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Virtual reality hypnosis diminishes
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Immersive virtual reality (VR) is a promising tool to reduce pain in clinical setting.
Digital scripts displayed by VR disposals can be enriched by several analgesic
interventions, which are widely used to reduce pain. One of these techniques is
hypnosis induced through the VR script (VRH) which is facilitated by immersive
environment and particularly efficient even for low hypnotizable patients. The
aim of this study is to assess the efficacy of a VRH script on experimentally
induced cold pain perception (intensity and unpleasantness) and physiological
expression. 41 healthy volunteers had been recruited in this within-subjects
study. They received 9 stimulations of 20 s (3 non-nociceptive cold; 3 low
nociceptive cold and 3 highly nociceptive cold) during a VRH session of 20 min
(VRH condition) or without VRH (noVRH condition). Physiological monitoring
during the cold pain stimulation protocol consisted of recording heart rate,
heart rate variability and respiratory frequency. Maximum cold pain intensity
perception, measured through the visual analog scale (VAS) on 10, was of
3.66 ± 1.84 (VAS score/10) in noVRH condition and 2.46 ± 1.54 in VRH
(Wilcoxon, p < 0.0001). Considering pain unpleasantness perception, 3.68 ± 2.06
in noVRH and 2.21 ± 1.63 in VRH (Wilcoxon, p < 0.0001). Hypnotizability
negatively correlated with the decrease in VAS intensity from noVRH to VRH
(Spearman r=−0.45; p=0.0038). In our sample, we found that 31/41 volunteers
(75.6%) displayed a reduction of more than 10% of their VAS pain intensity and
unpleasantness scores. Trait anxiety was the best predictor of the VRH
responders, as well as heart rate variability. In addition, respiratory rate was
diminished under VRH in every subgroup. VRH is an effective tool to reduced
pain intensity and unpleasantness in a vast majority of healthy subjects. We
further indicate in this study that heart rate variability parameter RMSSD (root
mean square of successive differences) is a good predictor of this effect, as well
as anxiety as a personality trait (but not state anxiety). Further studies are
expected to determine more precisely to whom it will be the most useful to
offer tailored, non-pharmacological pain management solutions to patients.
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Introduction

Head-mounted virtual reality (VR) devices that use a

computer-generated three-dimensional world in which one is

immersed and in which stimuli can be multisensory (e.g., visual,

auditory, and/or haptic) offer a real opportunity for alleviating

acute/chronic pain in adults and children (1). For more than two

decades, many VR devices have been evaluated thanks to the

pioneering work of Hoffman and Patterson (2, 3). Their initial

studies examined procedure-related pain in burn patients while

using a VR device that allowed active participation in a game

(Snow World). With this device, a 30%–50% reduction in

procedural pain was observed for several pain outcomes such as

pain intensity, unpleasantness or time thinking about pain (2),

and this effect correlated with a significant reduction in

hemodynamic responses in at least five regions of the pain

matrix: the anterior cingulate cortex, primary and secondary

somatosensory cortex, insula, and thalamus (4, 5). Regardless of

the content of the disposal, VR has demonstrated some efficacy

as a complementary technique to reduce acute pain and anxiety

associated with various medical procedures (6–10), as well as in

the treatment of chronic pain (11). Although promising, VR is

still an emerging technology, its efficacy needs to be consolidated

through further scientific studies, especially for acute and chronic

pain management. Moreover, it remains to optimize analgesic

intervention of VR and potentially better understand the

underlying brain mechanisms that lead to pain relief. Notably,

there is currently a lack of consistency across studies regarding

VR outcomes in pain alleviation (7, 8). Most of these are related

to the heterogeneity of methodological approaches, the variety of

digital scripts embedded in VR, the choice of control groups,

small sample size, or the selection of subjects/patients for pain

assessment (12).

While VR pain management applications often rely on

distraction techniques (either passively with movies or actively

with games; the difference lies in the degree of interactivity) as

they mobilize multiple inhibitory pain controls (1), they can also

be used with other analgesic approaches such as cognitive

behavioral therapy (11), meditation (13), hypnosis (14–16), or

biofeedback (17). In these options, patients become actively

involved in managing their own pain by shifting their focus or

improving their skills (18).

Combining hypnotic suggestions to VR disposal has raised a lot

of interest. Hypnosis can be defined as a modified state of

consciousness with increased focused attention and reduced

peripheral awareness, characterized by an increased ability to

respond to suggestions (19). Although the clinical use of

hypnosis is steadily increasing, there are interindividual

differences in hypnotizability (i.e., a person’s ability to experience

suggested changes in physiology, sensations, emotions, thoughts,

or behavior during hypnosis) (19). Hypnotizability scores, which

can be assessed with specific scales (such as the Stanford scale),

are normally distributed in the population (20–23). Thus,

hypnosis efficacy varies in the general population. To bypass this

issue, one solution can be to combine hypnosis with VR
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(referred in this manuscript to as VRH, for Virtual Reality

Hypnosis), i.e., using a virtual environment to help patients

access this particular state. VRH appears to be more beneficial

for individuals with low hypnotic ability than for individuals

with high hypnotic ability, whereas VR alone is not as efficient

as hypnosis for individuals with high hypnotic ability (15, 24).

However, one study showed VRH to be more effective than VR

alone in relieving pain but not hypnosis alone (14), whereas

Rousseaux and colleagues found no benefit of VR, hypnosis, nor

VRH for pain and anxiety reduction in cardiac surgery patients

compared with standard care (25).

To further support the interest of using VRH as an analgesic

strategy, monitoring physiological functions is often used to

support the subjective benefits of VRH on well-being, pain relief

and anxiolysis. Indeed, VR disposals are likely to affect

homeostatic parameters regulated by the autonomic nervous

system (ANS). Heart rate variability (HRV), measured as changes

in standard deviation from normal to normal (SDNN) and root

mean square of successive differences (RMSSD), have been

shown to be modulated by VR (26–29). Using a frequency

domain analysis of the electroencephalogram (ECG), VR-induced

changes of the low frequency (LF) and low to high frequency

ratio (LF/HF), thought to reflect the regulatory balance between

the parasympathetic and sympathetic tone (low ratio:

predominance of parasympathetic, high ratio: dominance of

sympathetic), were also seen (28, 30).

In this scientific setting, we examined the efficacy of VRH on

experimentally induced cold pain, looking closely at how VRH

affects pain perception. Effects were correlated with changes in

cardiac and respiratory parameters in an attempt to identify

predictors of VRH efficacy.
Methods

Participants

After ethic committee approval (CPP Ile-De-France III,

approval date 04/02/2020; ANSM French Ministry of Health,

information date 23/05/2019) and signed written consent, 41

participants were included, 19 females and 22 males. Healthy

volunteers were older than 18 years old (see demographic data,

Table 1). Exclusion criteria were unbalanced epilepsy, diseases

that change pain perception (e.g., chronic pain conditions,

diabetes), psychotic disorders, depression, hearing and/or visual

impairments preventing the use of VRH, participating in another

clinical study, in guardianship or unable to provide informed

consent or refused to participate. Female subjects could not

participate if they were pregnant or breastfeeding.
Primary and secondary outcomes

The primary endpoint of the study was to evaluate the effect of

VRH on perceived cold pain intensity and unpleasantness,
frontiersin.org
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TABLE 1 Demographic data.

Total
(n = 41)

Female
(n = 19)

Males
(n = 22)

Statistics male
vs. female

Age (years;
mean ± SD)

41.3 ± 13.4 39.8 ± 12.4 42.6 ± 14.5 ns, p = 0.51

Education (years
postbac; mean ± SD)

4.8 ± 2.1 4.4 ± 1.9 5.2 ± 2.2 ns, p = 0.21

STAI-Trait (score/80;
mean ± SD)

36.8 ± 8.6 37.4 ± 7.9 36.3 ± 9.3 ns, p = 0.58

STAI-State (score/80;
mean ± SD)

28.2 ± 6.6 29.7 ± 6.9 26.8 ± 6.1 ns, p = 0.15

Stanford (score/12;
mean ± SD)

5.9 ± 3.0 6. 9 ± 2.9 5.2 ± 2.9 *, p = 0.048

STAI, state-trait anxiety inventory. Mann-Whitney statistical test between male and

female subjects: ns, non-significant; *difference at p < 0.05.
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evaluated by Visual Analog Scale (VAS/10). Secondary endpoints

included the analysis VRH-associated changes in several

physiological parameters during the cold stimulation protocol

(see paragraph below, data collection).
Study design and parameters recorded

This was a prospective within-subjects study where each

participant was his/her own control. General design of the

study is shown in Figure 1A. Cold stimulations (20 s each,

1 min interval) of three different intensities, producing no pain

on the VAS or pain intensities at 2/10 and at 4/10, were

pre-defined during a calibration period (Figure 1A). During a
FIGURE 1

Experimental design of the study (A) and representative examples of some
corresponding for them to a VAS intensity of pain of 0/10 (no pain), 2
corresponding cold nociceptive stimulation for each subject. Then, subjects
VAS pain intensities were asked after three consecutive cold stimulations cor
stimulations at 2/10 and 4/10 were randomly placed in the stimulation seq
protocol but in the presence of the VRH disposal, which was installed
electrocardiogram recordings, respiration rates and electrodermal activity.
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first session of 20 min (noVRH), subjects were then submitted

to a series of three stimulations at three different intensities

(no pain, 2/10, 4/10). Note that the stimulation at 2/10 and

4/10 application timing was counterbalanced between

participants (Figure 1A). At the end of the session, subjects

were asked to evaluate their pain perception (intensity and

unpleasantness) of the most painful stimulation. Physiological

parameters monitored in this study were heart rate and its

variability and breathing rate. During the second session, the

same procedure was followed but subjects were equipped with

the VRH disposal. It took 10 min maximum for the subject to

be equipped. It is important to note here that sessions 1 and 2

were not randomized in this study as we previously

demonstrated that randomization, with VRH or not, had no

effect on pain measures or physiological parameters (29).

For example, sequence order revealed no significant differences

in VRH-induced changes for painful heat (noVRH-VRH:

0.86 ± 0.25, n = 28; VRH-noVRH: 0.63 ± 0.19; Student’s t-test,

t = 0.747; df = 56; p = 0.458).
Virtual reality hypnosis

The VR headset used in this study was an Oculus Rift S

(resolution: 1280 × 1440 pixels per eye; field of view: 115°;

refresh rate: 80 Hz) coupled to a laptop computer (Asus

GL502VS managed by an Intel®CoreTM i7-6700HQ processor

at 2.6 GHz; RAM: 16GB; graphics card: Nvidia GeForce

GTX 1070; Windows 10 64-bit). The Oculus Rift S headset

delivered sound.
VRH environments (B). Subjects first determined the cold stimulation
/10 (moderate pain) and 4/10 (high pain). This helped to adjust the
entered a 20 min recording session, without any VRH disposal, where

responding to 0/10, 2/10 and 4/10. All stimulations lasted 20 s. Note that
uence. The second recording session corresponded to the exact same
during a five-minute interval. Physiological monitoring consisted of
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The virtual reality application (referred to as VRH) used was

HypnoVR® (www.hypnovr.io, Lampertheim, France). VRH is an

application coupling three-dimensional computer-generated,

immersive visual sceneries (either walk on the beach, scuba-

diving, walk through a snowy mountain/forest, or a journey

through space; see some representative screenshots Figure 1B)

with a standardized pre-recorded 20 min hypnotic script tailored

to induce analgesia and a musical background. The hypnotic

script was the same for all visual environments. Participants were

given the opportunity to choose their preferred visual scenery,

male or female voice for hypnotic suggestions and musical

background among three melodies. Hypnotic script consisted of

an “induction period” (first three minutes) to focus participant’s

attention. In particular, they were asked to breathe at the same

speed than a blue ball moving at a frequency 6 oscillations/

minute. This oscillation frequency is known to have the greatest

impact on heart rate variability parameters (i.e., cardiac

coherence) (31). This induction period was followed by comfort

and pain relief suggestions (including changing sensations from

pain to something else, reduction in pain, increases in comfort,

changes in focus attention away from pain and increased ability

to ignore pain). The session ended with 2 min return phase to

the normal conscious state.
Thermal stimuli and experimental protocol

Cold stimuli were applied with a QST stimulator (TCS II,

QST.Lab, Strasbourg, France, www.qst-lab.eu). Thermode was

placed on the anterior part of the left wrist. Cooling surface was

10 cm² and decrease/increase speed of temperature was set at 15°

C/s. Minimum temperature reachable with this device was 0°C.

As mentioned above (see also Figure 1), the same stimulation

protocol was applied during the noVRH and VRH sessions.

Subjects did not know which temperature was chosen to obtain a

VAS score of 2/10 and 4/10.
Physiological data

The electrocardiogram (ECG) was acquired with BIOPAC

ECG100C (BIOPAC System Inc, 42 Aero Camino, Goleta, CA

93117, USA). Two electrodes were placed on the participant’s

upper chest (one on each side) while the third one was placed on

the ribs (left side). The breathing rate (cycles/min) was measured

by means of a BIOPAC thermistor TSD202A (BIOPAC System

Inc, 42 Aero Camino, Goleta, CA 93117, USA) which measured

the temperature difference between inhaled and exhaled air; the

thermistor was placed under the participant’s nostrils and fixed

with an adhesive plaster. Data were analyzed with Clampfit

(Molecular Devices, LLC. 3860 N First Street, San Jose, CA

95134, United States) and script programed in Python 3.6. The

baseline values were considered as the average of the first 5 min

where no stimulation was applied. Mean values of each sequence

of three stimulations were then averaged (0/10; 2/10; 4/10). Five

minutes recording periods were needed to obtain a reliable low
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frequency extraction for heart rate frequency analysis. Therefore,

the 5 min baseline period was compared to the period where

cold stimulations were applied, including interval periods (of

1 min) between the stimulations.
Data collection

Data were prospectively collected including demographic

characteristics as age, sex, education level, number of previous

hypnosis sessions and why (if any), motion sickness,

hypnotizability score (French adaptation form A of the Stanford

Hypnotic Susceptibility Scale (20–22), the anxiety trait was

assessed on the day of inclusion using a self-administered

questionnaire, the State-Trait Anxiety Inventory (STAI). On the

day of the experiment, state anxiety was assessed with STAI-Y,

current medication (if any) and adverse events. All the

identifying information was removed from the database in

accordance with regulations prescribed by the French data

protection authority Commission Nationale de l’Informatique et

des Libertés (CNIL n° 2213128).
Statistical analysis

Results are expressed as mean ± SD. The statistical analyses

include a descriptive section and an analytical section. All the

statistical analyses were made with Prism software Graphpad

V6.0. The significance level was set at alpha = 0.05 for all

analysis. Normality of the distributions was tested each time

using the Shapiro–Wilk normality test. Differences between two

groups were analyzed using the Student’s t-test when appropriate

when data were linearly distributed. Otherwise non parametric

Mann-Whitney test was used to compare two populations. Two-

way ANOVA (and repeated measures) were followed, if

significant, by Sidak or Tukey multiple comparisons. Correlation

between hypnotizability and pain score was assessed with

Spearman’s R correlation test.
Results

Population

On the 41 healthy volunteers included, 19 were females and 22

males. Mean age was 41.28 ± 13.43 years old with a range from 21

to 66 years old. Average education was 4.8 ± 2.09 years post-bac.

Mean anxiety (personality trait) was of 36.85 ± 8.61 out of 80

whereas mean anxiety (current state the day of the experiment)

was of 28.17 ± 6.58. Average hypnotizability score was 5.97 ± 3.01

out of 12, which is coherent with data in the general population

(20–22). Of 41 persons, 9 (4 males, 5 females) have experienced

at least one hypnosis session in their lifetime mostly because of

anxiety issues (3/9). Other reasons were pain (1/9), sleeping

issues (1/9), obsessional compulsive disorders (1/9) and 3/9 for

unknown reasons. The only difference between male and female

statistics was found for the hypnotizability score (5.19 ± 2.89 for
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male vs. 6.89 ± 2.97 for female; Mann-Whitney test, U = 119.5, p =

0.048). For detailed comparison, see Table 1.
Calibration of the cold pain stimulation

During the calibration period preceding the VRH session, each

subject was asked to score different cold intensities stimulations.

This calibration allowed to define the stimulation intensities for

each subject at three level: VAS value of 0/10 (no pain), pain at

2/10 and at 4/10. With the skin thermode used in this study,

mean temperatures were of 24.95 ± 0.86°C (VAS 0/10), 10.80 ±

5.19°C (VAS 2/10) and 5.59 ± 5.23°C (VAS 4/10). We did find a

statistical differences between males and females for cold

threshold [two way ANOVA, sex x temperature, F(2,117) = 5.189,

p = 0,0069] for VAS at 2/10 (Tukey posthoc test, p = 0.0367 and

4/10 (Tukey posthoc test, p = 0.0009). Women had mean

threshold for cold higher than males likely indicating a higher

thermonociceptive sensitivity.
Cold pain perception

VAS scores were collected at the end of the calibration period,

during each baseline preceding the noVRH and the VRH

sequences (see design in Figure 1 and VRH comparisons in

Figure 2). Mean intensity perception and unpleasantness

between the different sequences were highly significant in the

global statistics (one way ANOVA for intensity: F(2, 78) = 19,38, p

< 0.0001; and unpleasantness: F(2, 77) = 23,40, p < 0.0001). They

were statistically differences between the noVRH and VRH

sequences for intensity perception (noVRH: 3.66 ± 1.83; VRH:

2.45 ± 1.53; Tukey posthoc test: p < 0.0001) and unpleasantness

(noVRH: 3.67 ± 2.05; VRH: 2.21 ± 1.62; Tukey posthoc test: p <

0.0001). In good agreement, VAS scores were also significantly

different between VRH and the calibration period Tukey’s

posthoc; Intensity: p = 0.0004; Unpleasantness: p < 0.0001)

whereas no differences were found between the calibration period

and the noVRH sequence (Tukey’s posthoc; Intensity: p = 0.168;

Unpleasantness: p = 0.594). In comparison with noVRH, VRH

mean reduction of VAS intensity and unpleasantness score was

of −1.20 ± 1.34 (range from −4.3 to +1.1) and of −1.46 ± 1.83

(range from −7.4 to +1.5), respectively. This revealed a high

heterogeneity between subjects.

In more details, a sex specific difference in VAS scores was

maintained after noVRH, for pain intensity (male: 2.95 ± 1.79, n

= 22; female: 4.48 ± 1.56, n = 19; Student’s t-test, t = 2.893, df = 39,

95% CI: 0,4599 to 2,598; p = 0.0062) and unpleasantness (male:

2.88 ± 2.01, n = 22; female: 4.60 ± 1.72; n = 19; Student’s t-test, t =

2.910, df = 39; 95% CI: 0,5240 to 2,912; p = 0.0059). This was not

the case after VRH (although a tendency can be seen) for pain

intensity (Male: 2.032 ± 1.52, n = 22; Female: 2.95 ± 1.44, n = 19;

Student’s t-test, t = 1.981, df = 39, 95% CI: −0,01931 to 1,861; p =

0.0547) and unpleasantness (Male: 1.88 ± 1.7, n = 22; Female:

2.61 ± 1.48, n = 19; Student’s t-test, t = 1.448, df = 39; 95% CI:

−0,2891 to 1,745, p = 0.156). Overall, the VRH inhibitory effect
Frontiers in Pain Research 05
was similar in men (n = 22) and women (n = 19) for the intensity

(Male: −0.95 ± 1.89; Female: −1.65 ± 1.47; Student’s t-test, t =

1.589, df = 18: 95% CI: −1,446 to 0,2300, p = 0.1295) and for pain

unpleasantness (Male: −1.00 ± 1.87; Female: −1.93 ± 1.68;

Student’s t-test, t = 1,772; df = 39; 95% CI: −2,120 to 0,1401; p =

0.084).

There was a significant correlation between the hypnotizability

score and the VRH change in pain intensity perception (Spearman

r =−0.44; 95CI: −0.67 to −0.14; p = 0.0046; n = 41) but not for the

change in unpleasantness. Apart from one person who did not like

virtual reality because he felt claustrophobic wearing the headset,

the remaining 40 subjects reported a positive experience with the

VR disposal and script.

In order to analyze finely pain perception data, we arbitrary set

a threshold at 10% change to identify possible subgroup of subjects

and possible VRH non-responders. Out of 41 subjects, 31 (76%)

reported a decrease in pain intensity perception under VRH by

more than 10%, 7 subjects (17%) had pain intensity score

changes below 10% and 3 subjects (7%) expressed an increase in

pain perception above 10% with VRH (Figure 2A). This yields

three subgroups, “Responders”, “Non responders” and “Inverse

responders” respectively (Figure 2). While performing a similar

selection using VAS score for unpleasantness, 73% of the subjects

were from the responder group (15% non-responders, 13%

inverse responders). As too few subjects were in the “Non-

responders” or “Inverse responders” categories to allow statistical

analyses, they were grouped (and referred from now on to as

“non-responders”) in order to compare them with the

responder’s category for the remaining part of the article.
VRH influences on physiological parameters

The analysis of cold pain-associated changes in cardiac

parameters could only be done on 31 subjects. The first 8

subjects were drawn back from analysis because of hardware

issues corrupting the simultaneous acquisition of physiological

and VR signals. Two additional subjects were removed from the

study because of excessive (not exploitable) electrical artifacts on

the physiological recordings. We performed a repeated measure

two-way ANOVA followed by a Sidak posthoc test (see values in

Table 2 only for baseline and stimulation 4/10 sequences). On

these subjects, we found no differences between VRH subgroups

(all subjects, responders and non-responders) for mean heart

rate, and pNN50 during baseline and stimulation periods

(Table 2). Mean heart rate and pNN50 were significantly affected

during the stimulation period but these changes were not specific

of VRH. This was not the case for RMSSD whose mean value

was significantly increased under VRH (compared to noVRH)

during the baseline period and further more during the

stimulation period under VRH [repeated measure two-way

ANOVA, time x noVRH-VRH sequence, F(1,29) = 16.76, p =

0.0003]. Interestingly, VRH-associated increase in RMSSD during

baseline was found only among responders (Table 2).

Normalized low frequency (LF), normalized high frequency

(HF) composing heart rate signal were next extracted and their
frontiersin.org
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TABLE 2 Changes in the mean values describing cardiac parameters (± SD) for heart rate, pNN50, RMSSD and ratio between low and high frequency
during baseline (i.e. before stimulation) and during painful heat stimulation (4/10).

noVRH VRH

Baseline 4/10 Baseline 4/10
HR (bpm) Mean (± SD) 63.9 (9.1) 61.3 (10.6)* 62.6 (8.9)° 59.9 (8.2)*

Responders 62.8 (8.5) 60.7 (10.7)* 61.6 (9.3) 59.2 (8.3)*

Non-Responders 67.7 (10.5) 63.3 (10.6)* 65.6 (7.7) 62.1 (8.1)*

pNN50 (%) Mean (± SD) 17.7 (20.4) 19.5 (22.9) 20.9 (18.5)° 18.1 (18.9)

Responders 20.4 (21.8) 22.8 (24.5) 23.6 (19.1) 21.2 (30.1)

Non-Responders 9.3 (17.8) 9.0 (13.7) 12.5 (14.7) 8.3 (12.2)

RMSSD (ms) Mean (± SD) 39.5 (26.2) 38.9 (26.4) 49.4 (26.8)° 39.4 (19.9)*

Responders 42.4 (26.5) 42.0 (27.3) 53.2 (27.4)° 42.5 (19.0)*

Non-Responders 30.2 (28.6) 29.6 (22.4) 37.0 (27.1) 29.1 (20.8)

LF/HF ratio Mean (± SD) 2.0 (1.9) 1.9 (1.7) 2.9 (2.4)° 2.4 (2.2)°

Responders 1.6 (1.7) 1.6 (1.6) 3.0 (2.4)° 2.5 (2.4)°

Non-Responders 3.5 (2.2) 2.8 (1.9) 2.6 (1.4) 2.3 (1.3)

Significant differences with the Sidak’s posthoc test at p < 0.05 are indicated as follow: °noVRH vs. VRH; *baseline vs. 4/10. VRH, virtual reality hypnosis; HR, heart rate;

pNN50, percentage of successive NN separated by >50 ms; RMSSD, root mean square of successive differences.

FIGURE 2

VAS scores (/10). (A) Mean VAS scores for pain intensity (A) and pain unpleasantness (B) when subject were submitted to cold stimulation at 4/10 with the
VAS. Panels on the right (A2, B2) illustrates VAS changes for responders (10% decrease), non-responders (changes below 10%) and inverse responders
(changes > 10%). Data selected for this graph were compared using the Student’s t-test. Statistical code: (***), p < 0.001.
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mean ratio (LF/HF) shown in Table 2. Analysis yielded a higher

LF/HF ratio observed under VRH during baseline and the

stimulation period, compared to noVRH, for all subject and

responders. No differences are seen between baseline and

stimulation periods for non-responders.
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Respiration rate

As previously seen in other studies, VRH deeply affects

respiration rates, which are significantly reduced and statistically

different between groups (Figure 3A; all subject analysis). VRH
frontiersin.org
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FIGURE 3

Respiration rate (cycle/min) at rest among the whole population (A) and, for to and VRH-noVRH, after segregation into responders and non-responders
subgroups (B) statistical code for the paired Student’s t-test: ***, p < 0.001; **, p < 0.01; *, p < 0.05.
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condition is associated with reduced mean respiratory rate (mean

reduction of −3.83 ± 2.65 cycles/minute; 95% CI: 1.82 to 5.85;

Student’s t-test: p < 0.0001; n = 29). Once again, this VRH

induced reduction in the mean respiratory rate could be seen in

the responder group but, surprisingly, also in the non-responder

group (Figure 3).

Although responders had a slight yet significant increase in

their respiration rate in noVRH condition (+0.92 ± 1.69 cycles/

minute; 95% CI: 0,170 to 1,666; Student’s t-test p = 0.019; n = 22),

they had reduced respiratory rates in VRH condition (−1.99 ±
1.646 cycles/minute; 95% CI: −2,721 to −1,261; Student’s t-test p
< 0.0001; n = 22). Among non-responders, respiration rates

remained stable in noVRH condition (+0.29 ± 2.28 cycles/minute;

95% CI: −1,818 to 2,395; Student’s t-test: p = 0.75; n = 7), mean

values were decreased in VRH (−2.39 ± 1.66 cycles/minute; 95%

CI: −3,926 to −0,8600; Student’s t-test: p = 0.0088; n = 7).
Discussion

Our study shows that the VRH device tested here reduced

perceived pain intensity and unpleasantness by 33% and 40%,

respectively, on average, but not all subjects had a reduction in

perceived pain with VRH. As an attempt to explain these

different responses, we divided our cohort based on the

percentage change in perceived intensity between noVRH and

the VRH condition. This yielded three groups: responders (i.e.,

VRH reduced by more than 10% VAS pain scores: 75.6% of the

subjects), non-responders (i.e., VAS pain score change between

−10% and +10%), and inverse-responders (i.e., VAS pain score

higher than +10%). However, because there were too few subjects

in the non-responder and inverse-responder groups, they were

grouped for the analyses and referred to as “non-responders”.

Hypnotizability was found to be the most important predictor of

VRH efficacy (i.e., in the responder group), as hypnotizability

correlated with a reduction change in pain intensity below 10%

from noVRH to VRH conditions. As expected, there was a

sex-specific difference in hypnotizability scores as seen in
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previous studies (32). While women had higher scores than

males during baseline and after VRH, subject sex/gender could

not be predictive of VRH responsiveness in our study.

Interestingly, there were also significant differences in heart

rate variability parameters between the responder and non-

responder group. We found that RMSSD was the best predictor

of VRH-induced analgesia. RMSSD was significantly higher in

responders throughout the experiment, regardless of condition

(noVRH or VRH). Breathing exercises administered by VRH

during the baseline period resulted in an increase in RMSSD at

that time point only in responders. Surprisingly, a decrease in

HF (i.e., mostly reflecting parasympathetic tone) was observed in

the VRH condition compared with the noVRH condition. This

was associated with a higher LF/HF ratio in the VRH condition

in responders, whereas this ratio did not change in non-

responders. These data seem to indicate an increase in

parasympathetic tone and thus a decrease in arousal under VRH

compared with noVRH. One likely explanation is that VRH

reduces the emotional processing by central nervous system

structures leading to a predominance of the parasympathetic

tone in the autonomic nervous system. Another synergistic

possibility would be that VRH-induced reduction in respiratory

rate contributes to reach a level of cardiac coherence. It is worth

mentioning here that slow breathing was not always correlated

with reduced pain perception (i.e., in the non-responder group).

It is then unlikely that slow breathing could account for a major

VRH-related analgesic effect. It remains, however, that slow

breathing was only observed under VRH confirming the efficacy

of the script and possibly contribution to the well-being of the

subject.

As mentioned in the introduction, VRH research studies are

still limited in number, and it is complicated to relate this work

to other studies of VRH. Like Patterson and coworkers, we

conducted this experiment with healthy volunteers to have better

control over our population (in terms of age, sex, absence of

disease, hypnotic ability, etc.) (14). They compared VRH with

hypnosis and VR alone. Although they found a more positive

effect of VRH than VR or hypnosis alone on induced heat pain
frontiersin.org
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in weakly hypnotizable subjects, there was no advantage of VRH

(compared to hypnosis) in strongly hypnotizable subjects. These

results may be explained by the induction method. Indeed, the

induction in VRH was not performed simultaneously with the

VR movie. However, it would have been of interest to test

whether VR is important to induce hypnosis in low hypnotizable

subjects. The work of Rousseaux and colleagues was performed

with patients undergoing cardiac surgery (25). In contrast to our

study and that of Patterson and colleagues, they found no effect

of VR, VRH, or hypnosis on postoperative pain and anxiety.

However, they did not conduct the experimental session during

surgery, but one session the day before and one on the first

postoperative day. The subjects were mainly men, and male

gender may have a negative effect on hypnotizability, as

mentioned earlier. In addition, the subjects were older, which has

no effect on hypnotizability (33, 34), but it has been shown to

decrease the effect of distraction on pain modulation (35).

This study has several limitations: First, our sample is highly

educated (average 4.8 years after high school graduation), which

has been shown to correlate with the efficacy of VR. Individuals

with low levels of education are more likely to benefit from VR

(36). Furthermore, education has a positive correlation on

hypnotizability (37). This should be considered in future studies.

In addition, we deliberately chose to conduct this exploratory

study without a parallel “control” conditions, as it is difficult to

imagine which control would be the most appropriate (2D VR,

head-mount device with fixed images or luminosity, etc.). We

made the choice of testing the VRH script as a proposal to

reduce experimental cold pain in comparison to noVRH.

Altogether, and despite these limitations, this study is

supporting the idea that some cardiac parameter may be

predictive of a successful VRH-induced analgesia, when healthy

subjects are submitted to cold pain. It also gives for the first time

an idea of how much healthy subjects respond to VRH-induced

analgesia while facing cold experimental pain. This temperature

modality has not been tested so far with VR devices and this is

promising for a possible clinical study with neuropathic patients

who often exhibit mechanical and cold allodynia among other

sensory symptoms.
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