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experiment with an active control
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Background: Pain is a complex and multifaced sensory and emotional
experience. Virtual reality (VR) has shown promise in reducing experimental
pain and chronic pain. This study examines an immersive VR environment
initially designed for endometriosis patients, which demonstrated short-term
analgesic effects. The research aims to determine the impact of the VR
environment on experimental pain intensity and unpleasantness both during
and after VR exposure (3D with binaural beats), while using an active control
condition (2D with no binaural beats). Additionally, a secondary objective of
the study was to identify the psychological and psychophysical factors that
predict the analgesic effects of the immersive digital therapeutic tool.
Methods: The study involved twenty-one healthy individuals and used a within-
subject design, comparing a VR treatment with an active control condition.
Continuous heat stimulation was applied to the left forearm with a Peltier
thermode. Pain ratings were collected for immediate and short-term effects.
Results: In both the VR and Control conditions, there were no significant
differences in pain intensity before, during, and after exposure. However,
during VR exposure, there was a significant decrease in pain unpleasantness as
compared to before exposure (p < 0.001), with a 27.2% pain reduction. In the
Control condition, there were no significant differences in pain unpleasantness
during and after exposure. Furthermore, no psychological and psychophysical
factors predicted the analgesic effects.
Discussion: The study investigated how a VR environment affected experimentally
induced pain in healthy volunteers. It showed that VR reduced pain
unpleasantness during exposure but had no lasting impact. The VR environment
mainly influenced the emotional aspect of pain, possibly due to its inclusion of
binaural beats and natural stimuli. The study suggests that the VR environment
should be tested in chronic pain population with high distress levels.

Registration number (clinicaltrials.gov): NCT06130267.
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1 Introduction

Pain is shaped by the context, meaning and the individual’s

psychological state (1). While the sensory component of pain

(e.g., its intensity) refers to the physical sensation evoked by

tissue damage or injury, the emotional component (e.g., its

unpleasantness) is equally important and can significantly

influence a person’s pain experience (2). Most people recover

from pain following an injury or operation and return to

normalcy. However, there are situations when the pain lasts

longer or appears suddenly without any prior history of an

accident or operation. Pain that persists for more than 12 weeks

despite medication or treatment is referred to as chronic or

short-term pain (3). In terms of pharmacological treatment,

several classes of medications have demonstrated efficacy in

relieving pain, including antidepressants, certain anticonvulsants,

opioids and non-steroidal anti-inflammatory drugs (4–7).

However, the efficacy of some of these treatments is mixed

(anticonvulsants), and some have potentially serious side effects

(opioids). Among non-pharmacological pain treatments, virtual

reality (VR) is one of the modalities that has attracted the most

research interest over the past decade. Its potential efficacy has

been tested in a wide range of painful conditions, from post-

operative pain and neuropathic pain to pediatric pain and pain

associated with medical procedures (4–7). To date, most clinical

trials have included small samples and the proposed

interventions have generally been offered over short periods of

time. Despite these limitations, virtual reality has produced

highly promising results, especially in the case of immediate pain

(8), certainly justifying further work in this area.

To gain a better understanding of the potential mechanisms of

action of virtual reality, several experimental studies have been

carried out in healthy volunteers, using psychophysical

procedures to administer nociceptive stimuli in a controlled

manner. Regardless of the modality used (thermal, mechanical

stimulation, etc.), the vast majority of studies to date have shown

that virtual reality produces analgesic effects in a laboratory

setting (9–12). Although promising, these studies have significant

limitations. In most cases, they have focused on pain intensity,

without addressing the unpleasantness of pain (13–15). More

importantly, studies in the field often lack of an active control

condition (i.e., non-immersive VR) (16). Indeed, in most studies,

the control condition was a simple baseline condition where

participants were asked to look at a blank screen (9, 11, 17). This

is an important limitation which makes it difficult to properly

interpret findings considering that such studies cannot rule out

the possibility that simply wearing a head mounted display

(HMD; with no VR content) may be sufficiently distracting to

produce analgesic effects. It is important to point out, however,

that a few studies have used minimal control conditions

(example: HMD showing a black screen) and have shown that

VR environments produce greater analgesic effects (18).

For this pilot study, we used a VR environment that was

initially developed for the treatment of endometriosis, a

chronic inflammatory disease defined by the presence of

endometrial tissue outside the uterus, causing pelvic pain and
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infertility (19, 20). This VR environment, known as Endocare,

consists in a session during which patients are immersed in a

playful, calming environment (e.g., a landscape consisting of

water and a beach). During the session, the background sound

is made up, among other things, of binaural beats, for which

the relaxing effects have been demonstrated (21). As compared

to other VR interventions, the tool was not designed to

primarily produce attention-grasping effects. The efficacy of

this VR environment has been evaluated in a randomized

controlled trial of endometriosis patients (22). The analgesic

effects persisted for 4 h after administration. As such, the

persistency of analgesic effects suggests that the VR

environment recruits endogenous pain inhibition mechanisms.

This echoes the results of a recent experimental study (23)

which tested a VR environment on 38 volunteers and found

that it was possible to directly enhance the endogenous pain

inhibition efficacy in healthy volunteers.

Several psychological factors are commonly associated with

pain across different pathologies, and some studies showed that

we can predict treatment response with these variables in both

clinical and non-clinical populations (24–26). In fact, according

to a meta-analysis, 16 studies involving healthy volunteers

reported a predictive relationship between psychological factors

and experimental pain, while seven showed variable results (27).

Such psychological factors include pain catastrophizing, sleep

quality, anxiety, the severity of the pain and its impact on

functioning (28, 29). A systematic review (30) on the use of VR

as a distraction technology emphasized the role of several

psychological aspects in the efficacy of analgesic distraction. The

sense of presence is another key element influencing the efficacy

of VR as diversion techniques (31, 32), with greater sense of

presence being generally associated with greater treatment

response. Finally, in the search of individual characteristics

predicting treatment response in the field of pain, psychophysical

procedures are growingly used. Thus far, it has been shown that

one of the best predictors of pain outcomes is the efficacy of

endogenous pain inhibition mechanisms including inhibitory

conditioned pain modulation (33, 34).

To gain a better understanding of the mechanisms involved in

a novel immersive digital tool that was developed for the treatment

of endometriosis, we carried out an experimental pilot study in

healthy volunteers. A randomized cross-over design was adopted,

and pain was elicited using tonic thermal noxious stimuli.

Considering that experimental studies that have tested VR

interventions have focused mostly on pain intensity, and that

control conditions have been inadequate in most cases, the

current pilot study measured pain unpleasantness and used an

active control condition. More precisely, we aimed to compare a

3D environment with sound (e.g., binaural beats) to a 2D

environment with no sounds, both projected in a VR headset.

Since the novel tool appears to produce clinical benefits that

persist over time, pain outcomes were measured both during and

after the administration of the VR environment. A secondary

objective of the study was to identify the psychological and

psychophysical factors that predict the analgesic effects of the

immersive digital therapeutic tool.
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2 Methods

2.1 Participants

The selection criteria were healthy men and women between 18

and 50 years old who were willing to participate in the study and

signed the informed consent form. The exclusion criteria were if

a person presented a (i) neurological disorder, (ii) substance use

disorder, (iii) severe mental health disorder, (iv) chronic pain

(e.g., pain lasting longer than 12 weeks), (v) any acute and

unstable medical condition, and (vi) taking medication that acts

on the central nervous system.
2.2 Ethics approval

This pilot study was conducted in compliance with good

clinical practice guidelines, the principles of the Declaration of

Helsinki and Health Canadian laws and regulation. It was

reviewed and approved on June 3rd, 2022, by the CIUSSS de

l’Est-de-l’île-de-Montréal. All participants completed and signed

the informed consent form before inclusion in the study and

before any study-related procedure began.
2.3 Clinical evaluation

The severity of transient immediate pain was assessed with the

Brief Pain Inventory (BPI) (35). The BPI is a self-administered

measure of the sensory and reactive dimensions of pain that is

the severity or intensity of the pain and the level of interference

it has on various aspects of life. The internal consistency of the

BPI has been reported to range between 0.87 and 0.92 while the

test-retest reliability falls between 0.86 and 0.97 (36, 37). Since

the BPI was developed for the assessment of chronic pain, here,

we only used Item 3 on the worst pain intensity experienced in

the last week. The overall sleep quality was evaluated with the

Pittsburgh Sleep Quality Index (PSQI) (38). Each of the

questionnaire’s 19 self-reported items belongs to one of seven

subcategories: subjective sleep quality, sleep latency, sleep

duration, habitual sleep efficiency, sleep disturbances, use of

sleeping medication, and daytime dysfunction. The PSQI has

shown internal consistency ranging from 0.70 to 0.83 and the

test-retest reliability between 0.72 and 0.90 (39, 40). The Pain

Catastrophizing Scale (PCS) (41) was also administered. The PCS

instructions ask to reflect on past painful experiences, and to

indicate the degree to which they experienced each of 13

thoughts or feelings when experiencing pain, on 5-point scales

with the end points (0) not at all and (4) all the time. The PCS

demonstrates strong internal consistency, with reported values

ranging between 0.84 and 0.97, and a test-retest reliability of

approximately 0.75 (42). The State-Trait Anxiety Inventory

(STAI) was also used (43, 44). It is a questionnaire composed of

a 20 items scale designed to measure the state of anxiety. The

STAI exhibits good internal consistency between 0.89 and 0.91

and the test-retest reliability between 0.70 and 0.88 (44, 45).
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Finally, the sense of presence experienced in a virtual

environment was measured with the Igroup Presence

Questionnaire (IPQ) (46). The IPQ has three subscales (1. Spatial

Presence, 2. Involvement and 3. Experienced Realism) and one

general item not belonging to a subscale (Sense of being there).

The internal consistency and test-retest reliability for the IPQ are

0.87 and 0.74 (47).
2.4 Design and settings

This pilot study was a randomized within-subject design

comparing the effect of the VR environment and an active

Control condition. To mitigate carry-over effects, a 30-min rest

period separated the administration of experimental and control

conditions, a protocol implemented with precision based on

our own experience (48). The order of conditions was

counterbalanced (and randomized) for each participant to ensure

robustness in the study design. The study was conducted

between June 2022 and April 2023 at the research center of the

Institut Universitaire en Santé Mentale de Montréal. Each

participant dedicated approximately 2.5 h to the study and

received appropriate incentives as acknowledgment for their

valuable time.

2.4.1 Immediate analgesic effect
A continuous heat stimulation was administered with a 3 cm2

Peltier-type thermode (Medoc Advanced Medical Systems, Ramat

Yishay, Israel) and was applied for 2 min on different locations

of the left forearm of participants for each stimulation. The

thermode is a small heating plate connected to a computer,

enabling precise and safe control of the temperatures used. The

tonic heat pain stimulation was administered before (test 1) the

experimental and control conditions, as well as during (test 2)

both conditions and immediately after (test 3). In all cases, the

experimental temperature reached a pre-determined fixed value

and remained constant during the 2-min testing period. It was

set at a value inducing a moderate level of pain during the pre-test.

During the pre-test, pain threshold and pain tolerance were

first measured, and the participants were not asked to rate the

pain unpleasantness. The experimental temperature started at 32

°C and gradually increased at a rate of 0.3 °C per second. We

asked participants to subjectively report the point at which the

sensation of heat began to be perceived as pain (pain threshold),

as well as the point at which the pain became intolerable

(tolerance). For each participant, we noted the temperature that

caused a moderate pain level of 50 (T50) on a scale from 0 (no

pain) to 100 (intolerable pain) by using a Computerized Visual

Analogue Scale. The pre-test was repeated 3 times to obtain the

most reliable measure of pain threshold, pain tolerance and T50.

The T50 was the temperature used for the administration of the

2-min tonic heat pain stimulations that were administered before

(test 1), during (test 2) both the experimental and control

conditions and immediately after (test 3). Importantly,

participants were not made aware that the same experimental

temperature was used throughout the experiments. Also
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noteworthy, the tonic heat pain stimulations were only

administered in the final minutes of both the experimental

conditions in order to let the participants fully engage in the

immersive experience before receiving the nociceptive inputs. At

the end of each tonic heat pain stimulation, subjects verbally

rated their pain intensity and their pain unpleasantness using a

numerical rating scale, also ranging from 0 (no pain) to 100

(most intense pain tolerable).
2.4.2 Short-term effect
To measure the potential short-term effect of both the

experimental and control conditions, we administered the same

tonic heat pain stimulation immediately at the end of both

conditions. Here again, subjects were asked to verbally rate their
FIGURE 1

Study design. Tonic heat pain intensity and unpleasantness were measured b
order the VR and Control conditions was counter balanced and randomize
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pain intensity and their pain unpleasantness using a numerical

rating scale, also ranging from 0 (no pain) to 100 (most intense

pain tolerable). For more information on the study design, please

refer to Figure 1.
2.5 Treatment and control conditions
description

The treatment was displayed through a VR headset (Oculus

Quest 2) with a high-quality headphone (Audio-Technica ATH-

M50x). This potential treatment is a standalone medical software

device comprised of an application stored in a VR headset that is

intended to mitigate pain (22) (see Figure 2A). It offers a 20-min

treatment consisting of a combination of auditory (e.g., alpha/theta
efore, during and after the Virtual Reality (VR) or Control conditions. The
d for each participant.
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FIGURE 2

(A) Virtual reality (VR) environment. In this figure, you can see a 3D stereoscopic display, which uses two cameras to capture left and right images or
video frames simultaneously. These images, viewed separately by each eye, mimic human vision. In VR, stereoscopic videos create depth perception,
though there are only two viewpoints. (B) Control condition. In this figure, you can see a 2D monoscopic display, which shows the same image to both
eyes simultaneously. It lacks depth perception and appears flat, hence the black background surrounding the image, whether it is regular 2D or an
immersive 360/180 content.

Diallo et al. 10.3389/fpain.2024.1366892
binaural beats, nature-based sounds) and visual (e.g., bilateral

alternative simulations consisting of a sphere appearing and

moving on a horizontal axis) therapeutic procedures integrated in

a 3D-VR environment. Furthermore, the treatment was designed

to guide participants to relax, to passively look at the environment,

and to passively listen to the auditory components. The treatment

involved no active interaction with the VR environment.

The control condition was displayed through a VR headset with

a high-quality headphone (Audio-Technica ATH-M50x). This

comparator was a 20-min control with the same composition as

the experimental treatment (same context, environment and
Frontiers in Pain Research 05
duration) but in 2D with 3 Degrees of Freedom and without any

auditory stimulus (e.g., alpha/theta binaural beats, nature-based

sounds) (see Figure 2B). Moreover, in this condition, there was no

instructions provided to the participant.
2.6 Inhibitory conditioned pain
modulation (iCPM)

The efficacy of inhibitory CPM was measured in a separate

experimental session ∼one week apart from the VR session.
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To measure the inhibitory CPM, a continuous heat simulation

was administered with a thermode for 2 min on the left

forearm of participants. To capture the effects of inhibitory

CPM, the test stimulus was administered twice, separated by

the administration of the cold-pressor test (CPT) as the

conditioning stimulus. By measuring pain elicited by the test

stimulus before and after the conditioning stimulus, it was

possible to measure iCPM (for more information, please refer

to Supplementary Material).
2.7 Statistics

To test the immediate and short-term analgesic effect of

the immersive digital therapeutic tool (primary objectives) and

its superiority to the control condition, we used repeated-

measures analyses of variance (ANOVA) with pain intensity

and pain unpleasantness as the dependent variables. Given that

the current study is a pilot trial, we did not perform a two-way

repeated measures ANOVA. Instead, we performed repeated-

measures ANOVAs on the VR and control conditions

separately. For significant time effects, post hoc paired t-tests

were performed, and were limited to the During vs. Before

and After vs. Before comparisons. The magnitude of the

analgesic effect of the VR environment was determined

using Cohen’s d (49).

To identify the predictors of response to the digital immersive

therapeutic tool, Pearson’s correlational analyses were performed

between to determine whether the level of analgesia induced by

the VR treatment and psychological variables (sense of presence,

clinical pain, pain dramatization, anxiety and sleep quality) as

well as the efficacy of inhibitory CPM. Due to the nature of the

current trial, we adopted an uncorrected p-value, which was set

at p < 0.05 for all analyses.
FIGURE 3

The effect of the experimental condition on pain intensity and pain unpleasa
and on pain unpleasantness evoked by the tonic thermal noxious stimuli.
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3 Results

3.1 Study participants

Twenty-three participants were recruited. The size of the

sample was a pragmatic choice based on practical issues (e.g.,

time constraints). Two of them were excluded due to technical

problems during the experiments and missing data. Twenty-one

participants completed the full experiment; 17 were females and

13 were Caucasian. The mean age of participants was 23.2 years

±3.5, with 17.2 years of education on average and a mean of

5.7 ± 2.4 for the PSQI. In this sample, the mean of the BPI (Item

3) was 3.4 ± 2.1 and 3.2 ± 0.68 on the IPQ. For the STAI, the

mean was 33.8 ± 9.5 and the mean of the pain catastrophizing

was 19.1 ± 8.1. The mean of the stimulus test (T50) was 46.3 °C

(SD = 1.5). The mean of the pain threshold was 43.3 °C (SD =

4.0) and the mean of the pain tolerance (maximum pain) was

47.7 °C (SD = 1.7).

3.1.1 VR condition
3.1.1.1 Intensity
For the VR condition, the mean pain intensity evoked by the tonic

nociceptive stimulation (i.e., the thermode) before, during and after

VR exposure was respectively 54.3 (SD = 19.6), 50.0 (SD = 20.7)

and 53.3 (SD = 19.8). The repeated-measures ANOVA revealed

no significant of time [F(2,40) = 1.2; p = 0.313] (see Figure 3).

3.1.1.2 Pain unpleasantness
For the VR treatment, the mean unpleasantness evoked by the

nociceptive stimulation (i.e., the thermode) before, during and

After VR exposure was respectively 50.7 (SD = 19.3), 36.9

(SD = 21.4), and 46.9 (SD = 18.5). The repeated measures

analyses revealed a significant effect of time [F(2,40) = 8.3;

p = 0.001]. There was a significant decrease in pain
ntness. This figure shows the effect of the virtual reality on pain intensity
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unpleasantness during VR exposure as compared to Before

exposure (t = 4.2; p = 0.001; Cohen’s d = 0.7; 27.2% change) (see

Figure 3). By contrast, there was no significant difference for the

After vs. Before comparison (t = 1.0; p = 0.335).

3.1.2 Control condition
3.1.2.1 Intensity
For the Control condition, the mean pain intensity evoked by the

nociceptive stimulation (i.e., the thermode) before, during and

after the Control condition administration was respectively

55.8 (SD = 17.5), 55.7 (SD = 20.5) and 55.9 (SD = 22.2). The

repeated-measures analyses revealed no significant effect of time

[F(2,40) = 0.002; p = 0.998] (see Figure 4).

3.1.2.2 Pain unpleasantness
For the Control condition, the mean pain unpleasantness evoked

by the nociceptive stimulation (i.e., the thermode) before,

during and after the Control administration was respectively 53.1

(SD = 20.6), 50.9 (SD = 22.8) and 50.7 (SD = 23.3) (see Figure 4).

The repeated-measures analyses revealed no significant effect of

time [F(2,40) = 0.2; p = 0.817].
3.2 Difference in experimentally induced
pain between the VR treatment and the
control condition

To examine potential differences between the VR and control

conditions, the change in pain unpleasantness (delta) was

calculated for each participant for the During vs. Before

comparison. In an explanatory manner, we then performed a

paired t-test using these delta-values. This explanatory analysis

showed a stronger effect of the VR condition over the Control
FIGURE 4

The effect of the control condition on pain intensity and pain unpleasantness
pain unpleasantness evoked by the tonic thermal noxious stimuli.

Frontiers in Pain Research 07
condition on pain unpleasantness for the During vs. Before

comparison (t = 2.4; p = 0.027).
3.3 Predictors of analgesic response

Pearson’s correlation coefficients were computed to assess the

linear relationships between psychological variable, inhibitory

CPM efficacy and the analgesic effect of the VR treatment.

Analyses were restricted to pain unpleasantness since the VR

environment did not significantly impact pain intensity. The

correlations between the clinical pain (BPI, Item 3; r = 0.315;

p = 0.165), pain catastrophizing (PCS; r = 0.177, p = 0.442),

anxiety (STAI; r = 0.033; p = 0.888) and sleep (PSQI; r =−0.019;
p = 0.241) with the analgesic effect of the VR treatment were not

significant. Likewise, the sense of presence (IPQ) showed no

significant relation (r =−0.236; p = 0.303) with the analgesic

effect of the VR treatment. Finally, the correlation between the

efficacy of inhibitory CPM and the analgesic efficacy of the VR

treatment showed no significant correlation (r = 0.010; p = 0.965).
4 Discussion

The main objective of the current experimental pilot study

was to examine the effect of a VR environment on experimental

pain in healthy volunteers to gain a better understanding of its

mechanisms of action, while paying attention to both pain

intensity and pain unpleasantness. Both the immediate and

short-term effects of the VR environments were tested, and a

minimally active control condition was used. Results showed

an immediate effect of the VR environment on pain

unpleasantness but no short-term effect. The analgesic efficacy of
. This figure shows the effect of the virtual reality on pain intensity and on
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the VR environment on pain unpleasantness did not correlate

with any of the psychological and physiological (e.g., iCPM)

variables measured.

The main finding of the current study is that the VR

environment produced a specific effect on the emotional

component of pain, with no observed effect on its sensory-

discriminative component. This finding is coherent with the

evidence pointing to significant differences between these two

pain components. First, there reliable is evidence that these two

components are processed by different brain regions (50).

Moreover, there is evidence demonstrating that pain intensity

and unpleasantness may exhibit divergent responses to certain

analgesic procedures such as transcutaneous electric nerve

stimulation, hypnosis and opioids (51–55). One of the potential

explanations for this specific effect on pain unpleasantness has to

do with the fact that binaural beats are included in the

immersive digital tool. Although there is no agreement upon the

mechanisms underlying binaural auditory beats, there is a

growing support for the claim that binaural auditory beats affect

psychophysiological states. Indeed, numerous studies have

reported that binaural beats exposure leads to a change in pain

perception, autonomic measures and negative emotions, and is

known to produce a relaxing effect (56–58). Another explanation

would be the exposure to visual stimuli from nature (e.g., sand,

water, trees, mountains) and nature-based sounds that are

displayed in the VR environment. Multiple studies have shown

that both nature-based auditory and visual stimuli can reduce

stress and anxiety and produce pain relief (59–65). The specific

effect on pain unpleasantness of the VR environment in the

current study is relevant for the design of future trials using this

immersive digital tool. It does suggest, indeed, that the VR

environment should be primarily tested in chronic pain

populations with significant levels of distress. While anxio-

depressive symptoms are usually quite prevalent in chronic pain

(66, 67), the comorbidity rates are even higher in chronic pain

conditions with no clear physiological causes, such as functional

pain syndromes (68).

Although this was not directly tested, the results observed here

do not suggest that the VR environment activated endogenous pain

inhibition mechanisms (e.g., iCPM). Indeed, no correlation was

observed between the effect of the environment on pain

unpleasantness and iCPM; moreover, these beneficial effects of

the VR environment were only observed during the immediate

administration, without these effects persisting after its

interruption. As such, these results are inconsistent with the

previous clinical study with the immersive digital tool which has

highlighted, in endometriosis patients, analgesic effects that lasted

up to 4 h after the environment administration (22). There are

two possible explanations for this discrepancy in results between

the two studies. On the one hand, the previous clinical study

involved people with chronic pain, whereas the present study

included healthy volunteers with no clinical pain. It is therefore

possible that the effect of the immersive digital tool may differ

depending on whether the pain is iatrogenic or experimentally

induced. The other point to consider is that in the previous

study, pain measurements were taken for a long period of time
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(4 h) after the VR environment was discontinued, whereas in the

present study, we took only one measurement, immediately after

the VR environment was discontinued. The limited duration of

the after-treatment measurement may have prevented the

observation of delayed analgesic effects. Significant improvements

may have only been observable with longer time frames.

Contrary to our expectations, we did not observe any

correlations between the analgesic effect of the VR environment

and the various clinical variables measured in the project, namely

anxiety, sub-clinical pain, pain catastrophizing, and sleep. As

such, this lack of correlation is inconsistent with past studies

conducted with clinical populations or healthy volunteers tested

in experimental settings (69, 70). The main reason for this lack

of correlation in the present study could be explained by the fact

that our study included a non-clinical sample. The recruited

sample presented rather low levels of anxiety, sub-clinical pain,

pain catastrophizing and sleep problems as compared to

normative and clinical samples (35, 38, 41, 43, 44, 46).

One of the strengths of this pilot study is that the control

condition was immersive in that participants had to wear the VR

headset during this condition. This procedure markedly contrasts

with many past studies in the field that used simple baseline

conditions (63, 71, 72). The use of a minimally active control

condition in the current experimental study is important in that

it allowed to control for mere effects of wearing a VR headset.

Despite this important methodological strength, the present

study had some limitations. As mentioned previously, one of the

limitations of the current study is that only one pain

measurement was taken immediately at the end of the

administration of the experimental and control conditions.

Another limitation is the sample size (N = 21), which was

relatively small. Small samples are associated with decreased

statistical power. This increases the likelihood of committing type

II errors, where smaller effects are not detected due to

insufficient data. The inclusion of a small number of participants

also makes populational inferences more uncertain. Finally, we

acknowledge that the use of the BPI for measuring transient

painful somatic symptoms is a study limitation, since the BPI

was originally developed for the measurement of chronic pain

(33), which was an exclusion criterion in the current study.

Furthermore, another limitation is that we did not measure the

IPQ for the control condition; thus, we cannot determine

whether the observed difference between the VR and control

conditions could be attributed to differences in the feelings of

presence elicited by both conditions.

In a pilot randomized-controlled study examining the potential

effects of a novel VR environment on experimentally induced pain

using an active control condition, our results showed that the

digital immersive tool produced significant immediate effects on

pain unpleasantness that did not last at the end of the VR

stimulation. With the positive results obtained in the present

project, one of the next steps would be to investigate in

experimental settings the relative contribution of the digital tool

components to the analgesic effects observed, namely the

binaural sounds, the nature-based sounds, and/or the visual

stimuli of nature scenes. Another avenue would be to test the
frontiersin.org

https://doi.org/10.3389/fpain.2024.1366892
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


Diallo et al. 10.3389/fpain.2024.1366892
analgesic effects of the VR treatment in larger samples of

participants, especially clinical populations living with chronic

pain who also experience significant levels of anxio-depressive

symptoms. Finally, considering the fact that our VR environment

does not engage higher cognitive functions (e.g., decision-

making) like other VR environments that have been used in past

studies (e.g., videogames) (73–75), it would be of interest to

perform head-to-comparisons of both approaches in order to

determine if their analgesic effets and mechanisms of action are

comparable or not.
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