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The anatomy, neurophysiology,
and cellular mechanisms of
intradental sensation
Elizabeth A. Ronan1, Maximilian Nagel2 and Joshua J. Emrick1*
1Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of
Michigan, Ann Arbor, MI, United States, 2Sensory Cells and Circuits Section, National Center for
Complementary and Integrative Health, Bethesda, MD, United States
Somatosensory innervation of the oral cavity enables the detection of a range of
environmental stimuli including minute and noxious mechanical forces. The
trigeminal sensory neurons underlie sensation originating from the tooth. Prior
work has provided important physiological and molecular characterization of
dental pulp sensory innervation. Clinical dental experiences have informed our
conception of the consequence of activating these neurons. However, the
biological role of sensory innervation within the tooth is yet to be defined.
Recent transcriptomic data, combined with mouse genetic tools, have the
capacity to provide important cell-type resolution for the physiological and
behavioral function of pulp-innervating sensory neurons. Importantly, these
tools can be applied to determine the neuronal origin of acute dental pain
that coincides with tooth damage as well as pain stemming from tissue
inflammation (i.e., pulpitis) toward developing treatment strategies aimed at
relieving these distinct forms of pain.
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1 Introduction

Teeth have served mammals across their evolution, appearing in their fossil record as

early as 140 million years ago (1–3). Most modern species of mammals have retained teeth

to facilitate survival through the acquisition and processing of food (mastication) as well as

for hunting and defense (1, 4, 5). While specific tooth morphology varies considerably

across species, external hard enamel and dentin, along with dense internal sensory

innervation, are common anatomical features (5).

Sensory innervation via the somatosensory nervous system enables us to perceive our

external world by detecting environmental stimuli. Initial neuronal signals are generated at

the peripheral terminals of primary somatosensory neurons (6, 7). These neurons transmit

information encoded in neural patterns of impulses from the periphery to the central

nervous system. Peripheral somatosensory innervation of the oral cavity, including the

teeth, originates from sensory neurons with somas located in the trigeminal ganglia at

the base of the skull (Note: sensory neurons in the dorsal root ganglia innervate the

neck, trunk, and extremities).

Research over the past half-century has utilized neuroscience techniques to explore the

role of tooth-pulp- and dentin-innervating sensory neurons (hereafter referred to as

intradental neurons) in oral health and disease. This review will delve into the current

understanding of intradental innervation, drawing from historical studies, insights from
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recent single-cell sequencing and transcriptomic methods, and

proposed theories of intradental sensory transduction. To begin,

we will summarize the tooth anatomy including our current

understanding of the intradental sensory apparatus.
2 Tooth anatomy and intradental
innervation

The tooth consists of four major tissues organized into

layers (Figure 1A): (1) a central pulp that houses living cellular

components including vasculature and dense nerve

networks, (2) partially mineralized, porous dentin comprising

the bulk of the crown and root tooth structure that contains

nerve endings, (3) a hard mineralized enamel cap that

protects the superficial crown and (4) a mineralized cementum

layer that covers the root tooth surface and serves as an

attachment to the surrounding alveolar bone via the

periodontal ligament.
FIGURE 1

Anatomy of the tooth organ. (A) The tooth receives sensory innervation fro
ganglion at the base of the skull. Sensory afferents as well as blood vessels
apical foramen. Surrounding the pulp are several layers of mineralized den
entering the root, sensory neurons either terminate within the central pulp
the exposed tooth surface (crown) is covered by protective enamel, which
the tooth roots is encapsulated by mineralized cementum that anchors the
dentin and cementum layers that can be regenerated across life, enamel
cellular components within the tubular dentin and pulp. The outermost la
specialized dentin-maintaining polarized cells known as odontoblasts that
sensory endings radiate outwards from nerve bundles at the central pulp
with some endings extending at or beyond adjacent odontoblast proces
synaptic machinery suggesting release of local signals, although their funct
free zone (also known as the basal layer of Weil), which is largely absent
zone from the more central cell-rich zone. Here, mesenchymal stem ce
function to form connective tissues within the pulp. Within the cell-rich
Raschkow as well as majority of pulp vasculature can be found.
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2.1 Pulp

At the innermost part of the tooth lies the dental pulp, which

houses living cellular components and unmineralized connective

tissues. Based on cellular composition, the dental pulp is divided

into 4 main zones from superficial to deep (Figure 1B): (1)

odontogenic zone, (2) cell-free zone (basal layer of Weil), (3)

cell-rich zone, and (4) central pulp core (8).

The peripheral odontogenic zone consists of specialized cells,

odontoblasts, forming a barrier at the pulp-dentin interface.

Odontoblasts actively secrete type I collagen and mineralizing

agents to form and generate the overlying dentin (9, 10).

Intriguingly, odontoblasts also extend a cellular process into the

overlying dentin (11, 12). Below the odontogenic zone is the cell-

free zone (also known as the basal layer of Weil), which is

acellular aside from vasculature and free nerve endings (13).

Beneath the cell-free zone lies the cell-rich zone, which houses

the majority of pulpal cells including mesenchymal stem cells

that replenish surrounding local fibroblasts, peripheral

odontoblasts, and locally produced immune cells (14). At the
m peripheral sensory neurons whose cell bodies reside in the trigeminal
enter the tooth structure at the root apices via small openings known as
tin that support the tooth structure by dissipating external forces. After
of the tooth or extend into the inner dentin. The outermost portion of
is the hardest substance produced in the human body. The dentin of
tooth within the alveolar bone via the periodontal ligament. Unlike the
is finite. (B) Inset from box shown in A depicting the organization of
yer of the pulp contains the odontogenic zone, which is comprised of
extend processes into the overlying fluid-filled dentinal tubules. Free

core (plexus of Raschkow), towards the occlusal pulp-dentin interface,
ses. Tubular free nerve endings contain “beaded” swellings filled with
ion is not understood. Beneath the pulpal odontogenic zone lies a cell-
of cellular components. The cell-free zone separates the odontogenic
lls function to replenish odontoblasts as well as local fibroblasts that
zone lies the innermost central pulp core, where the nerve plexus of
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centermost region of the pulp lies the pulp core, which is largely

composed of fibroblasts, hosts most of the vasculature that

maintains the pulp tissue, and the nerve plexus (8).

The central tooth pulp houses the majority of intradental

innervation. Sensory innervation is supplied to the teeth via the

superior and inferior alveolar nerve from the maxillary and

mandibular divisions of the trigeminal ganglion, respectively

(8, 12). Free nerve endings traverse from the center of the pulp

into dentin from nerve bundles known as the Raschkow nerve

plexus. Historically, sensory neurons have been classified based

on morphological and electrophysiological characteristics, broadly

dividing them into 3 categories (6): c-fibers (small-diameter,
FIGURE 2

Sensory neuron diversity and proposed mechanisms of intradental sensitiv
categorizes trigeminal sensory neurons into three main groups: c-fibers (s
(medium somal size, lightly myelinated axons, and intermediate conduc
conduction velocity). Stereotypical pain responses associated with each n
sequencing reveal that trigeminal sensory neurons consist of 13 distinct tr
in-situ hybridization enables class assignment of trigeminal neurons in tiss
situ probes with corresponding transcriptomic class assignments, as well as
have been proposed to underlie intradental sensitivity. (Left) According
movements within the dentin and/or pulp induced by external stimuli to
odontoblast processes are candidate sensory cells to detect stimulus-
odontoblasts, not sensory neurons, function as the primary intradental s
proposes that tubular free sensory endings directly function as primary de
of trigeminal sensory neurons to relay information to the central nervous sy
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unmyelinated, slow conduction velocity), Aδ (medium-diameter,

myelinated, intermediate conduction velocity), or Aβ (large-

diameter, myelinated, fast conduction velocity) (Figure 2A). In

humans, both large myelinated and small unmyelinated nerve

endings enter the tooth root at a small opening known as the

apical foramen (12, 15). Consequently, it has long been assumed

that intradental sensory neurons include unmyelinated c-fibers,

as well as larger, myelinated Aδ and/or Aβ trigeminal

sensory neurons.

Tracing of the superior cervical ganglia in large animal models

suggests at least a portion of unmyelinated intradental neurons are

of sympathetic origin (16). These sympathetic free nerve endings
ity. (A) The traditional classification scheme of somatosensory neurons
mall somal size, unmyelinated axons, and slow conduction velocity), Aδ
tion velocity), and Aβ (large somal size, myelinated axons, and fast
euron class are also indicated. (B) Recent advances in single-cell RNA
anscriptomic classes. Staining for 8 diagnostic markers via multiplexed
ue sections or whole mount ganglia (66). Graph depicts diagnostic in
how this relates to traditional neuron classes. (C) Three major theories
to the hydrodynamic theory, intradental sensory cells detect fluid
give rise to tooth sensation. Tubular free sensory nerve endings and
induced fluid flow. (Center) The transduction theory proposes that
ensory cells to detect external stimuli. (Right) The conduction theory
tectors of external stimuli. All 3 theories converge on the transduction
stem.

frontiersin.org

https://doi.org/10.3389/fpain.2024.1376564
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


Ronan et al. 10.3389/fpain.2024.1376564
primarily reside along the pulpal blood vessels with highest

densities near the pulp horns below the odontoblast layer (17).

However, some unmyelinated axons also originate from the

trigeminal ganglion, as inferior alveolar nerve degeneration

results in a partial reduction of unmyelinated axons at the

apical foramen, in addition to complete loss of myelinated

intradental neurons (12, 18–20).

Retrograde tracing experiments have shown that in rats,

intradental molar neurons are primarily myelinated and medium

to large in diameter, indicative of Aδ/Aβ sensory neurons

(21, 22). More recently, retrograde tracing revealed that each

mouse molar receives unique innervation by a population of

approximately 50 large diameter, myelinated neurons (23).

Myelinated Aδ/Aβ sensory neurons lose their myelin sheath

within the pulp proper before projecting into overlying dentin

(24), which may account for prior overestimates of intradental c-

fiber contribution. However, the presence of c-fiber conduction

velocities in larger animal models suggests that this class may

also contribute to intradental sensation (25–28). Whether the

lack of evidence supporting intradental c-fibers in rodent models

reveals inherent species variability vs. a conserved minor sensory

role of c-fibers in tooth sensation remains to be determined.
2.2 Dentin

Surrounding the pulp is the dentin, which makes up the bulk of

the tooth. Dentin is a layered, mineralized collagenous matrix that

provides overall support while effectively cushioning external forces

to protect the tooth structure (29). Underlying odontoblasts at the

pulp-dentin barrier function to maintain and generate dentin

throughout the life of the tooth. Generally, dentin can be divided

into several layers based on degrees of hardness and histological

composition (10). Intertubular dentin is deeper, most abundant,

and features a fluid-filled tubule network that radiates outward

from the tooth pulp towards the occlusal tooth surface (5, 30).

An outer, less mineralized layer of atubular mantle dentin covers

the intertubular dentin. This, in turn, extends to an even more

compliant, thin enamel-dentin junction layer (∼25 µm–100 µm

thick) that dissipates external forces minimizing the risk and

spread of tooth fractures (5, 31).

Within the intertubular dentin, both odontoblasts and

myelinated sensory neurons (suggesting Aδ/Aβ-type) extend

processes outward from the pulp-dentin border to penetrate

approximately one-third of the tubule length (12, 32, 33). This

has led to speculation that odontoblasts may function as primary

sensory cells that communicate with adjacent free nerve endings

to trigger sensation and/or pain (See Section 5 for further

discussion on proposed mechanisms of tooth sensitivity).

However, electron microscopy studies demonstrate that the

dentinal odontoblast process is devoid of pre-synaptic fusion

machinery, indicating direct communication within the dentin

from the odontoblast process to adjacent free nerve endings is

unlikely (12). On the contrary, free nerve endings within the

dentin tubules exhibit enlarged swellings along their tips (termed

“beaded endings”) that house signaling machinery (including
Frontiers in Pain Research 04
clear and dense core vesicles that express synaptophysin, smooth

endoplasmic reticulum, and mitochondria) (8, 12, 34). The

function of these beaded endings requires further investigation,

but hints at the possibility that tubular free nerve endings could

locally communicate with adjacent odontoblast processes.

Anterograde tracing of trigeminal sensory neurons reveals that

dentin innervation is not homogenous, with maximal innervation

density at the coronal pulp horns and sparse presence in root

dentin (12, 33). The receptive fields and branching patterns of

individual intradental neurons has been proposed, but not

shown. Applying sparse labeling techniques to trace individual

neuron branching patterns holds promise to elucidate how

intradental sensory neurons individually and might collectively

function in the dentin to contribute to tooth sensation.
2.3 Enamel

Enamel is the hardest substance in the human body, providing

protection to the inner tissues of the tooth organ. Enamel is

acellular and composed of highly mineralized hydroxyapatite

crystals forming an outermost cap of the tooth crown (30, 35). The

enamel layer forms in early tooth development prior to eruption

but, unlike dentin, does not regenerate throughout life (36). Despite

its hardness, enamel is susceptible to brittle fracture from extreme

forces (37, 38) or erosion by bacterial or dietary acids (39, 40).

Enamel thickness varies based on species, diet, and tooth type with

thicker enamel corresponding to animals who do not regenerate

their teeth [e.g., human enamel can be up to 2.5 mm thick at the

molar cusp, while mouse enamel is approximately 50–60 μm (41)]

(5). Given that enamel is finite and cannot be regenerated, sensory

mechanisms safeguarding tooth structural integrity would be

presumed to benefit tooth survival and longevity.
2.4 Root

The tooth roots are embedded within the alveolar bone anchored

by the periodontal ligament. As the anatomical crown is encapsulated

by a hard enamel cap, the root dentin is covered by a thin mineralized

cementum layer. Despite a comparable mineralization and hardness

to dentin, cementum has a lower elastic modulus (5, 42) as it is

less prone to impact via direct forces. Unlike enamel, cementum

can regenerate via cementoblasts lining the periodontal ligament,

allowing self-repair following minor trauma or infection (5, 43, 44).

As previously mentioned, apical foramina at the root tips allow for

innervation and vasculature to penetrate the tooth interior.

Minimal, if any, innervation is observed extending into root dentin

and cementum layers (33).

In summary, tooth structure features conserved anatomical

specializations including enamel, dentin, and specialized patterns

of sensory innervation. Given the tooth’s irreplicable nature and

essential role in diet and defense, we propose these

specializations enable their use as masticatory and defensive tools

and contribute to structural protection to preserve the tooth organ.
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3 Molecular and transcriptomic
classification of intradental neurons

The traditional classification of neurons (c-fiber, Aδ, Aβ) has

been ubiquitously used in somatosensory neuroscience research

for decades (Figure 2A) (6, 45). However, an increasing body of

evidence underscores that this system fails to capture the rich

molecular heterogeneity that exist within these classes. Work in

the last decades has sought to molecularly characterize

intradental neurons by evaluating candidate gene expression for

various sensory/nociceptive markers, neuropeptides, and ion

channels (6). However, establishing a consensus on the molecular

expression of intradental neurons and their homogeneity remains

challenging due to considerable variability across reports.

Discrepancies may be ascribed to differences in model systems

(e.g., cultured vs. native intradental neurons, or varying animal

models), antibodies/probe variability, and potential bias by

evaluating only a panel of candidate molecules.

A substantial body of evidence suggests that at least a portion

of intradental neurons exhibit markers for nociceptors.

Specifically, multiple reports demonstrate that intradental

neurons express calcitonin gene-related peptide (CGRP, Calca)

(21, 23, 34, 46–49), a neuropeptide that contributes to

neurogenic inflammation (50). Furthermore, focus has been

placed on evaluating the expression of transient receptor

potential (TRP) channels in intradental neurons based on their

canonical roles in thermal nociception and/or inflammatory pain

(51, 52). Among TRP channels, Trpv1 has been particularly

attractive as this thermosensitive channel could represent a

potential therapeutic target for pain and inflammation (53, 54).

However, while immunohistochemical staining of human coronal

dental pulp demonstrates co-expression of TRPV1 in a subset of

CGRP+ intradental nerve fibers (55), reported TRPV1 expression

in intradental neurons has varied widely (8%–87%) across

multiple studies (23, 46, 56–61).

More recent efforts to sequence the transcriptomes of

trigeminal sensory neurons have helped refine their classification.

Single-cell transcriptomic profiling has identified around a dozen

major transcriptomic classes of sensory neurons (62–65) which

can be assigned to cells in tissue sections and whole-mount

trigeminal ganglia using in-situ hybridization (ISH) staining

(Figure 2B) (66). Retrograde labeling of trigeminal sensory

neurons innervating mouse molars in conjunction with in situ

classification has recently allowed the determination of the

transcriptomic diversity of neurons innervating molar teeth,

revealing each tooth receives contributions from a population of

specialized trigeminal neurons that express nociceptive markers

as well as genes associated with fast-conducting neurons (S100b)

reflecting either Aδ or Aβ (23). Intradental neuron expression of

S100b and Calca (encodes CGRP) or S100b and nociceptive

voltage-gated sodium channel Nav1.8 (Scn10a) aligns with

previous reports (58, 61), and designates the majority as large

diameter, C6 cells (23) which would be traditionally classified as

Aδ mechano-nociceptors. Importantly, this study indicated that

few intradental neurons likely represent the small-diameter

c-type classes (C2, C7-10) that express Trpv1, Trpm8, and Trpa1
Frontiers in Pain Research 05
(23). While this does not rule out that TRP channels may still be

present and play a role in intradental neuron physiology, it does

fall in line with those previous reports that indicate lower

expression levels of these channels. Of note, intradental neurons

demonstrated enriched expression of nociceptive marker

5-hydroxytryptamine (serotonin) receptor 3A (Htr3a) and the

touch receptor Piezo2 (23). These channels may contribute to

intradental neuron physiology and warrant further investigation

with tractable genetic models.

Similarly, a subsequent transcriptomic profiling of acutely

cultured mouse molar neurons showed the majority feature

enriched expression of S100b, Calca, and Piezo2 (67).

Intriguingly, this study identified additional populations of

intradental neurons which showed enriched expression of Trpv1

and Trpa1 (67). While these neurons were assigned to C7/C8/

C10 classes based on the presence of TRP channels, they also

featured high expression of S100b associated with myelinated

neurons not c-fibers.
4 The function of intradental sensory
neurons

Given that intradental neurons richly innervate the inner

dentin and tooth pulp, this begs the question as to how they

contribute to sensation. Patients typically describe conscious

tooth sensation as painful, and many studies assume that pain is

the only output from intradental neurons (68). Certainly,

infections that produce inflammation of the pulp are associated

with dramatic inflammatory pain (69, 70). However, considering

that pain typically serves a protective role to prevent tissue injury

and encourage healing, the utility of inflammatory pain from the

tooth is ambiguous since it often requires clinical interventions

for resolution in human patients. Nociceptive pain from

operative dental procedures results from the removal of tooth

structure. Here, accompanying pain serves as a protective signal

indicating direct tissue damage. Given that dental drilling

represents an artificially amplified stimulus, pain may also

represent an exaggerated output of intradental neurons.

Consequently, natural factors damaging the tooth might produce

different, less severe sensation.

Supporting this notion, psychophysical studies using electrical

stimulation on healthy human teeth indicate more diverse

perceptual outputs from intradental neurons (71). Lower

intensity pulses elicited pre-pain tingling sensations that

transition into intense pain when delivered at higher frequencies

(8, 68, 71, 72). Pulse intensities that would be predicted to

activate myelinated fibers produce pre-pain sensation and also

trigger a jaw-opening reflex (73). This indirectly suggests that

myelinated intradental neurons likely underlie both pre-pain and

pain sensations, and may also initiate protective reflex(es) to

preserve the tooth organ. The detection of Piezo2 in intradental

neurons through recent transcriptomic analyses hints that these

neurons could detect lower intensity forces, as this ion channel

underlies discriminative touch in the skin (8, 23, 67, 72, 74–76).

While human patients are capable of sensing innocuous touch
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vibration applied to the teeth (77), it has not been demonstrated

whether intradental vs. surrounding tissue innervation is

responsible for vibration sensation.

Single unit recordings of the inferior alveolar nerve of large

animal models (primarily cats and dogs conducted in the 1970s

and 1980s) support innervation of the dentin by myelinated

intradental neurons (25–28, 78, 79). Activation of intradental

neurons in large animal models using an electric pulp tester

evoked responses from fibers with conduction velocities in the

Aδ-range (25–27, 78, 79). Corroborating these findings, studies

performed using mechanical probing, cold application, scraping,

and air-blast of exposed dentin similarly triggered neuronal

responses with conduction velocities in the Aδ range (27, 80–82).

While intradental neurons responded in these extreme

manipulations where the dentin was exposed, their response

profile within the context of intact enamel, behavioral outputs, as

well as associated perceptions remain largely unexplored.

Though less consistently reported, a handful of animal studies

have found responses with c-fiber conduction velocities to noxious

stimuli (temperature, mechanical) and inflammatory mediators

applied to teeth (25–28). For instance, mechanical probing of

exposed tooth pulp, but not dentin, activates fibers with slower

conduction velocities, suggesting distinct pulpal localization of

c-fibers (83). Broadly, c-fiber activation is thought to present as

persistent, dull pain—similar to inflammatory pain (84, 85). This

opens a possibility that activation of Aδ vs. c-fibers may give rise

to differing types of intradental sensation. In this model, dentinal

Aδ fibers would transduce superficial stimuli, while pulpal

c-fibers would respond when stimuli penetrate deeper into the

pulp or in the context of pulpal infection. In support of this

model for functional divergence, one study using intact cat

canine teeth found intense heating induces a biphasic response

marked by acute Aδ-range action potentials followed by a

prolonged activation of c-fiber spikes (80). Furthermore,

application of the inflammatory mediator bradykinin to exposed

pulp elicits action potentials from c-fibers (27) as well as dull

pain sensations in humans (86). Taken together, this body of

work strongly suggests that an elusive subpopulation of

intradental neurons represents c-fibers that trigger pulpal pain

but lack an obvious function outside of the context of extreme

stimulation or infection.

Outside of their direct sensory roles, intradental neurons may

also contribute to local tissue responses. The distribution and

patterning of free sensory nerve endings within the pulp-dentin

complex of a fully developed tooth is not static, but can

dynamically remodel in response to injury or infection. CGRP+

sensory endings exhibit branch sprouting surrounding sites of

pulp damage, although prolonged and extensive damage leads to

eventual pruning and denervation at the damage site (48, 87).

Denervation by resection of the inferior alveolar nerve is shown

to accelerate necrosis induced by pulp damage (88), suggesting

that sensory fibers may contribute to pulp-dentin regeneration in

response to injury. Indeed, inflammation-induced CGRP release

in the pulp has been shown to regulate capillary blood flow and

induce tissue regeneration (89). Further research is necessary

to determine if intradental sensory neurons respond to
Frontiers in Pain Research 06
inflammation by releasing CGRP or other neuronal factors in

order to promote dentin repair.
5 Proposed mechanisms of tooth
sensitivity

In most peripheral tissues, free sensory nerve endings are

directly activated by sensory stimuli such as mechanical forces or

temperature (90). However, the tooth organ is structurally distinct

given its encapsulated hard surface, multiple layers of

mineralization, and fluid-filled dentin tubules within which the

specialized sensory endings and odontoblast processes permeate.

This specialized anatomy opens a possibility that sensory detection

within the teeth may differ compared to other peripheral targets.

Several theories have been proposed regarding tooth sensation: (1)

hydrodynamic theory—sensory neurons are indirectly activated by

external stimuli through induced fluid movement within the

tubules, (2) transduction theory—odontoblasts act as primary

sensory cells signaling to sensory neurons, and (3) conduction

theory—sensory neuron endings within the inner pulp and dentin

tubules are directly activated by sensory stimuli (Figure 2C). It is

important to note that these theories are not mutually exclusive

and elements of each may function together to give rise to

intradental sensation. In this section, we will briefly reflect on

current evidence regarding these theories of dental sensitivity.
5.1 Hydrodynamic theory

Investigations into the functionality of intradental neurons

have largely been guided by the hydrodynamic theory, first

proposed by Brannstrom (91). This theory asserts that sensory

cells are activated by fluid flow within the dentinal tubules as a

consequence of external stimuli. Here, fluid movements are

proposed to amplify external stimuli facilitating their detection

by inner sensory cells.

Evidence supporting the hydrodynamic theory stems from

both clinical observations and in vivo functional studies. Both

have shown that sensations elicited from direct dentin

stimulation are heightened when the dentinal tubules are exposed

and thought to increase tubular fluid flow (8, 28, 80, 92–94).

Supporting this idea, re-blocking tubules with composite reduces

the sensitivity (95). However, the reduced sensitivity of dentin

following composite application is confounded by disruption of

the native tooth composition and structure. Additionally, these

observations do not rule out sensory stimuli are directly

activating sensory endings (see below, conduction theory).

Studies have sought to estimate fluid flow through the tubules

(in terms of both flow rate and direction) in response to external

stimuli. Interestingly, most external stimuli tested induce

measurable fluid flow within dentin and pulp (96–99). Several

independent reports estimate similar pulpal flow rates (in the

range of 3.5–22.2 × 103 picolitres(pl)/second), showing fluid flow

rate is most concentrated at the region of stimulation and that

most mechanical stimuli give rise to inward (or “pulpward”) flow
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(96–99). Thermal stimuli may induce bidirectional fluid movement

within enamel and/or dentin tubules due to thermal contraction/

expansion (100, 101). Measurements estimating induced

intradental fluid flow in response to thermal stimulation

corroborate computational modeling results that cold stimuli

induce outward flow, while heating induces pulpward fluid flow

(96, 102, 103). Intradental neurons demonstrate lower response

threshold to outward fluid flow based on single unit recordings.

Conversely, inward pulpward flow requiring a much higher flow

rate to elicit a response (104–106). In support of this idea,

human patients report heightened sensitivity in response to

outward pressure applied to exposed dentin (107). The

mechanism or the utility of this preferential response is not clear.

Notably, the hydrodynamic theory predates the cloning and

study of thermosensitive ion channels that respond directly to

temperature (108, 109) and most of these have yet to be explored

functionally, in vivo within the context of intradental sensation.

Overall, the hydrodynamic theory posits that fluid flow induces

the activation of intradental sensory cells, necessitating the

activation of a molecular mechanotransducer. Because external

stimuli always impact internal fluid flow, it will remain

challenging to determine the physical initiator of intradental

sensation. Assaying qualitative differences from multiple

modalities of tooth stimulation (hot vs. cold vs. touch) could be

informative considering the hydrodynamic theory posits that all

would converge on fluid flow. Furthermore, the sensory cell

responsible for detecting fluid movement within the tubules is

debated, with proposed candidates being tubular odontoblast

processes or free nerve endings (transduction vs. conduction

theory). Piezo2 emerges as a potential molecular candidate as it

may be expressed in both odontoblasts and intradental neurons,

but further investigation in vivo is required (66, 67, 110).
5.2 Transduction theory

The transduction theory suggests that odontoblasts function as

the primary sensory cells that signal to free nerve endings.

Odontoblasts could represent excitable cells in vivo based on

their expression of ion channel receptors and electrophysiological

responses in culture (111–122). However, as with any cells, in

vitro culture may significantly alter the expression pattern and

excitability of odontoblasts and may not provide an accurate

representation of their native state. The reported variability in

Trp channel expression by odontoblasts lends further credence to

this concern (111). While this has been a more active area of

research in recent decades, direct functional evidence is limited

due to the technical challenges of assaying native odontoblasts.

Recently, TRPC5 in odontoblasts was proposed as the direct cold

sensor, contributing to dentinal cold sensitivity (113). Trpc5

expression appears limited to root-adjacent odontoblasts (113),

where sensory innervation into dentinal tubules is notably sparse

(12, 33). Odontoblast morphology has also been shown to

drastically differ in coronal vs. root dentin (11), further

suggesting potential functional heterogeneity in odontoblast

populations based on anatomical location.
Frontiers in Pain Research 07
It remains an open question as to how odontoblasts would

communicate with sensory neurons. While nerve endings and

odontoblast processes are adjacently oriented within a single

tubule, electron microscopy studies suggest they do not directly

contact or connect via gap junctions (12, 32). Electron microscopy

demonstrate tubular odontoblast processes are devoid of

axoplasmic organelles or signaling components (12). Thus, if

odontoblasts do represent sensory cells, their ability to relay this

information to sensory nerves must be non-traditional. One model

proposes that, when excited, odontoblasts release an extravesicular

signaling molecule to bind receptors on adjacent free nerve

endings. Extracellular ATP (eATP) remains a candidate given a

body of in vitro evidence using co-cultured odontoblasts and

trigeminal sensory neurons. P2X3 immunostaining has been

demonstrated in a subset of human dental pulp afferent fibers in

addition to odontoblasts (123). A similar relationship between

epithelial cells and sensory neurons has been reported in the skin.

Epithelial keratinocytes function as nonneuronal sensory cells that

detect touch and temperature to release ATP onto its cognate

receptor P2X4 expressed on nearby free sensory endings (124,

125). Further in vivo evidence is necessary to demonstrate that

intradental sensory neurons are responsive to ATP.
5.3 Conduction theory

The conduction theory proposes that free sensory endings

directly detect sensory stimuli applied to the tooth, then transduce

electrical signals to the nervous system. Indeed, somatosensory

neurons express all relevant molecular machinery to detect external

stimuli and their heterogeneity and anatomical localizations reflect

this specialization. Supporting a model that the neurons initiate

signaling within the tooth, dentinal sensory endings have been

shown to contain axoplasmic organelles that are reminiscent of

vesicles found in presynaptic neurons. Activated sensory neurons

may signal to odontoblasts to initiate protective dentin production.

Interestingly, a recent study of the inferior alveolar nerve found that

chronic constriction injury (CCI), which has been shown to induce

chronic neuronal activation (126), gave rise to significant pulp

calcification. Further investigation is required to determine whether

intradental neurons indeed function as the primary detectors of

sensory stimuli as opposed to odontoblasts. Nevertheless,

intradental neurons play an indispensable role in transmitting

sensory input from the teeth to the central nervous system.

The encapsulated nature of the tooth structure has made it

challenging to parse out the extent these three theories

contribute to overall tooth sensitivity. Future studies using

targeted genetic approaches such as cell-specific ablation in

conjunction with functional assays will shed light on the cellular

mechanism of intradental sensitivity.
6 Concluding remarks

This review presents an overview of tooth structure and

innervation toward understanding tooth sensation. The distinctive
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structure of the tooth organ features elements that are conserved

among mammals and lead to the protection of these essential

organs. Enamel covers the outer tooth and myelinated sensory

neurons extend from the pulp and penetrate the dentin tubules.

The tooth pulp is densely innervated by sensory neurons which

have been further described based on their transcriptomic

profiles. Most intradental innervation originates from myelinated

trigeminal neurons that terminate in the inner dentin. Functional

studies and clinical observations investigating sensory innervation

in both animal models and humans have demonstrated pain is a

predictable consequence of extreme scenarios of intradental

sensory neuron activation (e.g., when tooth structure is damaged

and/or dentin is exposed). The contribution of sensory neurons

to sensation in an intact tooth has not been defined.

Future research is needed to determine the cellular and

molecular origin of tooth sensation as well as how molecularly-

defined intradental neurons respond to a range of tooth

stimulations and produce nociceptive vs. inflammatory tooth

pain. Given the advances of genetic tractability using murine

models in recent decades, mouse studies show promise for

elucidating the identity of intradental sensory neurons. However,

when interpreting rodent data, it is critical to note that studies

on molars, which are structurally similar to human teeth, provide

the most relevant comparisons considering these do not

regenerate throughout life. Ultimately, these insights will

contribute to the development of targeted clinical anesthetics and

treatments for dental pain
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