sooner,

and these symptoms swiftly resolved upon limb remobilization

(49). These experimental findings strongly support the notion

that immobilization serves as a significant risk factor for CRPS

development. In a prospective multicenter cohort study where

88.8% of fracture patients underwent conservative treatment with

plaster casts or taping, the incidence of CRPS after fracture was

7% (32). In contrast, when the fracture was managed by early

surgery, followed by active mobilization, only 4.5% of patients

developed CRPS (64). Postoperatively, patients tend to experience

an improved range of motion due to reduced pain and increased

stability. Consequently, immobilization could be considered

another factor influencing the relationship between fracture and

the development of CRPS.
Ischemia-reperfusion

CRPS symptoms can be detected in the context of ischemic

injury arising from ischemia-reperfusion processes in myocardial

infarction (70). This phenomenon has been extensively described,

and it has been observed that as an inflammatory response

develops, arteriole spasms develop. This is caused by a change in

the expression of α-adrenoceptors on arterial smooth muscle cells,

as well as imbalances between nitric oxide (NO) and endothelin-1

(ET-1). Consequently, capillaries can become occluded due to

endothelial damage, leading to a loss of function in small nerve

fibers because of ischemia within the endoneurium (71). The
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normal response following ischemia-reperfusion processes in

arterioles, capillaries, and venules becomes decreased due to

interactions and negative feedback loops, all of which contribute to

the enhancement of local ischemia (72). Resulting endothelial

dysfunction could develop leading to abnormal vascular tone in

CRPS. Endothelium releases both endothelium-derived

vasodilators, such as NO, bradykinin, prostacyclin, and

endothelium-derived hyperpolarizing factor (EDHF), and

vasoconstrictors such as ET-1 and angiotensin II (ATII) (73).

Hence endothelial dysfunction because of inflammation could

cause imbalances in vascular tonicity and ischemia (72). Severe

damage to the deep tissues can lead to the development of edema

and local compartment syndrome, thereby further impairing tissue

oxygenation and exacerbating the damage caused by ischemia and

reperfusion, along with all its consequences (74).
Autonomic dysfunction

Two stages of CRPS have been identified: the initial warm phase

followed by the chronic and cold phase (75). During the initial acute

or “warm” phase, affected tissues show classic signs of inflammation

in the affected limb—color, dolor, rubor, and tumor. The symptoms

typically manifest distally to the site of injury, resembling a glove or

stocking. Patients report continuous, deep pain worsened by

movement or changes in temperature (15).

The subsequent chronic or “cold” phase typically emerges

approximately 6 months later, following a decrease in

inflammation. The nature of the pain changes. Patients would

manifest with more persistent pain at rest, which could be

challenging to manage. Some individuals may experience muscle

spasms. Skin, subcutaneous tissue, and muscle atrophy may

occur, along with localized osteoporosis in the underlying bones.

Nail and hair growth may be altered, either increasing or

decreasing in conjunction with changes in quality (76).

Autonomic manifestations correspond with the above two

phases. Sudomotor symptoms include excessive followed by

reduced sweating and alterations in skin color, particularly the

limb turning red in the beginning, which turns into pale, purple,

and cyanotic in later stages (77). Motor impairments commonly

accompany Complex Regional Pain Syndrome (CRPS) phases as

well: during the initial phase, movement is limited due to

swelling and fear of exacerbating pain (kinesiophobia), while

fibrosis in the chronic stage further restricts movement (78).

One of the characteristic features of CRPS is cold clammy and

cyanotic extremities, which occurs during the second phase and

may be mediated by excessive sympathetic nervous system

activation. Animal studies have shown increased adrenergic receptor

expression on nociceptive fibers following nerve trauma. This

promotes heightened sympathetic activation and sustains pain

induced by sympathetic activity resulting in causalgia (79). In

addition, sympatho-afferent coupling can be explained by increased

expression of adrenergic receptors on nociceptive fibers following

injury. Hence sympathetic activation induces nociceptive fibers

causing increased pain in most patients with CRPS (33, 80).

Elevated sympathetic nervous system activity may amplify
Frontiers in Pain Research 05
spontaneous pain by 22%. Additionally, there is a 42% increase in

the spatial extent of dynamic hyperalgesia and a 27% increase in

punctate hyperalgesia with heightened sympathetic nervous

system function (81).

CRPS may progress from a warm acute phase to a cold phase as

time elapses, a phenomenon that can be attributed to the imbalance

between levels of circulating catecholamines and the peripheral

adrenergic receptors (33). In the acute phase, there is a notable

decrease in the levels of circulating plasma norepinephrine in the

CRPS-affected extremities when compared to the unaffected ones

(82). This consequently leads to compensatory upregulation of

peripheral adrenergic receptors, resulting in heightened sensitivity to

circulating catecholamines (83, 84). Following the subsiding of the

acute phase and the restoration of catecholamine levels, excessive

vasoconstriction and sweating occur, thereby manifesting as the

characteristic cold and blue extremity observed during the chronic

phase. Additionally, the administration of phenylephrine through

intradermal injection elicits the sensation of pain and allodynia in

limbs affected by CRPS (85). Successful pain reduction (more than

50%) was observed following sympathetic plexus block in 155

patients with CRPS (155 of 255, 61%). Most patients (132 of 155,

85%) experienced more than 50% pain relief for 1 to 4 weeks or

longer. The degree and duration of pain relief were not associated

with pre-procedure temperature parameters of the limbs with an

estimated odds ratio of 1.03 (97.5% CI, 0.95–1.11) or 1.01 (97.5%

CI, 0.96–1.06) for one-degree decrease (P = 0.459 or 0.809) (86). We

also investigated whether outcomes of sympathetic nerve blocks can

predict responders of spinal cord stimulation and found that there

was no difference in the success rate of spinal cord stimulation trials

between patients with or without more than 50% pain relief after

sympathetic blocks (35 of 40, 88% vs. 26 of 29, 90%, P > 0.990) (86).

In a multicenter study, we further investigated the demographic and

clinical factors of sympathetic blocks as a predictor for response to

ketamine infusion, a treatment frequently used in clinical practice

(87), in patients with CRPS (80, 87). Factors associated with a

positive response to ketamine in univariable analysis were the

presence of sympathetically mediated pain (SMP) [61.0% success

rate vs. 26.7% in those with sympathetically independent pain (SIP);

P = .009] and post-block temperature increase (5.66 ± 4.20 in

ketamine responders vs. 3.68 ± 3.85 in non-responders; P = .043). No

psychiatric factor was associated with ketamine response. In

multivariable analysis, SMP (OR 6.54 [95% CI: 1.83, 23.44) and

obesity (OR 8.75 [95% 1.45, 52.73) were associated with a positive

ketamine infusion outcome. From these studies, we conclude that

sympathetic blocks may be therapeutic in patients with complex

regional pain syndrome regardless of pre-procedure limb

temperatures. The effects of sympathetic blocks do not predict the

success of spinal cord stimulation but may predict response to

ketamine infusion in CRPS patients.
Inflammation

The afore-described inciting events may all lead to tissue

inflammation. As a cardinal feature of CRPS, inflammation

manifests as heightened local, systemic, and neural inflammation.
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Neuroinflammation can occur in both the CNS and PNS (15, 88).

Patients with CRPS manifest with an elevated level of

proinflammatory cytokines, including IL-1β, IL-6, and TNF-α, and

a decrease in anti-inflammatory factors, including IL-10 cytokines

in local blister fluid, circulating plasma, and cerebrospinal fluid

(66, 89). In addition, the administration of corticosteroids and

TNF-α antibodies significantly ameliorated the symptoms of CRPS

(90). Immune cells activated by inflammation generate reactive

oxygen species (ROS), which subsequently results in an imbalance

in redox status and oxidative injury (91), contributing to

maintaining inflammation and leading to a vicious circle

culminating in excessive oxidative stress. There is substantial

evidence demonstrating that the occurrence of neurogenic

inflammation and stimulation of the immune system contributes

significantly to the mechanisms underlying CRPS (61). This is

supported by previous studies that have observed an increased

systemic level of CGRP and plasma bradykinin in patients with

CRPS compared to healthy individuals (61).

In a rat model of CRPS with a fractured tibia, chronic unilateral

hindlimb warmth, and edema facilitated protein extravasation,

allodynia, unweighting, and periarticular osteoporosis– a

combination of nociceptive, vascular, and bone changes closely

resembling CRPS (92, 93). Subsequent studies revealed elevated

levels of IL-1β and other cytokines in the hind paw skin of the

fractured limb (73). Similar increases in inflammatory cytokine

levels were found in the affected limb of CRPS patients, consistent

with the animal model (88). Furthermore, continuous

administration of the IL-1 receptor antagonist (IL-1ra) anakinra

reduced fracture-induced nociceptive sensitization in the rat

fracture model. In situ hybridization and immunostaining

indicated that epidermal keratinocytes were the primary source of

IL-1β (94). Despite these findings, the mechanisms underlying the

post-traumatic up-regulation of cutaneous cytokines remain unclear.

Animal studies demonstrate increased expression of neurokinin

1 (NK1) receptors in keratinocytes in the region of the limb, which

was immobilized after the fracture. NK1 receptor stimulation leads

to increased levels of inflammasomes and substance P (95). Both

inflammasomes, which are multiprotein complexes, and substance

P activate protease caspase-1 (96), which is responsible for the

processing and activation of pro-inflammatory cytokines IL-1β,

IL-18, and IL-33 (97). This results in increased cytokines leading

to nociceptive sensitization and the development of CRPS.

Keratinocytes in the immobilized limb express the increased

transcription of NALP1, IL-1β, and caspase-1. Intraplanar

injection of either IL-1β or IL-18 induced prolonged mechanical

allodynia in a dose-dependent manner (69). Administration of a

selective NK1 receptor antagonist (LY303870) partially reversed

nociceptive and vascular changes observed with CRPS (92).

Clinical and preclinical evidence suggests that peripherally

generated cytokines play a role in supporting CRPS I, particularly

during its acute phases (98). Notably, there is compelling evidence

highlighting the involvement of the IL-1 family of cytokines, with

a focus on IL-1β, in modulating nociceptive information (99).

IL-1β can exert its effects both directly on neurons and indirectly

as an intermediate inflammatory mediator, contributing to the

upregulation of nerve growth factor (NGF) (100) and other
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cytokines. Dysregulated activation of the NALP1 inflammasome in

keratinocytes, triggered by fractures, leads to the abnormal release

of IL-1β and IL-18. Additionally, an indirect mechanism via nerve

growth factor is implicated. These substances collectively

contribute to the nociceptive sensitization observed in the rat

fracture model of CRPS I. While this inflammasome activity may

not account for all manifestations of CRPS, such as limb warmth

and edema, regulating inflammasomes and the associated signaling

pathways offers promising avenues for innovative therapeutic

approaches to address CRPS.

The release of these inflammatory mediators is associated with

both the initial injury and the subsequent damage to cutaneous

small nerves (CRPS Type I) and possibly to major nerves (CRPS

Type II) (33). This is supported by evidence of a reduction in

primary afferent C-type and Aδ-type fiber density in the CRPS-

affected limb compared to the unaffected limb (101, 102).

Consequently, there is an increase in aberrant fibers of unknown

origin, leading to an exaggerated sensation of pain (101). A rat

model illustrates the causal relationship between the exaggerated

and aberrant neuronal triggers and the reduction in nerve fiber

density resulting from the initial neuronal injury (103). The

combined injury to both tissues and neurons contributes to the

development of protective reflexes, giving rise to exaggerated

inflammation and heightened responsiveness to pain. This

phenomenon is a result of peripheral sensitization, a

characteristic of CRPS that develops because of local tissue injury.

CRPS is further characterized by an increase in the

proinflammatory cytokines TNF-α and MIP-1β (macrophage

inflammatory protein-1 β), as well as a decrease in the anti-

inflammatory cytokine IL-1RA (104). The interaction between

cutaneous nerves and mast cells may contribute to the

development of CRPS, and the loss of dermal nerve fibers could

potentially attenuate chemotactic signals (105). Anti-

inflammatory T-cell shifts, such as the decrease in Th17

regulated by CD39+ Tregs, may also serve as a mechanism for

CRPS (106). As a result, targeting the processes and molecules

involved in inflammation and autoimmunity could potentially

lead to more effective treatments for CRPS.
Oxidative stress

It has also been postulated that free radical generation by the

mitochondrial respiratory chain is involved in the pathophysiology

of CRPS I (107). Significant elevations in malondialdehyde, lactic

dehydrogenase, and various antioxidants (peroxidase, superoxide

dismutase, uric acid) in the serum and particularly the saliva of

CRPS Type I patients were observed when compared to healthy

individuals (91). Heightened levels of malondialdehyde were

detected in the hind paw muscles in a rat model of CRPS (108).

The pain hypersensitivity in these animals can be alleviated

through the administration of free radical scavengers and

antioxidant therapy (109). Despite extensive trials and convincing

evidence of the association of reactive oxygen species and

oxidative stress with CRPS, it has been challenging to ascertain

whether it serves as a cause or consequence of the condition.
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Oxidative stress arises from an imbalance between the production

of reactive oxygen species (ROS) and the defense provided by

antioxidants. Oxygen derivatives, specifically superoxide anion

(O2–•), hydroxyl radical (OH–), and hydrogen peroxide (H2O2),

along with reactive nitrogen species like nitric oxide and

peroxynitrite, constitute the most significant free radicals. In regular

physiological conditions, a variety of inherent biological

mechanisms exist to counteract alterations in redox equilibrium,

which include superoxide dismutase (SOD), catalase, and other

antioxidant enzymes. The activation of antioxidant systems

restrains free radical generation and terminates oxidative stress.

However, when the production of ROS exceeds a certain

pathological threshold over a specific duration, it can overwhelm

the antioxidant defense and impair cellular functions. Since

mitochondria serve as the primary origin of ROS, it is logical to

conjecture that mitochondrial dysfunction associated with oxidative

stress may contribute to the development of CRPS. Dysfunction in

the mitochondria has also been recognized as a significant factor in

the pathogenesis of degenerative disorders such as Alzheimer’s

disease, aging, diabetes, and ischemia-reperfusion injury (110).

Mitochondria obtained from CRPS-I muscle tissue displayed

reduced mitochondrial ATP production and substrate oxidation

rates resulting in reduced mitochondrial energy production in

comparison to control muscle tissue, suggesting that ROS-induced

damage in muscle tissue mitochondria (107). ROS evoked damage

to mitochondrial proteins and reduced manganese sodium

dismutase (Mn SOD) levels and increased venous oxygen

saturation levels have also been demonstrated in patients with

chronic CRPS I, suggesting impaired oxygen diffusion and

mitochondrial dysfunction associated with CRPS I (50).

Suboptimal nuclear factor erythroid 2-related factor 2 (Nrf2)

activity may be implicated in a specific subset of patients with

CRPS (111). Nrf2 is a transcription factor with a basic leucine

zipper motif. It forms a heterodimeric complex with the

antioxidant-responsive element (ARE) in the promoter regions of

various cytoprotective genes. Nrf2 plays a pivotal role in the

up-regulation of antioxidant, anti-inflammatory, and cell

type-specific genes that are essential for the defense system.
Autoimmunity

An important recent finding is that autoimmunity has a

significant role in the development of CRPS. This is supported by

compelling evidence such as the detection of immunoglobulin G

(IgG) autoantibodies targeting surface antigens on autonomic

neurons in the bloodstream of 70% of CRPS patients (112–114).

These IgG antibodies potentially possess β2-adrenergic and

muscarinic-2 receptor functionality. There exists activating

antibodies against α-1a adrenoceptor in CRPS (113). It was shown

that IgG autoantibodies from patients with severe, persistent CRPS,

on transfer to hind paw-injured mice, elicit important features of

the clinical condition and profound glial activation in pain-related

brain regions (115, 116). Blockade of the proinflammatory cytokine

interleukin-1 (IL-1) both prevents and reverses these changes. These

findings suggest that antibody-mediated autoimmunity contributes
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to the development of severe CRPS after injury and that blockade

of IL-1 actions may be an attractive therapeutic prospect.

IgM has been shown to contribute to nociception sensitization in

addition to IgG. In a tibial fracture CRPS mouse model, mice that

lacked B cells and IgM had attenuated nociceptive and

inflammatory changes at 3 weeks post-fracture (117). Injecting IgM

antibodies from mice with acute tibial fractures into CRPS mouse

models, lacking B cells and IgM, produced pronociceptive effects

(118). This lends further support to the hypothesis that

autoimmunity is a likely contributor to the progression of CRPS.

Moreover, this hypothesis is reinforced by the observation that

patients who underwent immunoglobulin treatment experienced a

notable decrease in pain symptoms compared to those who

received a placebo (119). Thus, these antibodies have the potential

to enhance the inflammatory response and nociception that is

characteristic of CRPS.

Overactive immune reaction in response to inflammation leads to

tissue damage in the acute phase of CRPS. Though the immune

response is a normal physiological reaction to tissue damage,

neuroimmune interactions and subsequent neuroinflammation tend

to persist instead of diminishing in patients with CRPS. Both the

innate and adaptive immune systems play a key role in the immune

dysregulation observed in CRPS. With the innate immune system,

activated keratinocytes, mast cells, and glial cells release

proinflammatory cytokines, that can be detected in increased levels in

blister fluid, serum, plasma, or cerebrospinal fluid of CRPS patients

(88). These cytokines are associated with the activation and

sensitization of peripheral nociceptors, leading to hyperalgesia and

pain. Furthermore, the elevated levels of monocytes and their resident

tissue macrophages in CRPS patients may serve as important innate

cellular components (120). The involvement of the adaptive immune

system is demonstrated by altered T-cell activity and a higher

prevalence of autoantibodies found in CRPS patients (121).

CRPS could be regarded as an autoantibody-mediated

autoimmune syndrome with a localized course (122). In

autoimmune diseases, the innate immune system triggers an

immune response by the adaptive immune system against its tissues.

A significantly higher proportion of CRPS patients had positive

antinuclear antibody test results compared to healthy blood bank

donors (121). Additionally, CRPS patients showed the presence of

IgG autoantibodies against surface antigens on autonomic neurons,

which were absent in healthy controls. Topical application of serum-

derived IgG obtained from patients with CRPS leads to the

manifestation of mechanical allodynia and an elevation in tissue

substance P (115). It is proposed that the immune response

observed in individuals with CRPS generates autoantibodies

targeting autonomic or sensory nerves, thereby contributing to the

development of allodynia or heightened sensitivity within the

affected area.
Complement activation

Complements may play a critical role in the pathogenesis of CRPS

(123). The complement cascade serves as a crucial element of the

innate immune system and inflammation. In a meta-analysis
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encompassing 20 microarray studies investigating alterations in gene

expression across diverse chronic pain models in rodents,

complement emerged as among the most frequently and

significantly regulated categories of genes, demonstrating

upregulation after the induction of both neuropathic and

inflammatory pain (124). It was further postulated in a mice model

of CRPS that IgM antibodies bind to neoantigens in the fractured

limb skin and corresponding spinal cord to activate C5a

complement signaling in macrophages and microglia, evoking

proinflammatory cytokine expression and contributing to

nociceptive sensitization in the injured limb (125). Complement

signaling assumes particular importance in directing neuronal

responses to tissue injury, neurotrauma, and nerve lesions. It is

increasingly recognized that complement orchestrates numerous

host processes, notably those related to the functioning of the

nervous system in both health and disease (126). Under normal

physiological conditions, these processes include complement-

dependent regulation of synaptic remodeling, axonal regrowth,

neuronal damage, nociceptor sensitization, and pain. However,

dysregulation of the complement cascade in various pathologies

results in chronic inflammation, persistent pain, and neural

dysfunction. There should exist checks and balances for the

activation and inactivation of complements via the classical and

alternative pathways. To prevent uncontrolled inflammation,

autoimmunity, and the destruction of healthy tissues, rapid and

extensive activation of the complement system in response to

foreign invaders and injury necessitates equally potent and

coordinated mechanisms to limit its activity. Nevertheless, the

aberrant activation of the complement cascade has been implicated

in fostering the progression of conditions marked by chronic pain,

including complex regional pain syndrome and neuropathic pain

(104, 114). The sustained or dysregulated signaling of complement

factors observed in chronic pain suggests a plausible involvement of

complement in the maladaptive mechanisms underlying CRPS.
Neuroinflammation and neuroplasticity

Different from local tissue or systemic inflammation,

neuroinflammation is localized inflammation in the PNS and

CNS. It is characterized by the activation of microglia in the

CNS or macrophages in the PNS. Microglia play a crucial role in

coordinating the immune response within the CNS (59).

Neuroinflammation can be triggered by various types of traumas

or heightened neuronal activity in primary afferent nerve fibers

or higher-order neurons. A positron emission tomography study

demonstrated increased microglial activity in several brain

regions of CRPS patients (127).

Neurogenic inflammation is a specific phenomenon in which

nociceptive C-fibers that have been stimulated release

neuropeptides, including substance P and CGRP. In patients with

CRPS, the levels of CGRP and substance P in the blood were

found to be higher compared to healthy individuals (61). The

increase in neuropeptides can potentially account for some of the

observed symptoms of CRPS, as these neuropeptides are known

to induce vasodilation, protein extravasation, and sweating, and
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exert an influence on local immune cells and neural structures. It

is noteworthy that this can contribute to the persistence of pain

by facilitating central sensitization. In CRPS patients, the HPA

axis may be impaired because of neuroinflammation. Decreased

levels of cortisol and disrupted diurnal cortisol rhythms were

observed in CRPS patients experiencing frequent pain attacks,

indicating abnormal functioning of the HPA axis (128). As the

HPA axis operates through a self-regulating negative feedback

system, reduced cortisol levels may signify decreased activity or

impaired feedback sensitivity of the HPA axis.

As the disease advances, there are persistent morphological

alterations in the PNS. The examination of peripheral nerves

utilizing transmission electron microscopy in a patient with CRPS

revealed the differential degeneration of Aɑ fibers (motor/

proprioception) and C fibers (nociception) while sparing Aδ fibers

(nociception) (65). Degeneration of Aα fibers may lead to an

imbalance in nerve signaling, inappropriately triggering the smaller

healthy Aδ fibers, which transmit pain and temperature. Thus,

peripheral nerve degeneration may play a key role in CRPS. This

same process may induce changes in nociceptive processing within

the CNS and heighten the excitability of secondary central

nociceptive neurons in the spinal cord. Both central and peripheral

sensitization processes are facilitated by the release of neuropeptides

like substance P, bradykinin, and glutamate by peripheral nerves

(129). These neurotransmitters sensitize and enhance the activity of

local peripheral and secondary central nociceptive neurons,

ultimately resulting in increased pain sensitivity to noxious stimuli

(hyperalgesia) and pain in response to non-noxious stimuli

(allodynia) (130). Individuals with CRPS exhibit a notably higher

windup response to repeated stimulation of the affected limb when

compared to the contralateral limb or other limbs (131, 132).

Glutamate and substance-P are secreted in reaction to a

neuroinflammatory reaction, causing a reduction in the threshold

for reaction to mechanical stimuli (133). Consequently, this leads to

heightened sensitivity in the peripheral nerve and intensified

synaptic nociceptive signaling in the dorsal horn (134).

Neuroplasticity takes place in patients with CRPS. A decline in

the somatosensory cortex was observed when comparing the limb

affected by CRPS to the unaffected limb (135). Moreover, the

somatosensory representation of the affected limb undergoes a

reduction in size and experiences distortion (49). On occasion,

the cortical area may undergo a shift. CRPS was once regarded

as an aberration in the neuroplasticity of cortical function.

Greater representation of an injured organ in the brain’s cortex

was linked to a higher incidence and severity of CRPS. This is

exemplified by the observation that open wounds in the upper

extremity carried a higher risk of CRPS compared to other body

parts (odds ratio 1.53, 95% confidence interval 1.25 to 1.88,

p < 0.05), given the substantial portion occupied by upper

extremities in our cortical sensory homunculus.
Neuroimaging of CRPS

Imaging studies have also shown that patients with CRPS may

have decreased gray matter volume in the dorsal insula, left
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orbitofrontal cortex, and cingulate cortex, and increased gray matter

volume in the bilateral dorsal putamen and right hypothalamus

(136). The duration of pain exhibited a connection with a reduction

in gray matter within the left dorsolateral prefrontal cortex while

the intensity of pain demonstrated a negative correlation with

volume in both sides of the dorsolateral prefrontal cortex.

Simultaneously, the intensity of pain demonstrated a positive

correlation with the volume in the left posterior hippocampus and

left amygdala (137). A direct correlation has been established

between the degree of reorganization and the intensity of pain as

well as the extent of hyperalgesia reported by the patient.

Interestingly, these alterations revert to their normal state upon

successful treatment of CRPS (138). Pain may be triggered in

certain individuals with CRPS by the mere act of contemplating the

motion of the affected region (139). There exists an aberration in

the primary motor cortex, supplementary motor cortices, posterior

parietal cortices, and basal ganglia (140), which could plausibly

explain certain manifestations such as dystonia and decreased range

of motion observed in patients with CRPS. Moreover, CRPS has

been discovered to hinder the capacity to perceive the physical

movements performed by individuals, due to its impact on brain

regions responsible for pain perception and motor regulation.

Consequently, this results in the CRPS patient perceiving the

actions of others as disagreeable or distressing (141). In summary,

there are dysfunctional changes observed in the primary motor

cortex, supplementary motor cortices, posterior parietal cortices,

and basal ganglia, which may potentially contribute to and explain

certain manifestations observed in patients with CRPS (140).

Positron emission tomography (PET) of translocator protein-

18 kDa (TSPO) is a noninvasive technique utilized to monitor the

activation of innate immune cells (142). The application of whole-

body TSPO-PET, a highly adaptable technique, facilitates the

visualization and measurement of peripheral and central myeloid

lineage activation throughout the progression of the disease,

offering insights into early and late disease stages (127). This

method enables the longitudinal tracking of myeloid cell activation

in both peripheral and central regions during the transition from

acute to chronic pain. PET also allows for the observation of the

spatiotemporal patterns of the innate immune response to injury,

highlighting the early and sustained involvement of peripheral

myeloid cells at the injury site over 2 days to 7 weeks, as well as

the early and temporary activation of CNS microglia in regions

distant from the injury site at 7- and 21-days post-injury.

Understanding the role of myeloid cells in the shift from acute to

chronic pain and the development of CRPS is crucial for the

development of targeted treatments. The elevated expression of

TSPO on activated myeloid cells following injury signifies the

presence of inflammation, establishing it as a valuable biomarker

for innate immune activation in various diseases. Utilizing a TSPO-

PET tracer allows for the quantification of neuroinflammation

(143). Previous investigations have demonstrated the involvement of

microglia and astrocytes in the acute (0–4 weeks) vs. chronic (5–20

weeks) phases of CRPS, respectively (144).

The contribution of microglial activation to the development of

CRPS was demonstrated in a mouse model that mirrors clinical

conditions (145). Both male and female animals displayed
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activation of spinal cord microglia, indicated by increased levels of

Iba1. However, the activation was less pronounced and delayed in

female animals, which correlates with the findings of a study by

Sorge et al. Who found sex specific role of TLR4 in inflammatory

and neuropathic pain (146). The expression of a newly identified

marker specific to microglia, TMEM119, was found in two distinct

populations within the spinal cord parenchyma following peripheral

injury: TMEM119+ microglia and TMEM119- infiltrating myeloid

lineage cells, consisting of Ly6G+ neutrophils and Ly6G-

macrophages/monocytes. Inflammatory mediators released in the

CNS after injury sensitize neurons; spinal cord TMEM119+

microglia were found to be the origin of cytokines IL6 and IL1β

following peripheral injury (145). Thus, targeting microglia to

suppress its cytokine release may be an effective approach for

alleviating pain (147).
Genetic pathophysiology

Studies have indicated that there exists a close relationship

between complex regional pain syndrome (CRPS) and the

targeting of inflammatory genes (123). Prior investigations

discovered associations between CRPS patients and HLA-A29.1,

MMP9, ANPEP, HDC, G-CSF3R, and STAT3 (37); however, they

neglected to carry out subsequent analyses of protein-protein

interaction networks and gene set enrichment analysis (GSEA).

An extensive analysis of substantial quantities of data extracted

from the GEO database ascertained the identification of pivotal

genes and principal pathways that could potentially be employed

in the development of novel clinical treatment strategies. The

study further explored the examination and elucidation of the

genetic foundations underlying the molecular mechanisms and

pathogenesis of CRPS. The series matrix and corresponding

platform information (GPL10558) were obtained from the NCBI

website, which houses high-throughput gene expression data,

chips, and microarrays under the accession number GSE47603

(123). In the CRPS group vs. the control, a total of thirty-seven

differentially expressed genes (DEGs) were identified, with thirty-

three being upregulated and four being downregulated. Upon

conducting a molecular function (MF) analysis, it was discovered

that the DEGs primarily play a role in peptide antigen binding,

integrin binding, and actin filament binding. Further analysis

through GO functional and KEGG enrichment methods

demonstrated that the majority of the overlapping DEGs were

mainly enriched in their inflammatory response (123). By studying

the association between CRPS and the complement system, as well

as identifying the top five hub genes (MMP9, PTGS2, CXCL8,

OSM, TLN1), this study successfully constructed a protein-protein

interaction (PPI) network and suggested that targeting excessive

inflammation could offer new therapeutic approaches for CRPS.
Concluding remarks

CRPS can be considered from various pathophysiological

mechanisms. It exhibits inter-individual heterogeneity and even
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intra-individual variability over time (50). While the disease typically

follows an inciting event such as surgery, nerve compression,

fracture, trauma, ischemia, and sprain (27), CRPS can also arise

spontaneously in the extremities or other areas of the body such as

the head and neck. Neuroplasticity, autonomic dysfunction,

autoimmunity, oxidative stress, and other neuronal mechanisms

have been postulated as pivotal factors in the pathogenesis of CRPS

(54). Both genetic predisposition and environmental stress

contribute to the development of CRPS and alterations in the PNS

and the CNS are identified in patients (34, 148). Inflammation and

neuroimmune interactions play a critical role in the development of

CRPS. Autoimmune mechanisms include IgG-mediated

neuroinflammation and IgM mediated enhancement of nociception.

This article presents an overview of the contributing factors in the

development of CRPS and emphasizes the need for deeper

mechanistic understanding at the cellular, molecular, genetic,

transcriptomic, and environmental levels. Continued research into

these components will help shed light on this enigmatic disease and

develop novel therapeutic options for CRPS.
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Appendix 1

Research diagnostic criteria (the “Budapest Criteria”) for

complex regional pain syndrome.

General definition of the syndrome: Complex regional pain

syndrome describes an array of painful conditions that are

characterized by a continuing (spontaneous and/or evoked)

regional pain that is seemingly disproportionate in time or

degree to the usual course of any known trauma or other lesion.

The pain is regional (not in a specific nerve territory or

dermatome) and usually has a distal predominance of abnormal

sensory, motor, sudomotor, vasomotor, and/or trophic findings.

The syndrome shows variable progression over time.

To make the clinical diagnosis, the following criteria must be met:

• Continuing pain, which is disproportionate to any

inciting event.

• Must report at least one symptom in three of the four

following categories:

○ sensory—reports of hyperesthesia and/or allodynia

○ vasomotor—reports of temperature asymmetry and/or skin

color changes and/or skin color asymmetry
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○ sudomotor/edema—reports of edema and/or sweating

changes and/or sweating asymmetry

○ motor/trophic—reports of decreased range of motion and/or

motor dysfunction (weakness, tremor, dystonia) and/or

trophic changes (hair, nail, skin).

• Must display at least one sign at the time of evaluation in two or

more of the following categories:

○ sensory—evidence of hyperalgesia (to pinprick) and/or

allodynia (to light touch and/or temperature

sensation and/or deep somatic pressure and/or

joint movement)

○ vasomotor—evidence of temperature asymmetry (>1°C)

and/or skin color changes and/or asymmetry

○ sudomotor/edema—evidence of edema and/or sweating

changes and/or sweating asymmetry

○ motor/trophic—evidence of a decreased range of motion

and/or motor dysfunction (weakness, tremor, dystonia)

and/or trophic changes (hair, nail, skin)

There is no other diagnosis that better explains the signs

and symptoms.
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