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Sickle cell disease (SCD) is a prevalent and complex inherited pain disorder that
can manifest as acute vaso-occlusive crises (VOC) and/or chronic pain. Despite
their known risks, opioids are often prescribed routinely and indiscriminately in
managing SCD pain, because it is so often severe and debilitating. Integrative
medicine strategies, particularly non-opioid therapies, hold promise in safe and
effective management of SCD pain. However, the lack of evidence-based
methods for managing SCD pain hinders the widespread implementation of
non-opioid therapies. In this review, we acknowledge that implementing
personalized pain treatment strategies in SCD, which is a guideline-
recommended strategy, is currently fraught with limitations. The full
implementation of pharmacological and biobehavioral pain approaches targeting
mechanistic pain pathways faces challenges due to limited knowledge and
limited financial and personnel support. We recommend personalized medicine,
pharmacogenomics, and integrative medicine as aspirational strategies for
improving pain care in SCD. As an organizing model that is a comprehensive
framework for classifying pain subphenotypes and mechanisms in SCD, and for
guiding selection of specific strategies, we present evidence updating pain
research pioneer Richard Melzack’s neuromatrix theory of pain. We advocate for
using the updated neuromatrix model to subphenotype individuals with SCD, to
better select personalized multimodal treatment strategies, and to identify
research gaps fruitful for exploration. We present a fairly complete list of
currently used pharmacologic and non-pharmacologic SCD pain therapies,
classified by their mechanism of action and by their hypothesized targets in the
updated neuromatrix model.
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1. Introduction

Most pain, including sickle cell disease (SCD) pain, is managed at home without

professional supervision (1–4). And when individuals with pain present to clinicians, they

are most often treated with palliative approaches. Drugs such as non-steroidal anti-

inflammatory drugs, antidepressants, anticonvulsants, local anesthetics, muscle relaxants,

and antianxiety medicines may be used, as may non-pharmacological interventions (5).

For SCD pain in western countries, one of the most common palliative therapies used is

opioid therapy (6, 7). Though expert guidelines advocate for opioid-sparing approaches,

employing multimodal combinations of therapy (8, 9), usually administered by a

multidisciplinary team (10), they are based mostly on expert consensus, and often poorly
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adhered to (11, 12). Treatment can be frustrating for clinicians

trained to apply scientific and mechanistic principles to the

practice of medicine.
1.1. Precision medicine and
pharmacogenomics in SCD

Precision medicine (13) has been defined as “the tailoring of

medical treatment to the individual characteristics of each

patient…to classify individuals into subpopulations that differ in

their susceptibility to a particular disease or their response to a

specific treatment.” (14) Applied to pain, precision medicine

involves phenotyping pain patterns and operative mechanisms,

genetics, and expressions of pain in each individual; then

creating or revising an individualized pain management plan for

all phases of pain care based on observed phenotypic

and mechanistic features. Precision medicine acknowledges

individuals’ unique differences in disease susceptibility and drug

metabolism, depending on variations in their genetic makeup.

Because of the intricate interplay between genetics and

pain expression and analgesic response, pharmacogenomics, a

precision medicine modality, can potentially play a crucial role in

safe and effective sickle cell disease pain management (15).

Pharmacogenomics is the genomic profiling of patients for genetic

variants that clinically modify the tolerability and desired effect of

specific medications (16). For instance, the cytochrome P450 (CYP)

genes variants have an impact on the metabolism of multiple

medications across analgesic drug classes. Patients who poorly

metabolize certain analgesic drugs may face mild, moderate, or

even severe toxicities, requiring acute care admission or even

hospitalization (17). Further, severe or even mild adverse events

may lower adherence, and genetic variance may be associated with

reduced drug efficacy and increased medication wastage.

Pharmacogenomics-guided prescribing guidelines for

approximately 80 drugs have been developed by international

collaborative groups such as the Clinical Pharmacogenetics

Implementation Consortium (CPIC) and the Dutch

Pharmacogenetics Working Group (DPWG) (18). Almost two-

thirds of these actionable drug-gene associations involve drug-

metabolizing enzyme genes, about 80% of which encode

cytochrome P450 (CYP) enzymes (19). Preemptive

pharmacogenetic testing to predict a patient’s metabolic response

can facilitate individualized prescribing (20), but genotype-guided

dosing practice is not readily available in SCD care (21).
1.2. Integrative health

Integrative health “includes whole person health, that is,

empowering individuals, families, communities, and populations

to improve their health in multiple interconnected domains:

biological, behavioral, social, and environmental.” Modes of

integrative healthcare have received increasing attention and

trials among individuals with SCD, especially for pain (22).

Integrative approaches come in two subtypes. If a non-
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mainstream practice is used together with conventional medicine,

it is considered “complementary.” If a non-mainstream practice

is used in place of conventional medicine, it is considered

“alternative.” Complementary approaches are currently the most

ones used to treat chronic pain (23).
1.3. Models and mechanisms of pain

Precision medicine and integrative health both evoke a

transcendent causal and treatment model of pain to replace the

long-held and accepted Cartesian pain model (24). The Cartesian

model views pain purely as a biomarker of tissue damage or

inflammation that is detected by the peripheral nervous system.

The role of = ascending sensory fibers, especially the first-order

neurons in the spinothalamic tract, the dorsal root ganglia, and

the second-order ascending fibers, is to transmit pain signals

unmodulated to the central nervous system (CNS) (25, 26). The

role of the CNS is only to receive and process these unmodulated

pain signals, leading to passive perception of pain, and some

kind of reaction. In contrast, a transcendent pain model

consistent with the practice of precision medicine and integrative

health must explain the observed pain phenotypes, pain

mechanisms, and pain findings which aren’t explained by the

Cartesian model. Decades ago, Richard Melzack proposed such a

model, the Neuromatrix theory of pain (27, 28). It theorizes that

multiple parts of the nervous system– the “body-self

neuromatrix”—work together to generate pain, and that pain can

be produced independently of peripheral sensory input (29). It is

consistent with Engel’s general biopsychosocial model (30–33),

because it theorizes environmental as well as internal biological

influences on pain. The neuromatrix is genetically predetermined

(34), but is biologically responsive to stimuli. Further, pain

responses in the neuromatrix may be so altered by the

environment that they no longer require a synchronous

environmental stimulus, such as in phantom limb pain (35).

Since Melzack’s theory was proposed, animal models, human

imaging studies (36) including functional magnetic resonance

imaging studies (37), and even invasive brain electrode studies

(38) have led to a consensus that a distributed, anatomical

neuromatrix is indeed responsible for receipt and processing of a

variety of pain signals (Figure 1). For acute pain, this network

consists not only of the ascending pain fibers, but also of the

primary and secondary somatosensory, insular, anterior cingulate,

and prefrontal cortices and the thalamus (36). But more important

than these multiple structures is the network of connections

between the structures. Connections in this network are constantly

shifting (39, 40). We hypothesize, but are still unsure how, shifts

in these connections over time can cause a transformation from

acute pain to chronic pain. However, evidence is accumulating to

show that this same pain neuromatrix, this network, is operative

in patients with SCD (41–44).

The updated pain neuromatrix suggests multipe targets for pain

therapy for SCD. Interventions may be directed either at three types

of inputs, i.e., sensory-discriminative, cognitive-evaluative, and

motivational-affective inputs. Or interventions may be directed at
frontiersin.org
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FIGURE 1

Updated neuromatrix model of pain with components. Three types of input, sensory-discriminative, cognitive-evaluative, and motivational-affective,
integrate into pain processors. Processing includes perception in midbrain and thalamic brain structures and a network of connections between
them, and modulation by these connections and by ascending and descending fibers. Three types of resulting pain reactions include pain perception/
sensation, motor function, and stress. Feedback modulates every stage: reactions modulate processing, and processing modulates input signals. Pain
intervention targets are suggested by each component. (Adapted from Melzack and numerous authors).

Smith et al. 10.3389/fpain.2023.1279361
pain processing, i.e., interventions may alter how pain signals are

integrated, modulated, and/or passed on in the pain neuromatrix.

Regarding inputs, sensory-discriminative inputs consist of

cutaneous, musculoskeletal, visceral, visual, and other sensory

inputs, which define the location and quality of pain perception.

Cognitive-evaluative inputs provide interpretation or meaning for

the pain experience. This includes factors, such as memories of

past experiences, cultural understanding of pain, pain

rumination, pain catastrophizing (45), and somatization of pain.

Motivational-affective inputs add an emotion or feeling to the

pain experience. They ask, “what should I feel and/or do about

my pain?” The limbic system and its associated regulation of

autonomic and endocrine responses, including in the gut (46)

provides motivational-affective input. Its role in SCD pain

requires further exploration (47, 48); however, many studies

report comorbid depression and anxiety (49), commonly seen in

many pain states.

Regarding pain processing of these types of pain inputs,

integration into a summary pain perception, as well as

modulation of the inputs, occurs in the network of midbrain and

thalamic structures, their connections, and ascending and

descending fibers. Last, regarding proposes types of reactions to
Frontiers in Pain Research 03
pain, the model proposes pain perception reactions, motor

reactions, and stress reactions. These may vary and may have

dramatic effects on subsequent pain trajectories.

Regarding pain mechanisms and phenotypes, pain has

traditionally been characterized as either nociceptive or

neuropathic. However, the prevalence of the phenotype of

unexplained widespread chronic pain, not only in SCD but also

in fibromyalgia (50), irritable bowel syndrome (51), and chronic

pelvic pain (52), has forced authorities to adopt a third pain

mechanism, nociplastic pain (53), distinct from nociceptive pain

(i.e., pain due to local inflammation or tissue damage) and from

neuropathic pain (i.e., pain due to nerve damage). Research on

this mechanism is far less mature. Experts agree that nociplastic

pain is not a distinct entity, but rather part of a chronic pain

continuum. Nociplastic pain results from neuroplasticity, in this

case, an acquired, augmentation of sensory and CNS signal

processing, including pain perception and pain modulation.

Initially called central sensitization (CS), to emphasize afferent

pathways, CS is now known to involve activation or disinhibition

of descending pain pathways as well (54), via activation of N-

methyl-D-aspartate (NMDA) receptors. Indeed, significant cross

talk exists between mu-opioid receptors and NMDA receptors. In
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SCD, CS is postulated to arise from years of repetitive vaso-

occlusive, inflammatory, or other stimulation from SCD, leading

to, a reset of the “pain thermostat” in the neuromatrix (55, 56).

Phenotypically, nociplastic pain produces quite variable

symptoms, but typically amplified and (over)maintained clinical

pain (57) including hyperalgesia—an increased sensitivity to a

painful stimulus- or allodynia -pain that is provoked by a

stimulus that is normally non-painful. Often, patients have

widespread rather than localized pain (58). Widespread, bilateral

pain is common in SCD (59). SCD patients with CS have more

acute pain, worse sleep, and more psychosocial disturbances than

others (60). Anatomically, nociplastic pain is associated with

inflammation, not only in central neurons, but also in central

glial cells (61, 62). But as stated, the triggers are unknown for

transformation of the pain phenotype from intermittent acute,

localized pain to widespread chronic pain, the “chronification”

of pain.

Framing pain using the neuromatrix justifies treating pain in

SCD using precision medicine and integrative health approaches.

Already, research guided by this framework has been aimed at

investigating the inputs, pain responses, phenotypes, and

predictors of pain response in SCD and other pain disorders

(63–70). Future research can be aimed at treatment that is more

scientific, rather than empiric and atheoretic.
1.4. Article purpose

Thus, this non-systemic topical review is intended to inform

the development of precision medicine, integrative healthcare

approaches to SCD pain. We have organized the various

therapeutic approaches around the updated neuromatrix model.
FIGURE 2

Standard and alternative sickle cell disease pain therapies, and their hypothes
affective, and pain processing—based on the neuromatrix model of pain. Mul
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Figure 2 hypothesizes the efficacy of various currently used

approaches using the neuromatrix model. The intent of this

review is to give practitioners a theoretical basis for multimodal

pain therapy to patients with SCD, as well as to suggest a

research agenda for improving SCD pain therapy. Figure 2

categorizes all interventions based on their hypothesized

neuromatrix operative targets (sensory-discriminative, cognitive-

evaluative, motivational-affective inputs, or pain processing). It

implies how clinicians might combine standard and alternative/

complementary approaches to attack multiple pain targets and

perhaps achieve greater pain reductions and/or greater opioid

sparing. The review also discusses, for each pharmacotherapeutic

approach, whether pharmacogenetics has advanced such that

clinicians may more intelligently select or more precisely use that

approach for pain in SCD.
2. Opioids

Opioid analgesics, especially mu (μ) receptor opioid agonists,

have long been the mainstay of acute palliative therapy for SCD

pain. (71). The clinical pharmacology of opioids for pain has been

extensively reviewed (72). They are active in the peripheral

nervous system, at the spinal cord dorsal horn, the brain stem,

thalamus, and cortex, modifying sensory neurons both in the

ascending pain transmission system and modifying parts of the

descending inhibitory system in the spinal cord. Mu opioids,

however, are associated with several adverse effects that often

discourage their use, including some specific to the SCD

population: rapid pharmacodynamic tolerance, the need for a

higher mu opioid dose to maintain the analgesic effect (73);

increased renal opioid clearance in SCD necessitating higher doses,
ized target (s)—sensory-discriminative, cognitive-evaluative, motivational-
tiple targets are hypothesized for many therapies.
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(74, 75). physical dependence, i.e., opioid withdrawal on removal of

opioids or administration of an antagonist; paradoxical

pronociceptive effects or opioid-induced hyperalgesia (76);

increased mortality (77); broad endocrine effects (78); GI

complications, and (79); euphoria and craving leading to opioid

use disorder (80, 81) and/or use of heroin (82). For these reasons,

enthusiasm for the use of opioids has been limited to their role in

treating acute rather than chronic pain (83–88). Further, the

evidence of the efficacy of chronic opioid therapy (COT) beyond

12 weeks has been scant (89–91). On the other hand, the harms

of opioids in SCD and specifically of COT in SCD compared to

the harms in other groups with CNCP are small (92–94).

CDC revised its 2016 published guidelines on COT (95) in

2022 (96), by explicitly excluding chronic pain management and

COT related to SCD in 2022. The American Society of

Hematology recommended against the use of COT in SCD

unless pain was refractory to multiple other treatment modalities.

However this ASH recommendation was conditional, and based

on very low certainty in the evidence about effects. Implementing

these recommendations, including the spirit of the CDC

guidelines, is fraught with difficulty. One must select individuals

with SCD who should safely be prescribed a trial of COT. One

must wean individuals off COT who have been deemed to fail

this trial. And one must predict or detect opioid use disorder

(OUD) in a population where pain may relent and recur and/or

may be acute-on-chronic.
3. Acetaminophen

Acetaminophen (APAP) is a widely used oral analgesic and is

primarily believed to exert its analgesic effect centrally via

cyclooxygenase (COX) inhibition with no significant peripheral

anti-inflammatory effects (97). Oral, suppository, and intravenous

forms are available (98). Inter-patient variability in efficacy and

hepatotoxicity are the main precision medicine issues associated

with APAP treatment (99). The variability is attributed to genetic

polymorphisms in the CYP2E1, CYP1A2, CYP3A4, UGT, SULT

and GST genes. However, to date, the interaction between these

genes has not been well delineated, limiting the role of

pharmacogenetic biomarkers in the clinical management of

APAP (100, 101).
4. Disease modifiers

Hydration (102), hydroxyurea (103, 104), prescription-grade L-

Glutamine (105), voxelotor (106), crizanlizumab (107), red cell

(simple or exchange) transfusion (108), and allogeneic bone

marrow transplantation or cord blood transplantation (109) are

the mainstays of remittive therapy or potentially curative therapy

with the possibility of improved pain in SCD. Each are

underutilized, and transplantation is still considered experimental

by many. When taken regularly, hydroxyurea reduces acute chest

syndrome, ED visits, hospitalizations, “strong” opioid use,

hospital days, health care costs (110–112), and lengthens life
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(113), but does not statistically significantly reduce daily pain in

most patients (114). Similarly, though they reduce annualized

hospitalizations, neither L-glutamine nor crizanlizumab were

approved based on improvement in daily pain. Voxelotor was

approved based on improvements in total hemoglobin.

Transfusions, when chronic, may decrease hospitalization rates

(115–117), but are not generally used to reduce pain. Even

therapy with curative intent does not uniformly eradicate chronic

(likely central) pain in individuals with SCD, but rather aborts

acute nociceptive pain (118–120).
5. Non-steroidal analgesics

Nonsteroidal anti-inflammatory drugs (NSAIDs), such as

celecoxib, ibuprofen, flurbiprofen, and ketorolac (121), are widely

used in management of SCD pain. These medications exert their

effects by inhibiting cyclooxygenase (COX) enzymes and

suppressing prostaglandin production (122). Notably, NSAIDs

function independently of the opioid-mu receptor system,

potentially reducing the amount of opioids required for pain

(123, 124). However, to date, studies of NSAIDs for SCD pain

have shown no significant reduction in the duration of VOCs or

pain scores (125–128), nor have they demonstrated opioid

sparing (129, 130). Among children, first-line therapy with IV

ketorolac and IV fluids resulted in adequate resolution of pain

(and avoidance of opioids) in 53% of VOCs (131). NSAIDs’ well-

known potential gastrointestinal, cardiovascular, and renal

adverse effects restrict their prolonged or chronic use (132).

Cyclooxygenase 2 (COX-2) inhibitors such as R-flurbiprofen

and MRS2578 are being studied in SCD (133), and lipoxygenase

(LOX) inhibitors are being studied in chronic pain (134), in

hopes of achieving analgesic efficacy without the undesired

gastrointestinal and renal adverse effects.

NSAIDs are metabolized primarily by the polymorphic CYP2C9

gene. The Clinical Pharmacogenetics Implementation Consortium

(135) published the following standardizing terms for clinical

pharmacogenetic test results: poor metabolizer, intermediate

metabolizer, normal metabolizer, rapid metabolizer, and ultrarapid

metabolizer. Using these terms, individuals with CYP2C9 poor or

intermediate metabolizer phenotypes could have increased drug

exposure, resulting in increased adverse effects from NSAIDs,

because metabolism to inactive metabolites is defective in these

patients. The CYP2C9*2 allele is associated with greater ibuprofen

and diclofenac toxicity. Poor or intermediate CPY2C9

metabolizers need to be started on lower-than-normal starting

doses of NSAIDs to avoid potential ADRs, whereas patients who

are normal CYP2C9 metabolizers may require higher doses of

NSAIDs to achieve effective pain relief (136).
6. Ketamine

Ketamine, a potent analgesic and phencyclidine analogue

primarily used as anesthetic, acts as a competitive antagonist of

the N-methyl-D-aspartate (NMDA) receptor (137, 138),
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potentially interfering with central sensitization (139, 140). It is

available in various formulations, including intravenous oral,

intramuscular, intrarectal or intranasal administrations. Notably,

ketamine exhibits opioid sparing effects by interacting with

several other binding sites, including mu-opioid receptors and

cholinergic and muscarinic receptors (137). Ketamine has also

demonstrated efficacy in treatment-resistant depression in recent

decades (141). Low doses of ketamine have been used and

reported in case studies of VOC and acute and chronic SCD pain

(142), especially when pain is refractory to opioids (143),

although the supporting evidence remains of low certainty (144).

A systematic review of the pharmacogenomics of ketamine found

that variants in the CYP450, OPRM, and BDNF genes alter the

above-defined metabolizer status of ketamine (poor, intermediate,

etc.) and therefore may someday be useful as biomarkers to

guide ketamine treatment (141).
7. Anticonvulsants: gabapentin and
pregabalin

The gabapentinoids (pregabalin and gabapentin), analogues of

the neurotransmitter, gamma-aminobutyric acid (GABA), are

considered the cornerstone of the pharmacological management

of neuropathic pain. While the precise mechanism of action is

uncertain (145), in rats, gabapentin and pregabalin are believed

to decrease central sensitization by binding to the α2δ-1 subunit

of voltage gated calcium channels in the dorsal root ganglia (146,

147). However, systematic reviews in humans report differing

conclusions concerning gabapentinoid effectiveness in preventing

chronic pain (148, 149). Adverse effects include dizziness,

somnolence, dry mouth, fatigue, ataxia, blurred vision, peripheral

edema, and weight gain. Gabapentinoids are substrates of drug

transporters OCTN1 and OCT2 encoded by the SLC22A2 and

SLC22A4 genes respectively. Polymorphisms in these genes are

known to alter the activity of both transporters (150). Dosing

should be adjusted in patients with renal disease due to the

drugs’ renal excretion.
8. Lidocaine

Lidocaine, a local anesthetic and antiarrhythmic medication, is

a well-established non-opioid analgesic for post-operative pain, and

used as a second-line agent for neuropathic pain. It is available in

systemic and transdermal formulations. It is believed to interact

with multiple molecular targets including sodium channels,

NMDA receptors and G-protein coupled receptors to exert its

therapeutic effects (151–153). The evidence of its efficacy in SCD

is sparse (154, 155). It is metabolized by CYP3A4 (156). The

clearance of lidocaine does not appear to be affected by

pharmacogenomic variability when administered perioperatively

as part of multimodal analgesia (157).
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9. Escitalopram and citalopram

The selective serotonin reuptake inhibitors (SSRIs), citalopram

and escitalopram, are not only widely used for treating major

depression and anxiety disorders in SCD, but also anecdotally for

SCD pain. The serotonin reuptake site (serotonin transporter),

placed presynaptically on serotonergic nerve terminals, is the key

regulator of synaptic serotonin levels in the central nervous

system (158). Escitalopram has demonstrated effects on

neuropathic pain. Citalopram and escitalopram are metabolized

primarily by CYP2C19 and, to a lesser extent, by CYP3A4 and

CYP2D6 (159). Amitriptyline can provide some pain relief in

certain chronic non-cancer pain conditions. However, we found

no published evidence either supporting or refuting the use of

citalopram in patients with SCD pain. A Cochrane review of

antidepressants to treat chronic non-cancer pain found

insufficient data for a meta-analysis (160). A review of adult

treatment for neuropathic pain included a meta-analysis which

was unconvincing for these drugs (161). No predictive algorithm

is currently available for dosing these drugs for pain

management (162).
10. Vitamin D

Vitamin D use among individuals with SCD who are often

Vitamin D deficient has been reported to curb pain but studies

did not measure opioid use (163, 164).
11. Other pharmacologic targets and
systems

A recent review suggests various targets and systems of pain

sensation which may generate therapeutic approaches that may

be fruitful (165). These include pain signaling pathways,

neurotransmitters, and analgesic receptors such as Ca2

+/calmodulin-dependent protein kinase II (166, 167), protein

kinase C delta (PKCδ) receptor on GABAergic neurons (168),

nociceptin opioid receptor (169), and cannabinoid receptors

(170, 171) which have shown promise in relieving pain in

preclinical animal models (172, 173). Not yet tried widely in

SCD is neuromodulation via direct anatomic or physiologic

interruption of signaling pathways known to incite pain and

discomfort (174). Another approach being investigated in sickle

mice is to target pain prior vaso-occlusive or inflammatory nerve

damage believed to lead to chronic pain (171, 175) and attempt

to alter or repair it. Examples include targeting the nerve-

regeneration associated gene, small proline-rich protein 1A

(SPRR1A) (176, 177). In the clinical arena, the term regenerative

pain medicine means harnessing the body’s own reparative

capacity to treat pain (178).
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12. Integrative medicine approaches

12.1. General use

There are few studies of non-pharmacological, complementary

pain management approaches to address SCD pain, but most

support the promise of these therapies. A recent systematic

review of non-pharmacological treatments to reduce SCD pain

during childhood found only 10 RCTs and quasi-experimental

studies, and found most had significant methodological

limitations (e.g., small samples, lack of follow-up data or control

groups) (179). This lack of rigorous investigations is in contrast

to research indicating the majority of children with SCD use

some type of complementary technique to augment their existing

treatment regimens (180) and that, when offered integrative

approaches that include complementary techniques, over 70% of

children with SCD and their families report the approaches to be

acceptable and likely effective for treating SCD pain in adolescence.
12.2. Cognitive behavioral therapy for pain

The majority of the studies and most promising evidence is for

cognitive behavioral therapy for pain (CBT-P) (179). CBT-P

focuses on training people on a suite of cognitive and behavioral

skills to alter the affective and cognitive mechanisms of pain.

Common components include psychoeducation concerning the

biopsychosocial model of pain, cognitive restructuring, relaxation,

and distraction. In the previous review, 5 of the 10 identified

studies were focused on CBT-P, with overall findings indicating

reductions in pain frequency and intensity. Findings also found

no evidence that CBT-P reduced health care use due to pain, and

most studies were small in size. Notably, there is an ongoing

clinical trial examining the efficacy of CBT-P (181).
12.3. Mind-body interventions

Of the other promising treatments in the above review,

biofeedback, virtual reality, and yoga each had only 1 study finding

reductions in pain. Biofeedback was related to reduced analgesic

use in SCD. Mindfulness meditation is being studied currently (182).
12.4. Acupuncture

A review of the use of acupuncture for pain management in

pediatric SCD patients (183) found 5 studies with sample sizes

ranging from one to 31. Overall, studies indicated that the

treatment was feasible, acceptable, and an effective adjunctive

pain treatment. These findings are consistent with findings from

adult SCD studies indicating acupuncture reduces pain intensity

and pain interference, including during acute SCD pain crises

(184–187). However, these studies had small sample sizes,

ranging from 6 to 47 patients. The primary methods were case

reports and retrospective chart reviews, and there are no
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published RCTs. One ongoing study is testing guided relaxation

and acupuncture for SCD pain in adults (188).
12.5. Physical therapy

A pilot RCT of 10 adults with SCD indicated conventional

physical therapy and aquatic physical therapy were acceptable

and lead to reduced SCD pain (189), and a 2-arm non-

randomized clinical trial indicated a home-based therapeutic

exercise program led to reductions in SCD pain (190).
12.6. Music therapy, non-invasive brain
stimulation, sleep-based approaches

A mixed-method RCT of 24 adults with SCD found that music

therapy led to reductions in pain intensity and pain interference

(191). We found no published clinical trials of non-invasive brain

stimulation or sleep-based interventions, such as CBT for insomnia.
13. Summary

Most of the components available for the assembly of a pain

treatment plan for individuals with SCD, even when guideline-

recommended, have little evidence for their recommendation. In

this way, SCD is similar to other diseases which comprise

chronic non-cancer pain. However, precision medicine and

integrative health offer hope and a research agenda for a

thoughtful multimodal, individualized approach to diagnosis and

treatment of acute and chronic pain in SCD. They suggest the

use of emerging tools, such as survey instruments, sleep

evaluation, pharmacogenomic testing, and functional magnetic

resonance imaging, in developing robust individual pain profiles/

subphenotypes. They suggest the incorporation of multimodal

pharmacologic and non-pharmacologic components into an

individualized treatment plan, based on the diagnosed

subphenotype of a given patient. And they each demand

clinicians identify and avoid drugs or other therapies with an

increased risk of causing adverse effects, drugs with a narrow

therapeutic index, or drugs or other therapies predicted not to be

efficacious (192) for individuals living with SCD.
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