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Orofacial pain remains a significant health issue in the United States.
Pain originating from the orofacial region can be composed of a complex array
of unique target tissue that contributes to the varying success of pain
management. Long-term use of analgesic drugs includes adverse effects such
as physical dependence, gastrointestinal bleeding, and incomplete efficacy. The
use of mesenchymal stem cells for their pain relieving properties has garnered
increased attention. In addition to the preclinical and clinical results showing
stem cell analgesia in non-orofacial pain, studies have also shown promising
results for orofacial pain treatment. Here we discuss the outcomes of
mesenchymal stem cell treatment for pain and compare the properties of stem
cells from different tissues of origin. We also discuss the mechanism underlying
these analgesic/anti-nociceptive properties, including the role of immune cells
and the endogenous opioid system. Lastly, advancements in the methods and
procedures to treat patients experiencing orofacial pain with mesenchymal stem
cells are also discussed.
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Introduction

The orofacial region commonly experiences persistent myogenic and neurogenic pain,

which poses a significant health concern. Acute orofacial pain is often a response to

identifiable triggers, such as tissue damage, pathological conditions, and diseases affecting

the mouth, face, and jaw region. On the other hand, chronic orofacial pain defined as

pain occurring for more than 15 days per month and lasting for more than 4 h daily for

at least the last 3 months (1), can endure even in the absence of tissue damage and may

persist after the resolution of a pathological condition. This key distinction highlights that

chronic pain mechanisms are more complex, involving altered neural processing and

sensitization, leading to a prolonged and persistent pain experience. Managing chronic

orofacial pain may require a comprehensive and multidisciplinary approach to address the

underlying mechanisms contributing to its persistence. Chronic orofacial pain is prevalent

in the United States and impacts approximately 20% of the population (2). Moreover,

treating chronic orofacial pain patients costs over $32 billion each year and has

contributed to the opioid epidemic for decades. Despite this, the discovery of most novel

non-opioid treatment options for the management of orofacial pain has been poor. TMJD

(temporomandibular joint disorders) is the most common orofacial pain condition,

affecting musculoskeletal and joint tissues, reducing quality of life. Unfortunately, effective
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treatment options for this condition are lacking, especially in light

of the current opioid epidemic, which necessitates alternative pain

management strategies. In recent years, cell-based pain

management has shown promising results. Mesenchymal stem

cells (MSCs) have received attention due to their ability to

differentiate into osteoblasts and chondrocytes (3, 4), and they

have been used to repair damaged joint tissues while providing

pain relief. In an earlier veterinary clinical study, injection of

adipose MSCs attenuated pain in dogs suffering from hip

osteoarthritis (OA) (5). Many subsequent studies have shown the

beneficial effect of MSCs in arthritic joint pain (6, 7).

MSCs are a population of stromal cells capable of self-renewal

and differentiation into different cell types, including osteoblasts,

chondrocytes, and adipocytes. They are critical for the

regeneration of new tissue in order to maintain homeostasis and

functional health in humans. They are found in the tissues of all

species throughout the plant and animal kingdoms. MSCs have

been isolated from various tissues, including bone marrow,

adipose tissue, umbilical cord, and dental tissue (Figure 1). At

first, interest in using mesenchymal stem cells was due to their

potential use in wound healing and regeneration. However, over

the past decade, advancements have also shown that MSCs

produce robust pain relief in a variety of conditions ranging from

neuropathic pain in mice to osteoarthritis and migraines in

patients. The immunosuppressive and immunomodulatory

properties of stem cells have been shown to contribute to this

pain relief (8, 9). Additionally, the secretome of stem cells are

also sufficient to produce these effects, suggesting that paracrine

release of cytokines and other factors are necessary. Interestingly,

most, if not all, mesenchymal stem cells have been shown to
FIGURE 1

Common tissue sources of stem cells.
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have these pain-reliving properties, yet impactful differences and

advantages/disadvantages can still be observed. In this review, we

will cover three main topics related to MSCs and their potential

for pain management:

(1) A comprehensive analysis of different sources of MSCs and

their preclinical outcomes in pain management.

(2) Mechanisms underlying MSC-mediated anti-nociception.

(3) An examination of protocols and procedures for the use of

MSCs in clinical applications of orofacial pain.

Mesenchymal stem cell types:
outcomes of preclinical outcomes

Bone marrow stem cells (BMSCs)

BMSCs are a population of stromal cells isolated from the bone

marrow space. These cells are capable of differentiating into

muscle, bone, and epithelial linages (3, 10). BMSC are the most

widely studied source of stem cells for the treatment of pain in

animal and clinical research, mainly due to the accessibility of

these cells and their abundance. Reversal of a variety of pain

models by BMSC administration has been demonstrated in both

the dorsal root and trigeminal ganglia. Intraganglionic and

systemic administration of rat BMSCs reverses mechanical and

thermal hypersensitivity induced by chronic constriction injury

(CCI) of the sciatic nerve (11, 12). Similar effects are also

observed is rats with diabetic neuropathy (13), spared nerve

injury (14), and osteoarthritis (15). For the orofacial region,

BMSCs reverse mechanical and thermal nociception induced by
frontiersin.org
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tendon ligation of the master muscle and CCI of the infraorbital

nerve in rats (8, 16, 17). According to Guo and colleagues’ study

in 2011, rats showed reduced mechanical hypersensitivity after

receiving intravenous administration of BMSCs diluted in PBS at

7 days after ligation injury of the masseter muscle tendon (TL).

BMSCs were derived from adult Sprague-Dawley rats grown in

the same plate without further passage and the cells were

harvested at 7 days after initial plating. Notably, one dose of

BMSCs at 1.5 M cells produced pain relief that lasted for

months. Similar long-lasting antihyperalgesic effects of BMSCs

existed in animals with chronic constriction injury of the

infraorbital nerve (CCI-ION), a model of orofacial neuropathic

pain (16). It is worth noting that the administration of BMSCs

did not have an impact on the rat’s performance on the rotarod

test, indicating that the observed antihyperalgesic effect, as

evaluated by reflex measurement, was not due to locomotor

impairment. In addition to reflex measures of mechanical

nociception, the pain-related aversive behavior assessed by a

conditioned place avoidance test (18) was reduced after the

treatment with BMSCs (17, 19). The reduced voluntary biting

behavior, a measure of functional orofacial nociception, was also

seen to be improved in mice with the injury of the masseter

muscle tendon after infusion of BMSCs (19). The face grooming

behavior after CCI-ION improved by injection of BMSCs into

the trigeminal ganglion (20). In ex vivo trigeminal medullary

slices dissected from CCI-ION mice, the BMSC treatment

significantly reduced the amplitude and frequency of

spontaneous excitatory postsynaptic currents (sEPSCs) in lamina

II neurons when compared to that from culture medium-treated

mice (17). The GluN (N-methyl-D-aspartate) receptor-mediated

evoked EPSCs (Excitatory PostSynaptic Currents) were increased

in CCI-ION mice but inhibited by the BMSC treatment (17).

These observations provide convergent evidence of BMSC-

produced behavioral pain relief associated with orofacial injury

and indicate suppression of trigeminal neuronal hyperexcitability

and primary nociceptive afferent input at the trigeminal nucleus

by BMSCs. It is noted that MSCs can be primed or modified to

improve their therapeutic effect. IL-1β-pretreated MSCs have

shown improved antihyperalgesia (21, 22). TLR3-primed MScs

are immunosuppressive, in contrast to TLR4-primed MSCs that

are pro-inflammatory (23). BMSCs with inserted human

preproenkephalin gene produced a strong analgesic effect in a rat

neuropathic pain model (24).

Due to the extensive literature associated with BMSCs and

pain, several cell-based features emerge for the use of BMSCs

and may have clinical strong implications: (1.) The pain-relieving

effect of MSCs in humans is directly related to the number of

cells that are transfused, with a larger number of cells producing

greater pain relief (6). In the masseter muscle TL rat model, it

was found that injecting 1.5 million BMSCs produced anti-

hyperalgesia, while the injection of 1.5 thousand cells was

ineffective (16). Moreover, in rats, it was observed that direct

injection of BMSCs into the injured site required about 0.4

million cells for anti-hyperalgesia (16). (2.) It has been noted that

the antihyperalgesic property of BMSCs is lost after high

passages in culture. Primary BMSCs, but not BMSCs after 20
Frontiers in Pain Research 03
passages, attenuated hyperalgesia in the masseter muscle TL rats

(16). Prolonged culturing of BMSCs can result in a loss of their

ability to differentiate into multiple lineages and effectively home

(25, 26). Furthermore, studies have demonstrated that repeated

passaging of MSCs in culture, particularly beyond 15 passages,

can induce significant phenotypic changes (27). Specifically, a

culture with two-passage human BMSCs expresses a distinct set

of chemokine receptors that are not found in 12–16 passage cells

(28). Thus, altered genotype during repeated culturing may

render high passage BMSCs ineffective against pain

hypersensitivity. Nevertheless, high-passage BMSCs can be used

as an appropriate control in studying the cellular and molecular

mechanisms of the therapeutic effect of BMSCs. Collectively, the

number, as well as the stage of BMSCs, are crucial for their use

as potential anti-hyperalgesic cell types.

Studies utilizing human-derived cells in preclinical and clinical

studies have also demonstrated anti-nociceptive properties (17, 29,

30). Specifically, spinal nerve ligation-induced mechanical and

thermal nociceptive behavior is reversed with human BMSCs

(17). Furthermore, BMSC-induced analgesia has been

demonstrated in patients with osteoarthritis (29, 30).

Interestingly, it seems that BMSCs may be better suited for

treatment of conditions involving bones and joints. One study

comparing the properties of BMSC to other stem cells found that

they have a higher differentiation rate into osteogenic linage (31).

Furthermore, BMSCs have a higher capacity for mineralization

in vitro when compared to adipose-derived and dental pulp stem

cells (DPSCs) (32). The aforementioned indicates that stem cells

sourced from diverse tissues and developmental origins may

possess distinctive characteristics that are appropriate for certain

disease conditions, a subject that will be elaborated on in the

subsequent sections. Nonetheless, despite the encouraging signals

regarding the application of BMSCs, they are not without

limitations. Specifically, the proliferative capacity of BMSCs is

less than satisfactory when compared to adipose-derived and

umbilical cord stem cells (UCSCs), with BMSCs exhibiting the

lowest proliferative capacity (33). Additionally, the isolation of

BMSCs from humans involves an invasive procedure that can

lead to adverse effects and complications. Patients report pain at

the site of donation, severe vomiting and headaches, and

experience restricted mobility of the limb for up to 28 days after

BMSC isolation (34). Nevertheless, additional information

regarding the complications arising from BMSC isolation is

required since the existing studies have certain limitations in

terms of sample size and conclusions drawn (34).

Notwithstanding the need for more comprehensive research, it is

worth noting that the application of BMSCs has provided

compelling evidence for stem cell-based analgesia.
Adipose-derived stem cells (ADSCs)

Research involving ADSCs has been on a steady rise. Issues with

the isolation of BMSC from patients discussed above, along with low

stem cell count during collection (3), have led some to find an

alternative. ADSCs are found in white adipose tissue deposits
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located around the thighs and abdomen of patients and can be

harvested from liposuction procedures that bring minimal risks.

This adipose tissue that would otherwise be discarded has been

shown to yield higher amounts of stem cells (35) and faster

proliferation rates (33, 36) when compared to bone marrow.

Additionally, ADSCs have been shown to differentiate into an

adipocyte lineage at higher rates than BMSCs (32), suggesting that

these cells may be better suited for wound healing. Additionally,

properties similar to BMSCs have also been demonstrated in the

treatment of pain in animal and human studies (9, 37–41). While

research on ADSCs for orofacial pain is not as common as for

BMSCs, a clinical study presents promising results in patients with

migraines (38). Moreover, studies on tissue innervated by dorsal

root ganglia (DRG) neruons reveal comparable anti-nociceptive

characteristics. A single subcutaneous hindpaw injection of ADSCs

was shown to restore nociceptive behaviors back to baseline in a

burn injury model of pain (37). Anti-nociception was first detected

three weeks after injection and lasted for the remainder of the

testing period, two weeks (37). This injection decreased COX-2

levels in both the site of injury (hindpaw) and the spinal cord

(37). ADSCs and their secretome can also reduce nociception in

mice with diabetic neuropathy (9). Systemic injection of ADSC

reverses mechanical hypersensitivity as soon as three hours post-

injection, with a maximal effect two weeks after injection.

Importantly, this reduction was long-lasting as mechanical

thresholds were increased for up to 12 weeks post-injection (9). A

decrease in inflammatory cytokines IL-6 and TNFα was observed

in the siatic nerve, DRG, and spinal cord 2 weeks following

systemic injection of ADSCs and it’s secretome (9). Furthermore,

the anti-inflammatory cytokine IL-10 was increased, while levels of

pro-inflammatory IL-1β were decreased in the spinal cord up to

six weeks after ADSC injection and 4 weeks after ADSC were still

found in tissue (9). This long lasting effect ADSC could be

mediated by priming of the immune system to restore pro- and

anti-inflammatory immune cell and cytokine balance, a topic

discussed later in this review. Additionally, systemic, intraplantar,

and intra-articular injection of ADSCs-derived conditioned media

inhibits thermal and mechanical hypersensitivity in a rodent

model of the OA (40). It is important to note that variability in

the onset of anti-nociception after ADSC injections can vary

between studies and may depend of factors such as source and

isolation of the stem cell population, concertation used, and route

of administration. Clinical studies utilizing ADSCs have also

shown success. Intra-articular injection of ADSCs led to pain

improvement lasting up to 6 months in patients diagnosed with

OA (41). Studies investigating the use of these stem cells for the

treatment of migraines and lower back pain have also displayed

promising results (38, 39). Collectively, these data provide support

for the use of ADSCs as an anti-nociceptive cell population and

an alternative to BMSCs.
Umbilical cord stem cells (USCSs)

The use of UCSCs as an alternative source of stem cells has

been rapidly gaining popularity. These cells can be safely
Frontiers in Pain Research 04
obtained through venous puncture of the umbilical cord, with

minimal risk to both the patients and the cord tissue following

birth (42). In the case of the latter, umbilical cord tissue would

otherwise be discarded, leaving many eager to collect this tissue

for stem cell isolation. With more than 3.6 million births

reported in the United States in 2021 (43), UCSCs are seen as a

potentially abundant source for research. The advantages of

using UCSCs include faster proliferation rates than ADSCs and

BMSCs (33). This is mainly attributed to these cells being more

primitive than stem cells taken from adults. However, there are

drawbacks to the isolation of UCSCs. Specifically, isolation from

cord blood has been shown to yield low UCSC count due to the

limited number of blood available to collect (44). Studies have

shown that UCSCs are only isolated from 29%–63% of cord

blood collected from patients (33, 45, 46). As MSC can typically

be isolated from 100% of bone marrow and adipose tissue

samples taken from donors (33, 46). Additionally, there is also

variability between UCSCs isolated from donors. One study

found donor dependent variability in UCSCs angiogenic ability

(47), while another found variability in proliferation rates and

immunomodulation from cells isolated from 32 patients (48).

Overall, both the low cell yields and donor variability from

umbilical cords poses an obstacle for wide adoption of UCSC

(33, 46, 49). Research into the analgesic properties of UCSCs in

orofacial pain models is also sparse, but their effect on

neuropathic pain induced by spinal cord injury has been well

characterized. Rats having undergone spinal nerve ligation show

increased mechanical and thermal thresholds after intrathecal

injection with UCSCs (50, 51). Similar results were also observed

after intrathecal injection of UCSCs in mice with spinal cord

injury (SCI). In this study, UCSCs exhibited higher survival rates

in the spinal cord compared to BMSCs. Additionally, neurons

harvested from UCSC-treated mice displayed decreased

stimulation responses and windup when compared to mice

treated with BMSCs (52). Furthermore, another study comparing

the effects of ADSCs and UCSCs showed that both are able to

reverse mechanical nociception in rats with sciatic nerve ligation.

However, rats treated with UCSCs showed almost full reversal of

demyelination in sciatic nerve fibers, when compared to vehicle

and ADSCs treated mice (53), highlighting a possibility that stem

cells from different tissues may all induce analgesia but through

unique mechanisms.
Dental stem cells (DSCs)

DSCs are harvested from a variety of tissues in the oral region.

The predominant DSCs include dental pulp stem cells,

periodontal ligament stem cells, stem cells of the apical papilla,

and stem cells from human exfoliated deciduous teeth. Similar

to ADSCs and UCSCs, dental stem cells are seen as an

attractive alternative as these cells are harvested from tissues

that would otherwise be discarded. Additionally, dental stem

cells have been shown to have faster proliferative rates when

compared to BMSC (31). DSCs have mainly been studied for

their potential role in tooth regeneration. For example, dental
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pulp stem cells (DPSCs) and stem cells from human exfoliated

teeth (SHED) have been extensively looked at for their potential

role in dentin reformation and dental pulp regeneration (54,

55). One distinctive feature of dental stem cells is their origin

from the neural crest, in contrast to BMSCs and ADSCs, which

originate from the mesoderm. This neural crest origin

categorizes dental stem cells as ectomesenchyme, derived from

neural crest tissue that develops into the head and neck. Due to

their neural crest origin, dental stem cells may possess superior

neuro-protective and neuro-regenerative properties compared to

the aforementioned stem cells (56). DPSCs have been shown to

secret neurotrophic factors and promote survival and growth of

trigeminal ganglionic neurons in vitro and rescue motor

neurons in vivo (57, 58). DPSCs also express higher levels of

neural stem cell markers and secrete higher amounts of wound

healing cytokines, such as transforming growth factor-beta,

vascular endothelial growth factor, and nerve growth factor,

than BMSCs (58, 59). Additionally, transplantation of stem cells

of the apical papilla (SCAP) improved motor function to

baseline levels in rats with spinal cord injury (60). Furthermore,

in a model of spinal cord injury, rats transplanted with DPSCs

or SHEDs, but not BMSCs, regained motor function within 5

weeks after transplantation (61). A significant effect was also

observed in vitro as conditioned media from DPSCs and

SHEDs induced marked neurite extension compared to that

from BMSCs (61). The ability of DSCs to promote neurite

growth through the paracrine release of neurotropic factors

such as brain-derived and glial cell line-derived neurotrophic

factors plays a crucial role in mediating the observed superior

neuro-protective and neuro-regenerative properties (62, 63).

Despite the abundance of research demonstrating the

neuroprotective effects of DSCs, their properties for pain relief

remain limited. One study has demonstrated that a single

injection of DPSCs can reverse hypersensitivity in a mouse

model of diabetic neuropathy (64). Additionally, conditioned

media from SHEDs was able to partially reverse mechanical

nociception in mice having undergone sciatic nerve ligation

(65). Furthermore, neuropathic pain in the orofacial region of

rats was seen to reduce by SHEDs (66, 67) and that intra-

articular injection of DPSCs reduced cartilage matrix

degradation, improved bone regeneration, and attenuated

hyperalgesia in complete Freund’s adjuvant (CFA)/monosodium

iodoacetate-induced TMJ arthritis in rats (68). Further

investigation is still required to comprehensively determine the

pain-relieving characteristics of DSCs and how they compare to

stem cells obtained from other sources. Moreover, mechanisms

that mediate such effects including the possible opposing effects

of neurotrophins such as NGF, BDNF and GDNF, that are

known pro-nociceptive mediators (69, 70), particularly in the

context of neuropathic pain are warranted.
MSC secretome

Although MSCs have long been studied for cell based

applications, a growing body of evidence suggests that these
Frontiers in Pain Research 05
effects are largely due to paracrine action, rather than MSC

differentiation (71, 72). The paracrine release of all the factors

from MSC into the extracellular space including proteins,

nucleic acids, lipids, and extracellular vesicles is defined as the

MSC secretome (73). The use of the secretome is seen as a

promising alternative for treatment in patients. Currently, there

is concern over the use of MSC therapeutics due to the

potential adverse effects, such as administration site reactions,

unwanted cell homing and differentiation, and potential tumor

formation (74). The use of the secretome through conditioned

media or extracellular vesicles eases some of these concerns.

Additionally, the use of the secretome allows the evaluation of

potential doses and potency similar to conventional drug

development. Importantly, the secretome produces similar anti-

nociceptive effects in pre-clinical studies when compared to

using cells. Systemic injection of conditioned media sourced

from ADSC reverses nociception in a model of diabetic

neuropathy similar to the use of cells (9). Additionally, the

conditioned media produced similar immunomodulatory effects

as the ADSC, suggesting that their effects may be attributed to

their secretome. Another study demonstrates that ADSC-

derived conditioned media can decrease the expression of

proinflammatory cytokines and inhibit thermal and mechanical

hypersensitivity in a model of OA (40). Furthermore, a single

injection of both BMSC- and SHED-derived conditioned media

inhibit mechanical nociception in mice having undergone

sciatic nerve ligation (65, 75). Local injection of ADSC-derived

conditioned media into the knee joint or muscle of patients

with musculoskeletal pain significantly improved patient pain

scores 1 to 4 weeks after injection with no reported adverse

effects (76). Manipulation of MSC through a variety of methods

is also seen as a way to increase the effectiveness of MSC

secretome treatments (73, 77). Pretreatment or manipulation of

MSC with pro-inflammatory factors, hypoxic conditions, and

serum-free media has shown promising results. Incubation of

BMSC with TNFα and IL-1β increased the release of anti-

inflammatory factors into conditioned media when compared to

untreated cells (78). TNFα pre-treatment has also been shown

to increase the angiogenic activity of ADSC in vitro and in vivo

through the release of IL-6 and IL-8 (79). Additionally, the use

of conditioned media from ADSC in hypoxic conditions

increased the expression of anti-inflammatory mediators and

promoted liver regeneration in mice (80). Only a handful of

studies have investigated the use of manipulated MSC for pain.

Conditioned media collected from serum starved ADSC is

effective in inhibiting nociception induced by models of

diabetic neuropathy and OA (9, 40). Despite this promising

data, more research is needed to fully understand the effects

manipulation of MSC may have on pain conditions.

Additionally, there are drawbacks to the use of the MSC

secretome. The standardization of secretome collection

protocols (cell concentration used, volume, incubation time, cell

passage #) is needed to ensure reproducibility across groups,

and through analysis of factors released by MSC into collected

conditioned media or isolated extracellular vesicles needs to be

conducted (81).
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Mechanistic insights into
mesenchymal stem cell-induced
analgesia

The engagement of the endogenous
opioids

An aforementioned study by Guo et al. demonstrating BMSC-

induced decrease in orofacial nociception was reversed by opioid

receptor antagonists (8, 16). When naloxone was administered in

rats receiving BMSC treatment after a TL of the masseter muscle,

the BMSC-produced antihyperalgesia was partially reversed.

Naloxone is an inverse agonist that may block the constitutive

activity of opioid receptors and lead to increased pain (82).

However, the reversal of antihyperalgesia by naloxone is unlikely

due to its inverse agonist activity since a neutral opioid receptor

antagonist 6-β-naltrexol also induced pain in BMSC-treated rats

(8). Naloxone also induced the hyperexcitability of trigeminal

neurons recorded from an ex vivo trigeminal slice mouse

preparation (17). The effect of naloxone on neuronal activity is

consistent with behavioral measures, suggesting the involvement

of endogenous opioids in BMSC’s antihyperalgesia.

The endogenous opioid system exists at multiple levels of the

pain modulatory pathways including the cortex, hypothalamus,

and brainstem. The rostral ventromedial medulla (RVM) mediates

descending input from midbrain pariaqueductal gray and has been

established as a key structure in descending pain modulation

under both normal and under conditions of injury he endogenous

opioid system exists at multiple levels of the pain modulatory

pathways including the cortex, hypothalamus, and brainstem. The

rostral ventromedial medulla (RVM) mediates descending input

from midbrain pariaqueductal gray and has been established as a

key structure in descending pain modulation under both normal

and under conditions of injury (83, 84). Guo et al. (8)

demonstrated that the expression of μ (MOR), but not δ (DOR)

and κ opioid receptors (KOR) were upregulated in the RVM after

BMSC treatment in masseter muscle TL and CCI-ION rats. The

treatment with 20-passage BMSCs did not upregulate MORs,

consistent with their ineffectiveness against behavioral

hyperalgesia. Most recently, Fernandes et al. (85) demonstrated

that the secretome, or conditioned medium of cultured human

BMSCs induced a 4-fold increase in MOR in cerebral organoids (a

resemblance of the 3D-brain structure generated from human

pluripotent stem cells), while the expression of DOR and KOR

was not affected. Consistently, specific downregulation of MOR in

the RVM by RNA interference led to the reoccurrence of

hyperalgesia in BMSC-treated rats (16). The descending pain

modulatory pathway can be activated by various modalities,

including brain stimulation, stress, vagal afferent input, and

acupuncture (86). Electroacupuncture also activates RVM MOR,

but not KOR, in producing anti-hyperalgesia (87). Collectively, it

is conceivable that MSCs may also potentially be an alternative

class of cells that are potent activators of endogenous pain

inhibition via the upregulation of MOR in the RVM.

Repeated activation of endogenous opioids can lead to the

development of opioid tolerance (88). However, BMSC-induced
Frontiers in Pain Research 06
long-term antihyperalgesia does not seem to result in tolerance,

and instead involves the inhibition of the expression of the N-

methyl-D-aspartate (NMDA) receptor 2A subunit GluN 2A

receptor, which helps protect against glutamate excitotoxicity

(89). This is important, as the GluN receptor is known to play a

role in the development of opiate tolerance (90). Additionally,

the GluN2A subunit of the GluN receptor in RVM is important

for descending pain facilitation (91), and its tyrosine

phosphorylation in the RVM was found to be suppressed at 8

weeks after BMSC treatment (17). Protein kinase C (PKC)γ

activity related to GluN receptor activation is critical in opioid

tolerance (92), and PKCγ immunoreactivity in the RVM was also

decreased at 8 weeks after BMSC treatment (17). In summary,

the long-term antihyperalgesic effects of BMSCs involve an effect

on GluN receptors, which allows for a desirable analgesic profile,

specifically promoting opioid analgesia while suppressing the

development of opioid tolerance.

Overall, the release of endogenous opioids appears to be one

mechanism mediating the antinociceptive effects of MSCs,

leading to antihyperalgesia. This effect is particularly effective

due to the multiple sites of action of the endogenous opioid

system, while avoiding the negative side effects of opioid tolerance.
Role of immune cells

Mechanisms other than a direct effect or engraftment of

BMSCs underlie their long-lasting pain-relieving effect. This is

concluded due to several lines of evidence: (1) Most

intravenously infused MSCs are trapped in the lungs e.g., traced

with BMSCs from GFP transgenic rats (7), or Qtracker-labeled

cells (93). Even a direct infusion of BMSCs into the external

carotid artery that can bypass the first-pass effect of the lung

only leads to transient recruitment of the cells to the brain for

about 24 h (94); (2) Studies utilizing BMSCs from GFP

transgenic rats have demonstrated that GFP-labeled BMSCs were

clustered in the lungs within one day after systemic infusion, and

very few GFP-positive cells remained there at 7 days after

infusion (8); (3) The cells trapped in the lungs disappeared with

a half-life of ≈24 h, and many of them would undergo apoptosis

(95); (4) At four days, only about 0.01% of the systemically

infused cells were recruited to the spleen, liver, kidney, heart,

pancreas, and brain in the mouse (95); (5) In rats, a very small

number of cells (0.0005%) could reach the injured brain site (96,

97); (6) After a para-ganglionic injection of BMSCs, no labeled

BMSCs were localized in the trigeminal ganglion at 24 days post-

treatment (67), and (7) MSCs appear to survive better after

intrathecal administration. About 50% of intrathecally

administered MSCs were distributed to the dorsal root ganglion

and survived there for 1–2 weeks (98).

Current literature supports a hypothesis that the pain-relieving

effect of transplanted MSCs is a result of their interactions with

host immune cells. After systemic administration, MSCs are

exposed to circulating immune cells (99). Even cells embolized in

the lungs can interact with host immune cells and secrete anti-

inflammatory mediators (95, 100). It is well established that the
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interactions between the immune system and pain pathways

contribute significantly to the development of chronic pain (101).

Thus, it was speculated that infused MSCs may first engage in a

talk with host immune cells, leading to the release of immune

mediators and activation of the anti-inflammatory signaling

cascades leading to activation of the endogenous analgesic system

for the observed antihyperalgesic effects of MSCs (discussed

above).

Numerous studies have investigated the role of monocytes/

macrophages in BMSC-induced antihyperalgesia. It has been

demonstrated that the monocyte/macrophage population

mediates the anti-inflammatory effect produced by BMSCs (100).

Brack et al. (102) reported that partial depletion of monocytes/

macrophages reduced peripheral opioid-induced analgesia.

Additionally, macrophages have been shown to produce an anti-

inflammatory and pro-resolving mediator, maresin 1, which

relieves neuropathic pain in mice (103). Macrophages were also

seen to be recruited to the cerebrospinal fluid by IL-10

encapsulating plasmid DNA-containing microparticles, which

correlated with the relief of experimental neuropathic pain for

more than 74 days (104). Furthermore, there is direct evidence

for the involvement of monocytes/macrophages in BMSC-

produced orofacial hyperalgesia (8). They observed that pre- and

post-treatment with liposome-encapsulated clodronate led to

partial depletion of macrophages in the spleen and circulation, as

well as attenuation of BMSC-produced antihyperalgesia in the

masseter muscle TL rat model. Additionally, upregulated MOR

mRNAs in the RVM were reduced after monocyte/macrophage

depletion and that hyperalgesia was also reduced after

intra-RVM injection of peripheral blood mononuclear cells

(PBMCs) isolated from TL rats receiving BMSC treatment.

These studies collectively provide strong support for the

involvement of the monocyte/macrophage population in the

BMSC’s antihyperalgesic effect.

The involvement of BMSCs in modulating macrophages is

observed to have a particular impact in promoting the anti-

inflammatory M2 macrophage phenotype (105–107). The

reduction in BMSC-induced neuropathic pain is associated with

an increased expression of CD206, a marker of M2 macrophage

in the spinal cord in mice (14). Additionally, an increase in

transcription of M2 markers, namely, CD206, CD163, and Irf4 in

PBMSCs derived from BMSC-treated TL rats has also been

observed (8). The Irf4 transcription factor has been shown to

control M2 macrophage polarization (108). Resident microglia

may also be modulated to express M2 phenotype after BMSC

treatment (109). In the rat model of persistent pain induced by

TL of the masseter muscle, transplantation of BMSCs

upregulated CD206 associated with microglia in the RVM (110).

These observations point to the role of alternatively activated

macrophages and brain microglia in the pain-relieving effect of

MSCs. The regulatory T cells (Tregs) are derived from CD4+ T

cells and are key to immune homeostasis. The

CD4+CD25+Foxp3+ Tregs have been shown to induce alternative

activation of monocytes/macrophages (111). Deletion of Tregs

led to increased pain after nerve injury (112). Compared to naïve

mice, the frequency of CD4+CD25+Foxp3+Tregs among the
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CD4+ population was decreased in mice with CCI-ION.

However, their frequency was significantly increased to above

baseline levels 8 weeks after BMCS treatment in the nerve-

injured mice (113). These findings support a scenario in that

BMSC-secreted mediators induce Tregs, followed by subsequent

activation of the anti-inflammatory M2 phenotype, leading to the

observed long-lasting pain relief (Figure 2).
Role of immune mediators

The anti-hyperalgesic effects of MSCs have been associated

with the regulation of inflammatory mediators, which contributes

to their anti-nociceptive phenotype. Numerous lines of evidence

support this assertion:

MSCs have been shown to promote an anti-inflammatory

response by downregulating pro-inflammatory IL-1β and

upregulating anti-inflammatory IL-10 (14, 114). Additionally,

the inhibitor of cytokine transcription pathways, suppressor of

cytokine signaling 3 protein (SOCS3), was found to be

increased in the RVM after treatment with BMSCs, consistent

with the inhibition of IL-1β (110). In experimental TMJ

arthritis, local intra-TMJ injection of DPSCs improved

hyperalgesia and reduced inflammatory TNF and IFN-γ

expression through inhibition of the signal transducer and

activator of transcription 1 (STAT1) signaling (68). The pain-

relieving effect of BMSCs was found to be reduced when the

expression of anti-inflammatory TSG-6 (TNF-stimulated gene 6

protein) was inhibited (115). Moreover, MSCs from

adipose tissues of osteoarthritis patients have been shown to

have a proinflammatory cytokine profile involving

STAT3. However, blocking STAT3 expression resulted in lower

levels of proinflammatory cytokines and higher levels of

anti-inflammatory cytokines, making them more therapeutically

effective (116).

Differential cytokine/chemokine profiles have been observed in

primary and 20-passage BMSCs (8). While Ccl4, a monocyte

chemoattractant, was highly expressed in primary BMSCs, it was

absent in 20-passage BMSCs. Knockdown of Ccl4 from BMSCs

led to a significant reduction in their antihyperalgesic effect (8),

suggestive of its key role in this process. Additionally, CCR2,

which promotes monocyte chemotaxis, was highly expressed in

primary BMSCs (8). Pretreatment of BMSCs with a CCR2

antagonist reduced their antihyperalgesia and resulted in reduced

MOR expression in the RVM (8). TGF-β, an anti-inflammatory

cytokine, was also shown to be crucial for the pain-attenuating

effect of BMSCs and was expressed at higher levels in primary

BMSCs (8). These findings suggest that MSCs produce their

antihyperalgesic effect by secreting immune mediators and

interacting with host immune cells.

MSCs may pass immunoregulatory signals to circulating

immune cells such as monocytes to produce and maintain their

therapeutic effect. CXCL1 (CINC1) chemokine belongs to the

CXC chemokine family and signals through its receptor CXCR2.

Interestingly, the Cxcl1 gene showed significantly higher levels of

expression in PBMCs after treatment with primary BMSCs
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FIGURE 2

Proposed immune interactions of MSCs with host immune cells that lead to anti-inflammatory phenotype, the release of endogenous opioids, and pain
relief.
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compared to those treated with 20-passage BMSCs (8). An increase

in CXCL1 proteins in serum and cerebrospinal fluid was identified

after the BMSC treatment. Selective Cxcl1 gene upregulation in

PBMCs and the appearance of CXCL1 in the serum and

cerebrospinal fluid suggest that CXCL1 may be released after

interactions between BMSCs and PBMCs and reach the brain to

relay the effect of BMSCs. This hypothesis is supported by the

finding that injection of serum from BMSC-treated animals into

the RVM upregulated MOR mRNAs and produced

antihyperalgesia that was partially blocked by the treatment with

anti-CXCL1 antibodies (8). CXCL1 is involved in the regulation

and release of opioids from immune cells via its receptor CXCR2

(117). CXCR2 is localized in the CNS (118, 119). CXCR2

immunostaining was found to colocalize with MOR in RVM

neurons (8). The enhanced CXCL1-CXCR2 signaling in the brain

after BMSC infusion contributed to BMSC-produced descending

pain inhibition. After transplantation of BMSCs in the masseter

muscle TL rodent model, CXCR2 was upregulated in the RVM,

and BMSC-produced antihyperalgesia was attenuated by intra-

RVM injection of the CXCR2 antagonists SB225002 and NVP

CXCR2 20, down-regulation of Cxcr2 by RNAi, and knockout of

CXCR2 in mice, associated with decreased MOR gene expression

(8). These observations indicate that BMSC-immune cell

interactions engage pain modulatory circuitry via monocyte-

derived CXCL1, leading to lasting pain attenuation in animals

with orofacial tissue injury.

It is noteworthy that most chemokines and their receptors

mediate chemotaxis and are proinflammatory responders. Studies

have shown that the CXCL1-CXCR2 signaling is

proinflammatory and pronociceptive (119–123). However, the
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contribution of CXCL1-CXCR2 signaling in BMSC-produced

antihyperalgesia supports the view that the same chemical

mediators may play dual roles in pain and analgesia. Similarly,

hyperactivity of the glia not only promotes pain hypersensitivity

but also anti-nociception, depending on the condition (124, 125).

In the experimental autoimmune encephalomyelitis mouse

model, overexpression of CXCL1 is anti-inflammatory and

reduces autoimmune demyelination (126). Furthermore,

activation of CXCR2 on granulocytes induces a signaling cascade

that leads to the release of endogenous opioid peptides and

analgesia (117). Moreover, the NF-κB protein complex, a

transcription factor that controls the transcription of genes

involved in immunity, also has dual roles in immune regulation

(127). The NF-κB activation induces proinflammatory cytokines

and promotes pain hypersensitivity (128). However, the NF-κB

signaling pathway in the descending circuitry is involved in

BMSC-produced antihyperalgesia (129). NF-κB activation

upregulates CXCL1-CXCR2 signaling (130), contributes to MSC-

induced neuroprotection (109), and mediates TNF-induced MOR

expression in vitro (131). Multiple lines of evidence have

indicated a facilitatory role of proinflammatory mediators in the

anti-inflammatory effect of MSCs. TNF promotes anti-

inflammatory IL-1ra release from MSCs (132). CCL4 plays a role

in the development of neuropathic pain (133), but is required for

BMSC’s antihyperalgesia in the orofacial pain model (8). It was

found that pro-inflammatory priming promotes the pain-

relieving effect of MSCs. BMSCs produced greater inhibition of

neuropathic pain in animals after priming BMSCs with

proinflammatory cytokine IL-1β (134). IFN-γ is required for the

inhibition of B cells by MSCs (135). A recent report indicates
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that the use of NSAIDs reduces the therapeutic efficacy of MSCs in

a rodent OA model (136), suggesting a role of inflammatory

response in MSC’s beneficial effect. Thus, MSCs-produced pain

relief is underlain by sophisticated reciprocal interactions

between implanted cells and immune cells and the involvement

of both pro- and anti-inflammatory mediators and their

receptors. It is unclear whether MSC would be a pain-reliever in

immunocompromised patients including those infected with

HIV. The pain-relieving effect of MSCs was associated with

expanded-CD4 regulatory T cells (22), which may be indictive of

a beneficial effect for HIV patients. However, the property of

MSCs may be altered after HIV exposure and they may lose their

immunosuppressive effect (137).
The role of MSC-derived exosomes

Exosomes are nano-sized small extracellular vesicles (≈40–
150 nm) derived from the endosomal compartment after the

fusion of multivesicular bodies with the cell membrane and

extracellular release of intraluminal vesicles. Studies indicate that

the therapeutic effect of MSCs can be mimicked by concentrated

conditioned medium from MSCs (75, 138). Ogasawara et al.

(139) showed that a conditioned medium from SHED promoted

regeneration and tissue repair in experimental TMJ osteoarthritis

in mice. The therapeutic effect of MSC-produced conditioned

medium is attributed to MSC-secreted exosomes (140). In a

severe graft-vs.-host disease case that did not respond to

immunosuppressive interventions, Kordelas et al. (141) showed

that MSC-derived exosomes improved the graft-vs.-host disease

symptoms shortly after the administration of MSC-derived

exosomes.

MSC-derived exosomes are promising surrogates of MSC-

based pain relief (110, 142, 143). Experimental neuropathic pain

was attenuated by infusion of SHED and conditioned medium,

or MSC-derived exosomes (65, 144, 145). MSC-derived exosomes

attenuated persistent pain in animal models of osteoarthritis

(146, 147). In a TMJ-OA rat model, MSC-derived exosomes

attenuated inflammation and pain and promoted joint repair (148).

The pain-relieving effect of MSC-derived exosomes is

underlain by mechanisms similar to their parent MSCs (110).

Kordelas et al. (141) demonstrated that the exosome preparations

contained high quantities of the anti-inflammatory molecules, IL-

10 and transforming growth factor-β. Conditioned medium from

SHED attenuated neuropathic pain involving induced anti-

inflammatory M2 macrophages (65), and suppressed activation

of microglia and astrocytes (145). In the monoiodoacetate-

induced TMJ-OA rat model, BMSC-derived microvesicles

improved condylar TMJ histology while reduced IL-1b, TNF,

NF-kB, MMP-13, and MMP-3 levels (149). Immunosuppression

by MSC-derived extracellular vesicles was enhanced by priming

MSCs with inflammatory cytokines (150), an effect similar to

that observed on MSCs. MSC exosomes also suppress

hyperactivity of glia, as shown by reduced glia marker GFAP and

Iba1 expression and inhibit proinflammatory cytokines IL-1β and

TNF and enhance anti-inflammatory IL-10 (144). Interestingly,
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conditioned medium from CGRP (calcitonin gene-related

peptide)-primed DPSCs expressed high levels of inflammatory

mediators including CXCL1 and CXCL8, both are ligands of

CXCR2 (151). The CXCL1-CXCR2 signaling axis contributed to

BMSC-induced descending pain inhibition in the masseter

muscle TL model (8).

Exosomes are a class of small extracellular vesicles (sEVs)

secreted by all types of cells. Although there are distinct

markers for different classes of sEVs, such as CD61/CD63 for

exosomes and TyA/C1q for ectosomes (152), currently, there is

no practical way to obtain a pure exosome preparation without

contamination by other sEVs such as ectosomes

(microparticles) that are derived from the cell membrane.

Nevertheless, ectosomes may contain similar cargo and present

an analogous effect. The use of exosomes may avoid pulmonary

embolism seen in stem cell therapy (153). While exosomes from

MSCs are a promising alternative for MSCs, the

antihyperalgesic effect of exosomes lasts much shorter than

their parent cells, likely due to their weak immunomodulatory

effect compared to their parent MSCs (150).

Collectively, MSCs produce pain relief through their

interactions with the host immune system (Figure 2). The

interactions between MSCs and host immune cells involve

autocrine signaling of MSCs and the secretion of their

secretome/exosomes, as well as inflammatory mediators and their

receptors. These interactions lead to the promotion of anti-

inflammatory phenotype, suppression of glial hyperactivity, and

activation of endogenous opioids, resulting in pain relief. The

CXCL1-CXCR2 signaling pathway has been suggested to play a

role in enhanced MOR expression and pain relief, although in

vivo interactions between chemokines and opioid receptors

during MSC intervention after injury require further

investigation. Multiple other mechanisms may also underlie the

pain-relieving effect of MSCs. One such mechanism is the

neuropeptide galanin, which contributes to BMSC’s

antihyperalgesia by suppressing protein kinase Mζ, a brain-

specific protein kinase C isoform with persistent activity, and its

receptor GalR1 (154, 155). Improvement of oxygen supply has

also been correlated with bone-marrow cell-induced pain relief in

patients with limb ischemia pain (156), and reduced reactive

oxygen species have been linked to antinociception in rats with

spinal nerve ligation (157). Hence, the analgesic efficacy of MSCs

and their secretome exhibits immense potential, and the

underlying mechanisms responsible for alleviating chronic pain

in diverse preclinical pain models, such as temporomandibular

joint-osteoarthritis (TMJ-OA), orofacial myalgia, and trigeminal

nerve injury, warrant further investigation.
Clinical applications of stem cells to
treat orofacial pain

Chronic pain is a specific symptom of several orofacial disease

states, including trigeminal neuropathy, pain from oral mucositis,

and TMJ disease. However, a confounding variable in assessing

stem cell outcomes to treat orofacial pain is the presence of
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multiple concurrent diseases with different pain states (e.g.,

classical tissue vs. neuroinflammation-related pain) and how stem

cells may prioritize tissue regeneration. For example, to what

tissue will stem cells migrate in a patient with trigeminal

neuropathic pain, associated myofascial pain, and an acute dental

infection? To obtain accurate research outcome data, the dental

researcher must, in turn, identify and list the multiple orofacial

pain states prior to stem cell treatment (Figure 3) (158). In this

subsection, we will provide a detailed overview of the clinical

concepts and guidelines for utilizing stem cell therapy in the

treatment of orofacial pain. We will outline the specific steps and
FIGURE 3

Classical description and pain map of neuropathic pain, then causing a seco
“burning”. *Neuropathic pain has a poor response to opioid drugs such as
occipital and supraspinal muscle groups.
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procedures that must be followed to ensure safe and effective use

of this therapy in the clinical setting.
Patient selection and exclusions

Autologous MSCs have a wide range of potential therapeutic

applications for medical conditions such as arthritis and multiple

sclerosis (159, 160). Dental applications of stem cells could be

particularly advantageous in older adults as the incidence of

orofacial pain in patients aged 46 and older is higher than other
ndary temporomandibular disorder. *neuropathic pain is “constant” and
codeine. *Development of secondary TMD in the masseter, temporalis,
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TABLE 1 Sources and applications of stem cells for dentistry and orofacial
pain; advantages and disadvantages.

Cell source Dental
application

Advantages Disadvantages

Autologous
abdominal
ADSCs (and
lateral thigh &
pectoral fat)

Neuropathic
pain
Periodontal
bone loss
Bone
augmentation
for implants
TMJ problems
Salivary gland
Paresthesia
Facial atrophy

Safe
No systemic side
effects
Minimal surgical
risk
Repeatable

Requires general
surgeon
Increased cost
Discomfort and
bruising at donor site

Autologous
orofacial ADSCs
(buccal fat,
submental fat)

Neuropathic
pain
Periodontal
bone loss
Bone
augmentation
for implants
TMJ problems
Salivary gland
Paresthesia
Facial atrophy

Safe
Adipose acquisition
can be performed
by oral surgeon

Higher risk of marginal
mandibular nerve
injury from submental
fat
Microbial
contamination from
intraoral acquisition of
fat

Autologous
bone marrow &
blood HDSCs

TMJ problems
Periodontal
bone defects
Bone
augmentation
for implants

Intraoral bone
marrow acquisition
possible
Simple intravenous
blood acquisition
Repeatable
Cell banking
possible

Low cell numbers from
blood
Needs cell culture
proliferation
Increased cost

Autologous
IPSCs

All dental
tissues

minimal surgery to
acquire somatic
cells
Cell banking
Repeatable
treatments

Low yield of conversion
from somatic to
pluripotent state
Higher risk of
tumorigenicity
High laboratory costs

Allogeneic stem
cells (ADSCs,
HDSCs, IPSCs)

All dental
tissues for
IPSCs

nil surgery
Repeatable
“On demand” cells

possible graft versus
host disease
Autoimmune disease
Chimera DNA
medicolegal problems

Umbilical cord
blood SCs

All dental
tissues

Nil surgery
Repeatable
“On demand” cells
Low risk of
autoimmune issue

limited cell numbers
from cell expansion in
culture
Chimera DNA
medicolegal problems

Embryonic SCs All dental
tissues

nil surgery
Repeatable
“on demand” cells
unlimited cell
numbers
Cell banking

Higher risk of
tumorigenicity
High laboratory costs
Chimera DNA
medicolegal problems
Ethical constraints

Chemotactic
peptide derived
SCs

Potentially for
all dental
tissues

No surgery or
blood collection
needed
Repeatable
injections to site
Peptides can be
synthesized,
standardized and
validated by mass
spectrometry

experimental—no
clinical studies
Unknown risks but
likely low risk as
chemotactic peptides
are endogenous to
humans

ADSCs, adipose derived stem cells; HDSCs, hematopoietic derived stem cells;

IPSCs, induced pluripotent stem cells; USCs, umbilical cord blood stem cells;

ESCs, embryonic stem cells; CPSCs, chemotactic peptide stem cells; TMJ,

temporomandibular joint.
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age groups (161). Burning mouth syndrome was the most prevelant

orofacial pain condition in older adults followed by TMD,

trigeminal neuralgia, sinusitis and odontogenic referred pain

(161). Moreover, several non-analgesic drug classes such as

benzodiazepines, anti-depressants, sleeping aids among others are

used as treatment modalities due to the chronic nature of the

pain (161). Nevertheless, in dental practice, there are several

patient exclusions for stem cell therapy:

1. Active cancer due to the risk of acquiring cancer cells and

injecting these cells into healthy tissue that can inadvertently

spread the cancer. The dentist would require a clearance

letter from the medical doctor or oncologist stating the

cancer is under management and stem cell treatment can

proceed.

2. Systemic and local infections of the face and oral mucosa (e.g.

acute necrotizing ulcerative gingivitis) would preclude

harvesting from local bone and adipose tissue.

3. Drugs that may affect surgery such as high dose anticoagulants,

or potentially affect stem cell viability and cell communication

such as methotrexate, immunomodulatory drugs and steroids.

4. Psychiatric patients who are noncompliant with medication.

5. Poor oral hygiene.

6. Pregnancy and lactation.

Selection, harvesting and processing of
stem cells for clinical use

The choice of stem cell type for therapy depends on several

factors because each source has its advantages and disadvantages

(see Table 1). Adipose-derived stem cells (ADSCs) are versatile

cells that can differentiate into various cell types, such as

endothelial cells, neurons, chondroblasts, and osteoblasts that

subsequently form blood vessels, nerves, cartilage, and bone. On

the other hand, hematopoietic-derived stem cells (HDSCs) are

also multipotent but lack adipogenesis differentiation. Both

ADPSCs and HDSCs have a very low intrinsic risk of

complications when administered. Complications can occur but

are preventable as they typically result from operator error when

performing surgical harvesting from the donor tissue or

subsequent incorrect injection of stem cells. Allogeneic stem cells

from healthy donors and umbilical cord stem cells (UCSCs) are

readily available from laboratory sources but have the potential

to induce graft vs. host disease (162). Autologous induced

pluripotent stem cells have great potential but show increased

tumorigenicity and have a low yield in the conversion from

somatic cells to stem cells, and there are high laboratory costs

involved. Similarly, embryonic stem cells can form almost all

types of tissue cells but demonstrate tumorigenicity and have

ethical constraints (163). Collectively, while several sources of

stem cells exist, cellular differentiation as well as safety profile

make a select few sources the preferred choice for clinical use.

ADSCs acquired from abdominal fat or HDSCs from bone are

also the preferred choice of cells for the management of orofacial

pain when ensuring safety and compliance with established
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FIGURE 4

Image of the lipoaspirate after mechanical emulsion and centrifugation.
Upper layers of yellow adipose fat and free lipid. Middle liquid phase
layer of saline, plasma, local anesthetic, red cells. Lower layers of
ADSCs (pinkish white) and small dark red cell layer at the very bottom.
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laboratory protocols for harvesting. The harvesting of adipose

tissue from the abdomen is a minor surgery that carries a low

risk of injury to important structures. The surgical process

involves draping and topical disinfectants, which result in

minimal bacterial counts in the donor adipose tissue. While

harvesting submental or buccal fat may be possible, it is

important to consider the location of the marginal mandibular

nerve to avoid injury. Harvesting from the buccal pad of fat

requires an incision through the oral mucosa, which can result in

significantly higher bacterial counts, including pathogenic species,

in the donor fat and, thus, in the stem cell injection. Narrow

gauge liposuction cannulas may cause local bruising and

discomfort postoperatively. Alternatively, bone marrow from the

iliac crest or mandible may be considered as a source of cells.

However, similar advantages and disadvantages are present,

particularly regarding bacterial contamination during processing

and the final injection of cells. One significant advantage of

ADSCs over HDSCs is that ADSCs have a five-fold lower stem

cell senescence rate, indicating their greater proliferative potential

and resultant higher cell numbers (33).
FIGURE 5

ADSCs freshly acquired from the stromal vascular fraction (SVF). ADSCs
show excellent development and activation. Centrally located red cell in
the image shows size comparison of the cells. Image taken at 1000X
magnification with an oil immersion objective.
Cell numbers and phenotype

The International Myeloma Foundation (IMO) guidelines

suggest that stem cell transplants for treatment of myeloma have

a minimum requirement of two million cells per kg of body

weight (164). However, the number of stem cells needed to

achieve a therapeutic effect for orofacial pain relief has not been

established due to the wide spectrum of heterogeneity of the

disease state (for example, TMJ arthritis and facial neuropathy)

when measuring variables such as pain intensity, duration of the

disease and presence of multiple pain sites. Medical studies often

report the acquisition of 200–300 gm of abdominal fat obtained

by tumescent liposuction to yield 50–60 million cells from the

collagenase enzymic digest method (0.3 million cells/gm). This

cell number was used on a case series using autologous ADSCs

to treat trigeminal neuropathic pain with reported safety and

preliminary efficacy (165). Recent improvements in laboratory

protocols harvesting lower amounts of adipose tissue (1–5 gm)

combined with a non-enzymic mechanical emulsion and

centrifugation approach has yielded higher cell viability and cells/

gm. The 2014 study reported cell viability at 75% vs. the current

non-enzymic method with viability >95% (Figure 4). Despite the

smaller amount of abdominal fat collected in the latter method,

the yield of ADSCs may be considered sufficient to treat

localized sites such as the TMJ, periodontal ligament and

trigeminal branch neurovascular pain if using the IMO guide.

Cellular phenotype and cell health are critical for the clinical

outcome. Direct brightfield microscopy at a high magnification of

1000X with an oil immersion objective is a simple and rapidly

accomplished procedure in a dental clinic setting to demonstrate

real-time activation of stem cells from adipose tissue (Figure 5).

Cell identity and cell health is achieved by flow cytometry CD

markers. The International Society for Cellular Therapy (ISCT)

has designated several markers positive for CD73, CD90, and
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CD105 and negative for CD14, CD19, CD34, and CD45 that

define and confirm ADSC phenotype. Flow cytometry can

further investigate useful cell health parameters of apoptosis,

autophagy, DNA damage, and the presence of cancer markers

such as Pi3 (Figure 6) (166). Annexin V is a marker for apoptosis

(programmed cell death) and detects phosphatidylserine (PS)

translocation to the external environment. Autophagy is involved

in the stem cell phases of activation and differentiation. It plays a

dual role in cancer as a tumor suppressor and promoter. H2A.X

(DNA damage) is increased during the promotion of self-renewal

for stem cells. It is a sensitive marker to examine DNA damage

and subsequent repair. Pi3K (phosphoinositide 3-kinase) promotes

hematopoietic stem cell activation and plays a crucial role in

mitogenesis, proliferation, prevention of apoptosis and

maintenance of multipotency in mesenchymal stem cells. It is

overactivated in certain cancers. One additional step in the

laboratory protocol is to assess the proliferative potential of the

stem cells. A small aliquot of the ADSCs can be plated in a

hydrogel to visually examine the amorphous cell proliferation and

the ability to form functional colony-forming units (CFUs)

(Figure 7).
frontiersin.org

https://doi.org/10.3389/fpain.2023.1239633
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


FIGURE 6

Samples of flow cytometer assays from patients undergoing stem cell
therapy for orofacial pain. A small aliquot of ADSCs are used for
quality control assessment of the adipose tissue processing. Assays
conducted with a MUSE Cell Analyser (Merck Millipore Ltd.) and
performed for annexin V (apopotosis), autophagy (cell breakdown),
H2A.X (DNA damage) and tumorgenicity marker Pi3. (A) assays are
baseline measurements taken 10 min after stem cell administration,
(B) ADSCs subsequently exposed to high dose gamma radiation for
several days to simulate stem cell deterioration and changes to the
cell profiles that occurs with aging, certain disease states and medical
radiotherapy.

FIGURE 7

Confirmation of proliferative aspects of ADSCs. Macrosopic upper
image taken at 4 days after ADSCs plated in wells with 8 ml hydrogel.
Left well shows cell proliferation throughout the gel matrix and right
well used as control gel. Higher resolution lower image at 50X shows
multiple colony forming units (CFUs) indicating excellent stem cell
proliferative characteristics.
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Administration of stem cells for orofacial
pain

Stem cell lipoaspirate (SVF) is commonly administered directly

into the target site for periodontal regeneration, bone

augmentation, TMJ arthritis and salivary gland regeneration.

Therefore, this approach appears to be the preferred procedure

for cell delivery for orofacial pain conditions. Moreover, no

studies have been conducted to assess the outcomes from IV

infusions to treat orofacial pain. After the application of a topical

anesthetic, an injection of the topical anesthetic with a narrow

27–30 gauge needle into the target site is accomplished. This

prevents significant pain that can occur with the larger bore 21–

23 gauge needle containing the stem cells. The larger gauge is

needed to prevent microfat needle blockage and any potential

damage to cells from shearing actions on cell membranes in

narrow bore needles that would decrease viability. Injections of

the stem cell lipoaspirate (termed the stromal vascular fraction,

SVF) are directed to the pain sites. Perineural injections are

placed into the region of the major maxillary and mandibular
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trigeminal nerve branches to treat widespread neuropathic

orofacial pain. Importantly, the injections are not injected into

the nerve directly as neuroma formation can develop from needle

bevel trauma. Ultrasound (US) guided needle placement is

required for exact needle insertion into the superior joint space

of the TMJ (Figure 8).

A vehicle for stem cells as well as a suitable environment for

stem cell growth and differentiation, is provided by scaffolding

materials such as hydrogels. Hydrogels are three-dimensional

networks of hydrophilic polymers that can absorb and retain

large amounts of water, making them an attractive option for

tissue engineering applications. Emerging medical evidence

suggests that injectable sodium alginate biodegradable hydrogels

are beneficial for cardiac regeneration and joint arthritis (167,

168). Sodium alginate is widely used by dentists and is currently

undergoing in vitro research as it can incorporate live stem cells

(169), while also possessing several other advantages, such as

biocompatibility, low manufacturing cost, and cross-linkages with

calcium and magnesium ions for improved mechanistic

parameters. The existing knowledge base of alginate

physicochemical attributes and ease of administration by dentists

also make it an attractive option. Moreover, the hydrogels can

incorporate various cofactors, such as peptides, polyphenols,

antibiotics, and vitamins, which can promote cell expansion and

direct cell fate toward the target tissue. However, it is crucial to

scrutinize oral hydrogels in vivo due to the potential

contamination and expansion of oral microbes and fungal
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FIGURE 8

Ultrasound of right temporomandibular joint of healthy subject showing
normal architecture of mandibular condyle (MC), mandibular fossa (MF),
superior joint space (SJS) and the three sections of the meniscus
(anterior, intermediate and posterior).

FIGURE 9

Peptidic chemotactic alginate-based hydrogel. Drop of blood placed in
central well with perforations in the central well to allow cell migration
into the surrounding peptide hydrogel. Image taken at 4 days incubation
at 37C and show excellent hematopoeitc stem cells (HDSCs) migration
and proliferation.
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elements within the biogel. Recent advancements in hydrogels have

demonstrated the use of stem cell chemotactic peptides, allowing

stem cells from the local tissue niche, circulating HDSCs, and

ADSCs to migrate directly to the hydrogel. This new

development eliminates the need for donor surgery and only

requires a series of local anesthetic injections, the hydrogel

placement, and the crosslinking agent. This approach permits

simple, low-cost, and gradual increments in tissue and is ideal

for certain medically compromised patient groups (Figure 9)

(170). Therefore, a direct administration of hydrogel-loaded stem

cells is delivered to the target site for optimum cell number and

cell-favorable local environment.
Training and dentolegal issues

Diagnosing orofacial pain can be challenging due to the

intricate anatomy of the head and neck region, which involves

exocrine glands, neurovascular components, and the

musculoskeletal system. Pain typically results from tissue injury,

triggering a cascade of peripheral nociception, retrograde

transmission, and central processing. As a multidimensional

biopsychosocial phenomenon in humans, orofacial pain involves

various factors contributing to its development and persistence.

Patient safety mandates that clinicians have adequate clinical and

laboratory training in the use of stem cells to treat orofacial pain

and for the regeneration of dental tissues such as the

periodontium (171). The preoperative planning phase must

assess any significant psychological issues such as anxiety,

depression, anger, and frustration, particularly where there has

been a long history of multiple clinicians, misdiagnoses, and

costly repetitive failed treatments. A critical aspect of achieving

patient satisfaction and postoperative compliance with stem cell
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therapy is identifying and explaining to patients what realistic vs.

unrealistic expectations from the treatment (172). Ongoing

research will identify beneficial outcomes from treatment for

orofacial disease and symptoms. The trigeminal region is

localized and should add knowledge to discriminate subsets of

stem cell reparative mechanisms involving paracrine anti-

inflammatory effects, expression profiles (secretome), intercellular

peptide communication, and differentiation characteristics of the

tissue. Outcomes will rely on qualitative information with

validated questionnaires such as the visual analog scale (VAS)

and the McGill Pain Questionnaire (MPQ). Incorporating

additional quantitative objective measurements can be valuable in

diagnosing orofacial pain. For example, thermography can be

used as a non-invasive tool for detecting neurovascular

disturbance, while von Frey neurosensory testing, which

measures mechanical allodynia and hyperalgesia, can provide

reassurance to patients that their “invisible pain” is present, real,

and improving (Figure 10). Stem cells play a crucial role in the

healing of various dental injuries, including tooth extraction

sockets, soft tissue incisions, oral mucosal microlesions, and

traumatic ulcers caused by mastication. By boosting cell numbers

during the healing phase after an injury, stem cell therapy can

promote dental regeneration and help alleviate orofacial pain.
Conclusions

Biological treatments such as autologous cellular therapies are a

major advancement in 21st-century medicine, especially for

patients with chronic orofacial pain. The use of biotechnology,
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FIGURE 10

A 45 year old male with facial neuropathic pain and sympathetically
maintained pain. There was six year pain history of right maxillary and
mandibular trigeminal neuralgia. Previous treatments included seven
neurosurgical operations (microvascular decompression, pulsed
radiofrequency, nerve ablation), multiple Botox and ketamine/
lidocaine infusions, high dose carbamazepine and gabapentin.
Baseline thermograms before stem cells showed sympathetically
maintained pain in the right maxilla with surface temperature
differential −1.2C on the painful right maxilla (33.3C) compared to the
left non-painful maxilla (34.5C) (normal range +/- 0.2C).
Thermograms repeated at five weeks after stem cell injections
showed nil surface temperature differential (bilateral 31.8C) showing
resolution of neurovascular pain.
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such as stem cell intervention, has traditionally been viewed

conservatively by national health authorities, with authorization

for dentists being lacking on an international level. Regenerative

medicine therapies have not been approved by the FDA nor

EMA for the treatment of any orthopedic condition, such as

osteoarthritis, tendonitis, disc disease, tennis elbow, back pain,

hip pain, knee pain, neck pain, or shoulder pain or orofacial

pain. However, the Australian Government approved the use of

autologous stem cells by dentists in 2018 after assessing their

safety and potential efficacy in dental disease, and orofacial pain

states (173). In fact, dentists have a unique advantage in

accessing additional HDSCs and ADSCs from readily available

sources, such as the maxilla, mandible, and local fat deposits,

including the buccal pad of fat and submental chin fat.
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Traditional drug treatments like first-line anti-neuropathic drugs

and second-line opioids often come with problematic side effects

and poor patient compliance. Autologous stem cells, on the other

hand, offer significant benefits over drug treatments by avoiding

side effects and improving patient compliance. These cells can

deliver multiple therapeutic effects, such as anti-inflammatory

actions, immune system modulation, and regeneration of

damaged tissue to a functional state that collectively can aid in

the resolution of pain states.
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