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ABHD6 and MAGL control 2-AG
levels in the PAG and allodynia in a
CSD-induced periorbital model of
headache
Erika Liktor-Busa1†, Aidan A. Levine1†, Seph M. Palomino1,
Simar Singh2, Jared Wahl1, Todd W. Vanderah1, Nephi Stella2,3

and Tally M. Largent-Milnes1*
1Department of Pharmacology, University of Arizona, Tucson, AZ, United States, 2Department of
Pharmacology, University of Washington, Seattle, WA, United States, 3Department of Psychiatry and
Behavioral Sciences, University of Washington, Seattle, WA, United States

Introduction: The high prevalence and severe symptoms of migraines in humans
emphasizes the need to identify underlying mechanisms that can be targeted for
therapeutic benefit. Clinical Endocannabinoid Deficiency (CED) posits that
reduced endocannabinoid tone may contribute to migraine development and
other neuropathic pain conditions. While strategies that increase levels of the
endocannabinoid n-arachidonoylethanolamide have been tested, few studies
have investigated targeting the levels of the more abundant endocannabinoid,
2-arachidonoylgycerol, as an effective migraine intervention.
Methods: Cortical spreading depression was induced in female Sprague Dawley rats
via KCl (potassium chloride) administration, followed by measures of
endocannabinoid levels, enzyme activity, and neuroinflammatory markers. Efficacy
of inhibiting 2-arachidonoylglycerol hydrolysis to mitigate periorbital allodynia was
then tested using reversal and prevention paradigms.
Results: We discovered reduced 2-arachidonoylglycerol levels in the periaqueductal
grey associated with increased hydrolysis following headache induction.
Pharmacological inhibition of the 2-arachidonoylglycerol hydrolyzing enzymes,
α/β-hydrolase domain-containing 6 and monoacylglycerol lipase reversed and
prevented induced periorbital allodynia in a cannabinoid receptor-dependent
manner.
Discussion: Our study unravels a mechanistic link between 2-arachidonoylglycerol
hydrolysis activity in the periaqueductal grey in a preclinical, rat model of migraine.
Thus, 2-arachidonoylglycerol hydrolysis inhibitors represent a potential new
therapeutic avenue for the treatment of headache.
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1. Introduction

Migraine is a neurological pain disorder that affects more than 38 million Americans and

is characterized by severe headache and sensory hypersensitivities (1). One third of patients

with migraine experience aura, which is associated with the neurological event cortical

spreading depression (CSD). CSD is a self-propagating wave of neuronal hyperexcitability

followed by transient depression (2). In addition, CSD events induce neuroinflammation

and have been shown to activate the periaqueductal gray (PAG) (3, 4). Despite severe

symptoms, high prevalence, and pronounced neuroinflammation, current migraine
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interventions offer limited therapeutic benefit with low tolerability

(5), highlighting the need to develop new treatment strategies.

The endocannabinoid (eCB) system plays a fundamental role

in both central and peripheral pain processing (6). Two main

eCB lipids, N-arachidonylethanolamine (AEA) and 2-

arachidonoylglycerol (2-AG), are produced by N-acyl

phosphatidylethanolamine phospholipase D (NAPE-PLD) and

diacylglycerol lipases (DAGLs), respectively. While AEA is

predominantly hydrolyzed by fatty acid amide hydrolase, 2-AG is

hydrolyzed by α/β-hydrolase domain-containing 6 (ABHD6) and

monoacylglycerol lipase (MAGL) (7). Both AEA and 2-AG

activate the G protein-coupled cannabinoid receptors, CB1R and

CB2R, which are implicated in synaptic relay and immune

processes respectively (8).,

Mounting evidence supports the theoretical construct of

Clinical Endocannabinoid Deficiency (CED) by which decreased

AEA and 2-AG tone plays a role in functional pain disorders,

including migraine (9, 10). These observations led to evaluation

of the AEA role in migraine (9), yet no agents have been

approved for clinical use. Our recent work showed that 2-AG

levels are reduced in the periaqueductal grey (PAG) in a rat

model of medication overuse headache. Furthermore, DAGLα

inhibition induces periorbital allodynia at times when 2-AG

levels in the PAG and other cortical regions associated with CSD

were reduced (11). Based on this premise and work suggesting

MAGL is implicated in a nitroglycerine model of migraine (12,

13), studies herein examined the influence of CSD induction on

AEA and 2-AG levels in distinct brain areas, including V1M

cortex, occipital visual motor cortex 1; PAG, periaqueductal gray;

Vc, trigeminal nucleus caudalis; and TG, trigeminal ganglia. The

occipital cortex (V1M) is the site of CSD induction which has

inputs to PAG providing an anatomical link between CSD and

the PAG. It is also known that PAG can both inhibit and

facilitate nociception. The involvement of trigeminal system (Vc

and TG) in regulation of migraine is widely described. Our work

also investigated the role for DAGLα, MAGL, and ABHD6 to

2-AG regulation within the PAG, and the validity of increasing

2-AG signaling as a therapeutic approach for headache-like pain.
2. Materials and methods

2.1. Drugs and reagents

Ketamine/xylazine was purchased from Sigma-Aldrich

(St. Louis, MO) and isoflurane from VetOne. (IL, USA).

MJN110, KT-182, SR141716 (Rimonabant), and SR144528 were

purchased from Cayman Chemicals (Ann Arbor, MI). All other

chemicals, unless noted were purchased from Sigma-Aldrich

(St. Louis, MO).
2.2. Animals

Intact, female Sprague Dawley rats (200–250 g, n = 345) were

purchased from Envigo (Indianapolis, IN) and housed in a
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climate-controlled room on a 12/12 h light/dark cycle with lights

on at 7:00 am with food and water available ad libitum. After

arrival to the vivarium, rats were habituated for 1 week during

which handling occurred daily to minimize stress. Animals were

housed 3 per cage on arrival and individually after cannulation.

All procedures were performed during the 12 h light cycle,

according to the policies and recommendations of the

International Association for the Study of Pain, NIH guidelines

for laboratory animals, and with IACUC approval from the

University of Arizona (# 17-223). Justification for animal

numbers was consistent with NIH policy (NOT-OD-15-102), and

experiments were randomized to blinded treatment groups to

give 80% power to detect a treatment effect size of 20%

compared to a baseline response of 5% at a significance level of

0.05 (14, 15). Female rats were used as headache disorders affect

females to males at a nearly 3:1 ratio (16). The stage of estrous

cycle was not determined in this study, since our former work

indicated no changes in 2-AG level of selected brain areas during

estrus cycle (17). The animal well-being and signs of distress

were monitored daily after surgery for at least 5 days. A total of

29 animals were excluded based on predetermined criteria

including identification as statistical outliers using GraphPad

(n = 11), low post-surgical baseline allodynia values (n = 8),

and temperature variation below IACUC standards mid-testing

(n = 10).
2.3. Dural cannulation

Dural cannulation was performed as previously described (18).

Briefly, anesthesia was induced with intraperitoneal 45:5:2 mg/kg

cocktail of ketamine:xylazine:acepromazine. Rats were placed in a

stereotactic frame (Stoelting Co.), and a 1.5- to 2-cm incision

was made above the skull. A 0.66- to 1-mm hole (−6 mm A/P,

−3 mm M/l from bregma) was made with a hand drill (DH-0

Pin Vise; Plastics One) to expose the dura. A guide cannula (0.5

mm from top of skull, 22 GA, #C313G; Plastics One) was

inserted into the hole and sealed into place. Two 1 mm holes

were made for stainless-steel screws (#MPX-080-3F-1M; Small

Parts), and dental acrylic fixed the cannula to the screws and

skull. A dummy cannula (#C313DC; Plastics One) was inserted

to ensure patency of the guide cannula. Rats recovered over 6–8

d. Cannula placement and dural integrity at screw placement was

confirmed postmortem.
2.4. Cortical injections

Cortical injections were performed using a Hamilton injector

(30 GA, #80308 701 SN, Hamilton Company) customized to

project 1.0 mm into the beyond the dura above the occipital

cortex (V1M). At t = 0 min, filtered KCl (0.5 µl, 1 M) or artificial

CSF [aCSF; 145 mM NaCl, 2.7 mM KCl, 1 mM MgCl2, 1.2 mM

CaCl2, and 2 mM Na2HPO4 (pH 7.4)] was locally injected into

V1M.
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2.5. Pre- or post-cortical injection
treatments

MJN110 (10 mg/kg, IP) was injected before (t =−30 min) or

after (t = +30 min) cortical injection of KCl. KT-182 (2 mg/kg,

IP) was injected before (t =−3 h) or after (t = +30 min) cortical

injection of KCl according to their individual kinetics. SR141716

(1 mg/kg, IP) or SR144528 (1 mg/kg, IP) were administered 10

min before MJN110 or KT-182 in receptor dependency studies.

MJN110, SR141716, and SR144528 were dissolved in DMSO:

Tween80:saline (1:1:8, v/v/v). KT-182 was dissolved in ethanol-

cremaphor-saline (1:1:18, v/v/v). The number of animals used in

each experiment is indicated in Results section.
2.6. Periorbital mechanical allodynia

Periorbital allodynia was evaluated before and after cortical

injection (t = 30, 60, 90, 120, 180, 360 min, and 24 h) by an

observer blinded to drug condition. Rats were grouped based on

their postsurgical baseline to ensure equivalent calculated pre-

injection thresholds (6–8 g); rats exhibiting post-cannulation

mechanical thresholds <6 g were removed from the study. Rats

were acclimated to testing box then calibrated von Frey filaments

(4.08–4.93 g) were applied perpendicularly to the midline of the

forehead at the level of the eyes with enough force to cause the

filament to slightly bend while held for 5s as described (19).

Response was indicated by a sharp withdrawal of the head,

vocalization, or severe batting at the filament with attempts to

bite it. The withdrawal threshold was determined using a

modified version of the Dixon up-down method.
2.7. Tissue harvest

Rats were anesthetized as above, then transcardially perfused

with ice cold 0.1 M phosphate buffer at physiological flow rates

(3.1 ml/min). After decapitation, tissue samples (V1M cortex,

occipital cortex; PAG, periaqueductal gray; Vc, trigeminal

nucleus caudalis; and TG, trigeminal ganglia) harvested, flash

frozen in liquid nitrogen and stored at −80°C until further use.
2.8. Quantification of 2-Ag and AEA by LC-MS

Samples (n = 3–4/group) for LC-MS were purified by

organic solvent extraction, as described by Wilkerson et al. (20)

On the day of processing, tissues were weighed and Dounce

homogenized in 1 ml of chloroform/methanol (2:1 v/v) with

phenylmethylsulfonyl fluoride (PMSF, 1 mM) to inhibit

degradation by endogenous enzymes. Homogenates were mixed

with NaCl (0.3 ml, 0.7% w/v), vortexed, and centrifuged for

(3,200 × g, 10 min, 4°C). Aqueous phase plus debris were collected

and extracted twice more with 0.8 ml of chloroform. Organic

phases were pooled, and internal standard was added to each

sample. Mixed internal standards were prepared by serial dilution
Frontiers in Pain Research 03
of d4-AEA and d5–2-AG in acetonitrile to calibrate concentration

calculations and ensure run variability is accounted for according

to best practices (21). The organic solvents were evaporated under

nitrogen gas; glycerol in methanol (6 μl, 30%) was added before

evaporation. Dried samples were reconstituted with chloroform

(0.2 ml) and mixed with 1 ml ice-cold acetone. Mixtures were

then centrifuged (1,800 × g, 5 min, 4°C). The organic layer of each

sample was collected and evaporated under nitrogen.

Analysis of 2-AG and AEA was performed on an Ultivo triple

quadrupole mass spectrometer combined with a 1,290 Infinity II

UPLC system (Agilent, Palo Alto, CA). The instrument was

operated in electrospray positive mode with a gas temperature of

150°C at a flow of 5l/min, nebulizer at 15 psi, capillary voltage of

4,500 V, sheath gas at 400°C with a flow of 12l/min and nozzle

voltage of 300 V. Transitions monitored were 348.3→ 287.3 and

62, 352.3→ 287.4 and 65.9, 379.3→ 287.2 and 269.2, and

384.3→ 287.2 and 296.1 for AEA, 2-AG, d4-AEA and d5-2-AG.

The first fragment was used for quantification and the second

fragment was used for confirmation. The first 3 min of analysis

was diverted to waste. Chromatographic separation was achieved

using an isocratic system of 21% 1 mM ammonium fluoride and

79% methanol on an Acquity UPLC BEH C-18 1.7u 2.1 × 100

mm column (Waters, Milford, MA) at 60°C. After each injection

the column was washed with 90% methanol for one minute then

re-equilibrated for 5 min prior to the next injection. Samples

were maintained at 4°C. Mixed calibration solutions were

prepared by serial dilution of AEA and 2-AG stock solutions in

80% C₂H₃N. Calibration curves were prepared for each analysis

by adding 10 µl internal standard solution to 20 µl standard

solution. 200 µl of 80:2° C₂H₃N:H2O was added to dried samples

which were then vortexed and sonicated. Samples were

centrifuged at (15,800 × g, 5 min, 4°C), supernatant transferred to

autosampler vials and 5 µl was injected for analysis.
2.9. Membrane preparation

Flash-frozen tissue was thawed on ice, Dounce homogenized in

ice cold lysis buffer (20 mM HEPES, 1 mM MgCl2, 2 mM DTT, 10

units/ml benzonase) and centrifuged at 100,000 × g for 45 min

(Beckman Coulter rotor Ti55). The supernatant was discarded,

and the pellet resuspended in buffer HEPES (20 mM)

supplemented with DTT (2 mM). Protein concentration of

samples was determined (DC protein assay, Bio-Rad) before

aliquoting and flash freezing samples in liquid nitrogen. Samples

were stored at −80 until further use.
2.10. Western- immunoblotting

Samples (n = 3–4/group) were thawed on ice, 25 µg of protein

was loaded on a 10% pre-cast polyacrylamide gel (Mini-PROTEAN

TGXTM, Biorad) and then transferred to a PVDF membrane

(Immobilon-PSQ, Sigma Aldrich). Membranes were blocked with

5% milk in tris-buffered saline with 0.05% TWEEN-20 (TBST)

for 1 h at RT. Following blocking, membranes were incubated
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overnight at 4°C in primary antibodies (ABHD6: characterized by

Deng, et al. (22); MAGL: ab77398, Abcam; Iba1: PA5-27436,

Invitrogen; GFAP: ab68428, Abcam; α-tubulin: 3873S, Cell

Signaling) in blocking buffer. The membranes were washed three

times with TBST, incubated with secondary antibodies [goat-

anti-mouse IgG-HRP and donkey anti-goat secondary IgG-HRP

(Santa Cruz)] for 1 h at RT, then washed with TBST thrice.

Membranes were incubated in enhanced chemiluminescent

substrate (SuperSignal West Femto Maximum Sensitivity

Substrate, ThermoFisher Scientific) for 60 s at RT and detected

using Chemidoc MP (Bio-Rad). Membranes were stained with

Ponceau S (G Biosciences) to obtain total protein. Analysis

performed with ImageJ.
2.11. DAG and PGE2 ELISA

DAG ELISA kit (Aviva System Biology, OKEH02607) was used

according to manufacturer’s instruction. DAG: Tissue samples (n

= 3–4/group) were weighed, homogenized in PBS buffer and

stored overnight at ≤−20°C. Two freeze-thaw cycles were

conducted to break the cell membranes. Homogenates were

centrifuged (5,000 g, 10 min, 4°C). 5 µl of the supernatant was

applied in the immunoassay. PGE2 ELISA kit (Abcam, ab133021)

was used according to manufacturer`s guidance. Tissue samples

(n = 3–4/group) were weighed and homogenized in assay buffer

supplemented with indomethacin (10 µM) to block endogenous

prostaglandin synthetase. The homogenized samples were

centrifuged (8,000 × g, 10 min, 4°C) and 100 µl of supernatant

was used.
2.12. Statistical analysis

GraphPad Prism 7.0 and 8.3.1 (GraphPad Software) were used

for statistical analysis. Numbers required to achieve statistical

power (80% power to detect 20% difference) were determined by

G.Power3.1 a priori with historical data in naïve male and female

samples and confirmed post hoc with actual data collected.

Unless otherwise stated, the data were expressed as mean ±

S.E.M. Periorbital allodynia measurements were assessed using a

repeated measure two-way ANOVA to analyze differences

between treatment groups over time with a Bonferroni test

applied post hoc. Molecular studies were compared by unpaired

t-test or one-way ANOVA, as indicated. Differences were

considered significant if p≤ 0.05.
3. Results

3.1. Induction of CSD reduces 2-Ag levels
and transiently upregulates ABHD6/MAGL
expression in the PAG

We previously showed that acute DAGLα inhibition reduces 2-

AG levels in the PAG at times of peak periorbital allodynia,
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suggesting a role for 2-AG in the induction of headache like pain

(11). Here we investigated whether CSD induction by cortical

injection of KCl similarly reduced 2-AG as compared to control

aCSF injection (Figure 1A) by measuring 2-AG and AEA in the

V1M cortex, PAG, Vc, and TG via LC-MS from tissue harvested

90 min after cortical injection. Figure 1B shows that CSD

induction decreased 2-AG levels at 90 min within the PAG but

not in cortex, Vc, and TG (2-AG: aCSF vs. KCl—cortex: t(4) =

0.8003, p = 0.47, PAG: t(4) = 5.3366, p = 0.023, Vc: t(4) = 1.033,

p = 0.36, TG: t(6) = 1.849, p = 0.11, Student’s t-test). AEA levels

were unchanged by CSD induction in the selected brain regions

(Figure 1C; AEA: aCSF vs. KCl—cortex: t(3) = 0.6971, p = 0.536,

PAG: t(7) = 0.2765, p = 0.790, Vc: t(4) = 1.170, p = 0.307, TG: t(7)

= 0.04016, p = 0.969, Student’s t-test). Since we observed

significant changes in 2-AG levels only in PAG, subsequent

experiments focused on that region.

PAG samples were analyzed after CSD induction to determine

the time course of 2-AG decreases. Reduced 2-AG levels were

observed 30 min after cortical KCl injection and remained

significantly decreased relative to aCSF until 180 min post

injection [Figure 1D; 2-AG: two-way ANOVA, F(4,16) = 0.7187;

aCSF vs. KCl—15 min: p = 0.17, 30 min: 0.019, 90 min: p = 0.020,

180 min: p = 0.44, 360 min: p = 0.98, Bonferroni post-test]. No

significant changes in AEA level were detected in any time-point

(Figure 1E). These data show significant region and time

selective reductions in 2-AG tone in the PAG after CSD induction.

Reductions in 2-AG tone may result from decreased synthesis

by DAGLα or increased degradation by MAGL and/or ABHD6 (8).

Western blot analysis of PAG tissue after KCl injection showed that

DAGL detection in PAG tissue was not affected by CSD

[Figures 2B,C; two-way ANOVA, F(3,28) = 2.169, p = 0.11].

Likewise, levels of DAG, the substrate for DAGL, were unaffected

by cortical KCl injection [Figure 2D; two-way ANOVA, F(1,9) =

1.914, p = 0.20]. In contrast, ABHD6 and MAGL detection

increased 30 min after cortical injection of KCl as compared to

aCSF control and were both reduced below basal levels at 90 min

(Figures 3B–E; MAGL: 30 min: t(6) = 3.762, p = 0.0094; 90 min:

t(4) = 1.133, p = 0.32; ABHD6: 30min: t(5) = 3.44, p = 0.018;

90 min: t(4) = 3.752, p = 0.020; unpaired Student t-test). Thus,

decreases in PAG 2-AG levels triggered by CSD do not reflect

decreased DAGLα function but suggest a transient increase in

total expression of MAGL/ABHD6.
3.2. CSD triggered changes in PAG
neuroinflammatory response

As cortical neuroinflammation is reported during CSD (23),

the endocannabinoid system plays a role in mitigating

neuroinflammation (8), and degradation of 2-AG and AEA

generate proinflammatory mediators (24), we used WB to detect

activation of astrocytes and microglia using GFAP and Iba1,

respectively, and measured PGE2 by ELISA in the PAG

(Figure 4). While Iba1 detection in the PAG was not affected

by cortical KCl injection [Figures 4B,D; two-way ANOVA

F(5,12) = 0.9212; 30 min: p = 0.6914, 90 min: p = 0.9922, 180 min:
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FIGURE 1

Time-dependent reduction of 2-AG levels in PAG after CSD in female rats. The surgery of dural cannulation was performed on female Sprague Dawley
rats. After 7 days recovery period, a focal injection of 0.5 µl of 1 M KCl or artificial CSF (aCSF) were injected through the guide cannula into the cerebral
cortex. Tissue samples (cortex, PAG, Vc, and TG) were collected at 90 min after cortical injections. In a separate set of experiment, PAG samples were
harvested at different time-points (15, 30, 90, 180, and 360 min) after aCSF or KCl injection. The samples were subjected to LC-MS to quantify
endocannabinoid levels. (A) Schematic outlining protocol to measure the changes in endocannabinoid levels of selected brain regions after CSD
induction. (B) Reduced 2-AG level was observed only in PAG samples at 90 min time-point after CSD induction. There were no significant differences
at 2-AG levels in cortex, Vc, and TG samples at 90 min after KCl injection. (2-AG: aCSF vs. KCl—cortex: p= 0.47, PAG: p= 0.023, Vc: p= 0.36, TG:
p= 0.11, as assessed by multiple t-test). Values are expressed as % of naive ± SD (n= 3-6/condition). The dotted line represents the 2-AG levels in
naïve samples. (C) Induction of CSD by cortical injection of KCl did not cause significant differences in AEA levels 90 min post-injection in cortex,
PAG, Vc, and TG samples. (AEA: aCSF vs. KCl—cortex: p= 0.54, PAG: p= 0.79, Vc: p= 0.31, TG: p= 0.97, as assessed by multiple t-test). Values are
expressed as % of naive ± SD (n= 3-6/condition). The dotted line represents the AEA levels in naïve samples. (D) Decreased levels of 2-AG were
detected in PAG at 30 and 90 min after KCl injection as compared to aCSF (2-AG: aCSF vs. KCl—15 min: p= 0.17, 30 min: 0.019, 90 min: p= 0.020,
180 min: p= 0.44, 360 min: p= 0.98 as assessed by two-way ANOVA with Bonferroni post-test, Time × Injection: F(4,16) = 0.7187). AEA levels were
not significantly different between aCSF and KCl groups at any time point analyzed (E). (AEA: aCSF vs. KCl—15 min: p= 0.36, 30 min: p= 0.33, 90 min:
p= 0.33, 180 min: p= 0.70, 360 min: p= 0.65 as assessed by two-way ANOVA with Bonferroni post-test, Time × injection: F(1.648,7.827) = 2.096).
Values are expressed as % of aCSF ± SD (n= 3-6/condition). ns = non-significant. *p < 0.05 aCSF vs. KCl.
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FIGURE 2

Reduced 2-AG in the PAG is not linked to decreased enzymatic synthesis by DAGL. Dural cannula was surgically implanted to female Sprague Dawley rats.
After recovery period, PAG samples were harvested at different time-points (30 and 90 min) after cortical injection of KCl (0.5 µl, 1M) or aCSF (0.5 µl), then
subjected to Western-immunoblotting and DAG ELISA. (A) Schematic of measuring the expression of DAGL and DAG level in PAG samples after CSD
induction. (B) Representative immunoblots indicating DAGLα and α-tubulin as a loading control in PAG samples harvested at 30 and 90 min after
CSD induction or aCSF injection. (C) Cortical KCl did not significantly change DAGLα expression as compared to aCSF control at times when 2-AG
are reduced. All data represent the % of aCSF relative expression of DAGLα± SD (n= 3-4). KCl vs. aCSF ns = non-significant, F time × treatment (3,28)
= 2.169, p= 0.11 as assessed by two-way ANOVA with Bonferroni post-test. (D) There was no significant difference in the level of DAG, the precursor
of 2-AG in PAG samples harvested at 30 and 90 min after cortical injection of KCl as compared to aCSF controls. Data show the average amount of
DAG precursor (pg/g) in PAG samples ± SD (n= 3–4). KCl vs. aCSF ns = non-significant, F time × treatment(1,9) = 1.914, p= 0.20 as assessed by two-
way ANOVA with Bonferroni post-test.

Liktor-Busa et al. 10.3389/fpain.2023.1171188
p > 0.9999, Bonferroni], GFAP detection increased after 90 min and

remained elevated at 180 min [Figures 4C,E; two-way ANOVA F

(1,6) = 8.773; 30 min: p > 0.999, 90 min: p = 0.025, 180 min: p =

0.044, Bonferroni]. PGE2 levels in the PAG were increased 2.4-

fold over aCSF by 180 min [Figure 4F; two-way ANOVA, F(1,8)

= 10.08; 180 min: p = 0.015, Bonferroni]. Thus, CSD induction is

associated with a time-dependent neuroinflammatory response

within the PAG characterized by reactive gliosis and production

of PGE2 at times after 2-AG is decreased. An increase in PGE2
levels is consistent with 2-AG hydrolysis, therefore subsequent

experiments evaluated the role of ABHD6 and MAGL in CSD

associated headache-like pain.
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3.3. ABHD6 inhibition prevents and reverses
CSD induced periorbital allodynia in
cannabinoid receptor-independent and
-dependent manners, respectively

Using the brain-penetrant ABHD6 inhibitor, KT-182, the next

study examined the role of ABHD6 in induction and maintenance

of CSD-associated periorbital allodynia. Pretreatment with KT-182

(2 mg/kg, 3 h) prevented the development of periorbital allodynia

starting 60 min after cortical KCl injection and lasting 360 min

[Figure 5B; two-way ANOVA F(8,135) = 5.839; 60–360 min: p <

0.05, Bonferroni, n = 8–11/group]. Neither the CB1R (SR141716,
frontiersin.org
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FIGURE 3

Total expression of ABHD6 and MAGL in PAG after cortical KCl injection. Female Sprague Dawley rats were injected with KCl (0.5 µl, 1M) or aCSF (0.5 µl)
through the guide cannula one week after dural cannulation surgery. PAG samples obtained 30 and 90 min after cortical injections were subjected to
Western immunoblotting to determine expression of ABHD6 and MAGL. (A) Schematic of experimental setting to detect changes in the expression of
MAGL and ABHD6 in CSD induced model. (B) Representative immunoblots showing the detection of MAGL and ABHD6 along with total protein in
PAG samples 30 min after cortical injection of KCl or aCSF. (C) Representative immunoblots of PAG samples showing the detection of MAGL and
ABHD6 with total protein 90 min after CSD induction. (D) Cortical KCl significantly increased ABHD6 detection 30 min after injection however the
detection of ABHD6 was significantly reduced at the 90 min time-point (unpaired t-test, 30min: t(5) = 3.44, p= 0.018; 90 min: t(4) = 3.752, p= 0.020)
(E) MAGL detection was increased 30 min post-injection as compared to cortical injection of aCSF at times when 2-AG are reduced, but no
significant difference was observed at 90 min in PAG samples (unpaired t-test, 30 min: t(6) = 3.762, p= 0.0094; 90 min: t(4) = 1.133, p= 0.32). Values
are % of aCSF control ± SD (n= 3/condition) ns = non-significant (p > 0.05), *p < 0.05, **p < 0.01.
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1 mg/kg; Figure 5C, n = 10–11/group) nor the CB2R antagonist

(SR144528, 1 mg/kg; Figure 5C) blocked the preventative effect

of KT-182 [AUC analysis: KCl + KT-182 vs. KCl + KT-182 +
Frontiers in Pain Research 07
SR141716: p = 0.7426; KCl + KT-182 vs. KCl + KT-182 +

SR144528: p = 0.6112, one-way ANOVA, F(2,29) = 0.3970,

Dunnett, Figure 5D]. In the reversal paradigm, KT182 (2 mg/kg,
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FIGURE 4

Elevated neuroinflammatory biomarkers in PAG after cortical KCl injection. Dural cannulation was performed on female Sprague Dawley rats. After 7-days
recovery, focal injection of 0.5 µl of 1 M KCl or artificial CSF (aCSF) were delivered through the dural cannula into the cerebral cortex. PAG samples were
harvested at three different timepoints (30, 90, and 180 min) post aCSF or KCl injections and subjected to Western immunoblotting or ELISA. Western
immunoblotting was performed to detect the expression of IBa1 and GFAP. The level of PGE2 was measured by ELISA assay. (A) Schema of
measuring the changes of inflammatory factors in PAG samples after CSD induction. (B) Representative images of PAG samples showing the
detection of Iba1 along with α-tubulin, as loading control at 30, 90, and 180 min time-points after cortical injections. (C) Representative images
showing the detection of GFAP with α-tubulin, as loading control in PAG samples harvested at 30-, 90-, and 180-min time-points after CSD
induction. (D) Relative detection of Iba1 in PAG was not significantly different at 30, 90, and 180 min after injection of KCl compared to aCSF control.
Data represent % of aCSF control ± SD (n= 3-4/condition; two-way RM ANOVA time × cortical injection F(2,8) = 3.369, p= 0.087). (E) The detection of
GFAP was elevated at 90 and 180 min post-KCl compared to aCSF control [two-way RM ANOVA F(1,6) = 8.773, Bonferroni post-test: 90 min p=
0.025; 180 min p= 0.044]. Data represent % of aCSF control ± SD (n= 3–4/condition). (F) Increased level of PGE2 was observed in PAG 180 min after
cortical KCl injection (two-way RM ANOVA time × cortical injection F(1,8) = 10.08, Bonferroni post-test p= 0.015). Values are mean ± SD (n= 3–4/
condition). *p < 0.05.
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FIGURE 5

ABHD6 inhibition prevented and reversed periorbital allodynia in a variable CBR dependent manner. Female Sprague Dawley rats were utilized for
behavior assays 7 days after implantation of dural canula. The animals were injected with cortical KCl (0.5 µl, 1M) in combination with KT182 (2 mg/
kg, ip), an ABHD6 inhibitor or vehicle in prevention and reversal treatment paradigms. In the prevention paradigm, KT-182 was injected 3 h before the
application of KCl. In the reversal paradigm, KT-182 was applied 30 min after cortical injection of KCl. In a separate set of experiment, CB1R and
CB2R antagonist SR141716 (1 mg/kg, IP) or SR144528 (1 mg/kg, IP), respectively were administered 10 min before the injection of KT-182. Facial
sensitivity was measured at baseline (BL), post-baseline (pBL), 30, 60, 90, 120, 180, 360 min, and 24 h after CSD induction by calibrated von Frey
filaments. (A) Schema of the experimental timeline. (B) Injection of KT-182 significantly prevented CSD-induced periorbital allodynia at different time-
points as compared to vehicle controls (two-way ANOVA (time × treatment) F(8,135) = 5.838, Bonferroni post-test: 30 min: p= 0.081; 60 min: p=
0.026, 90 min: p= 0.013; 120 min: p= 0.033, 180 min: p= 0.018, 360 min: p= 0.027) (C) Neither SR144528 nor SR141716 significantly blocked this
effect. (D) AUC analysis of treatment groups confirmed no loss of effect with SR141716 or SR144528. (E) Injection of KT182 in the reversal treatment
paradigm alleviated periorbital allodynia caused by cortical KCl at 60 and 90 min (two-way ANOVA (time × treatment) F(8,120) = 4.032, Bonferroni
post-test: 60 min: p= 0.014, 90 min: p= 0.0003, 120 min: p= 0.079, 180 min: p= 0.16, 360 min: p= 0.12) (F) ABHD6 reversal of CSD periorbital
allodynia was blocked by SR144528 and SR141716 within the 90-180 min (two-way ANOVA (time × treatment) F(14,186) = 4.083, Bonferroni post-test:
KCl + KT-182 vs. KCl + KT-182+ SR141716: 90 min: p < 0.0001, 120 min: p < 0.0001, 180 min p= 0.0018; KCl + KT-182 vs. KCl + KT-182 + SR144528:
90 min: p= 0.1017, 120 min: p= 0.0359, 180 min: p= 0.044. (G) AUC analysis of treatment groups was significantly decreased for the SR141716
group, indicating CB1R dependence [KCl + KT-182 vs. KCl + KT-182+ SR141716: p= 0.0048, one-way ANOVA, F(2,27) = 6.328, Dunnett]. Values are the
mean ± SEM (n= 9/condition). ns = non-significant, *p < 0.05, **p < 0.01.
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t = +30 min) reversed the established periorbital allodynia 60 min

post cortical KCl injection [Figure 5E; two-way ANOVA, F

(8,120) = 4.032; 60 min: p = 0.014, 90 min: p = 0.0003, Bonferroni,

n = 7–10/group]. KT-182 reversal of periorbital allodynia was

attenuated by both CB1R and CB2R antagonism between 90 and

180 min [Figure 5F; two-way ANOVA, F(14,186) = 4.083; KCl +

KT-182 vs. KCl + KT-182 + SR141716, 90–180 min: p < 0.01,

Bonferroni; KCl + KT-182 vs. KCl + KT-182 + SR144528, 120–

180 min: p < 0.05, Bonferroni, n = 6–12/group]. AUC analysis

revealed the dominating effect was by CB1R [Figure 5G; KCl +

KT-182 vs. KCl + KT-182+ SR141716: p = 0.0048; KCl + KT-182

vs. KCl + KT-182 + SR144528: p = 0.0623, one-way ANOVA, F

(2,27) = 6.328, Dunnett]. These data show that ABHD6 plays a

time-dependent role in inducing CSD-associated periorbital

allodynia independent of CB1R/CB2R whereas maintenance of

headache-like responses occur via a CB1R > CB2R-dependent

mechanism.
3.4. MAGL inhibition prevents and reverses
CSD induced periorbital allodynia in a CB2R
dependent manner

To determine the role of MAGL in CSD-associated periorbital

allodynia, we used the brain penetrant MAGL inhibitor, MJN110.

Treatment of rats with MJN110 (10 mg/kg) either 30 min before

or 30 min after KCl injection prevented and reversed headache-

like pain (Figures 6B,E). In the prevention paradigm, MJN110

induced in a shorter response that peaked at 360 min, whereas a

longer response that peaked at 180 min was observed in the

reversal paradigm (Figures 6B,E; Prevention, two-way ANOVA F

(7,77) = 3.604; 360 min: p = 0.017, Bonferroni, n = 7–8/group;

Reversal, two-way ANOVA, F(8,92) = 2.911; 180 min: p < 0.002,

Bonferroni, n = 7–9/group). Pretreatment with SR144528 (1 mg/

kg), but not with SR141716 (1 mg/kg) blocked both the

prevention and reversal of periorbital allodynia mediated by

MJN110 (Figures 6C,D,F,G; Prevention AUC: KCl +MJN110 vs.

KCl +MJN110+ SR141716: p = 0.7927; KCl +MJN110 vs. KCl +

MJN110 + SR144528: p = 0.0278; one-way ANOVA F(2,22) =
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5.620, Dunnett, n = 8/group; Reversal AUC: KCl +MJN110 vs.

KCl +MJN110+ SR141716: p = 0.7303; KCl +MJN110 vs. KCl +

MJN110 + SR144528: p = 0.0405; one-way ANOVA F(2,24) =

5.388; Dunnett, n = 9/group). Thus, MAGL plays a role in CSD

periorbital allodynia induction and maintenance. Blockade of

MAGL both prevents and reverses CSD-associated allodynia in a

CB2R-dependent manner.
4. Discussion

Approximately 1/3 of migraineurs experience aura, a

phenomenon linked to CSD and impaired PAG function (2, 4,

25, 26). We found that CSD events generated by cortical KCl

injection in female rats reduce 2-AG levels in the PAG and

elevate markers of neuroinflammation, supporting a role for

ABHD6 and MAGL in CSD induction and maintenance.

Pharmacological inhibition of MAGL or ABHD6 both prevented

and reversed periorbital allodynia associated with CSD induction.

Our study uncovers a mechanistic link between 2-AG hydrolysis

and headache-like pain during CSD that can be therapeutically

targeted (Figure 7).

It is well known that CSD induces neuroinflammation (23, 27).

The expression of TNFα, IL-1β, and several members of interferon-

mediated signaling is elevated after CSD induction (27).

Mechanistically, 2-AG degradation leads to production of

arachidonic acid, which is converted by cyclooxygenases to PGE2
(7). After CSD induction, we observed an increase in ABHD6

and MAGL detection, but not reductions in DAGLα detection,

indicating increased 2-AG hydrolysis. This was coupled to

reductions in 2-AG and increases in GFAP and PGE2. Notably,

reduced levels of 2-AG occurred prior to PGE2 increases and at

times of periorbital allodynia, in agreement with the PGE2
synthesis pathway. Together, these results support a role of rapid

dysregulation of 2-AG in the PAG that facilitates PGE2
production, thus loss of 2-AG may mediate short term

development of allodynia, while PGE2 mediated

neuroinflammation facilitates the extended duration of periorbital

allodynia observed following CSD induction (18). These results
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FIGURE 6

MAGL inhibition prevented and reversed periorbital allodynia induced by cortical KCl injection in a CB2R dependent manner. Dural cannulation was
performed on female Sprague Dawley rats. After the recovery period, MJN110 (10 mg/kg) was injected intraperitoneally (IP) 30 min before (t= −30
min) for the prevention paradigm or 30 min after (t=+30 min) cortical injection of KCl for the reversal paradigm. In a separate set of experiment,
CB1R and CB2R antagonist SR141716 (1 mg/kg, IP) or SR144528 (1 mg/kg, IP), respectively were administered 10 min before the injection of MJN110.
Facial sensitivity was measured at baseline (BL), post-baseline (pBL), 30, 60, 90, 120, 180, 360 min, and 24 h after CSD induction by calibrated von
Frey filaments. (A) Schema of the experimental timeline. (B) Administration of MAGL enzyme inhibitor, MJN110 before CSD induction significantly
increased periorbital withdrawal threshold at 360 min time-point [two-way ANOVA F(7,77) = 3.604, Bonferroni post-test: 360 min: p= 0.017]. (C) The
CB2R inverse agonist, SR144528 significantly blocked the preventative effects of MJN110 at the 60 and 90 min timepoints [two-way ANOVA F(14,126)
= 3.345, Bonferroni post-test: 60 min Veh vs. SR144528, p= 0.0014; 90 min Veh vs. SR144528, p= 0.01]. (D) AUC analysis of treatment groups
confirmed loss of effect for the SR144528 group, indicating CB2R dependence [Prevention AUC: KCl +MJN110 vs. KCl +MJN110+ SR141716: p=
0.7927; KCl +MJN110 vs. KCl +MJN110 + SR144528: p= 0.0278; one-way ANOVA F(2,22) = 5.620, Dunnett, n= 8/group]. (E) MAGL inhibition by
MJN110 also mitigated headache-like pain after CSD induction compared to Veh controls [two-way ANOVA, F(8,92) = 2.911 p= 0.006, Bonferroni
post-test: 60 min: p= 0.50; 90 min: p= 0.19, 120 min: p= 0.37, 180 min: p < 0.002; 360: p= 0.932]. (F) Dosing with the CB2R inverse agonist,
SR144528, but not SR141716A blocked this effect at the 60, 90, and 120 min timepoints [two-way ANOVA, F(14,192) = 1.722, p= 0.0539, Bonferroni
post-test: 60 min Veh vs. SR144528, p= 0.040; 90 min Veh vs. SR144528, p= 0.0008; 120 min Veh vs. SR144528, p= 0.0094]. (G) AUC analysis of
treatment groups confirmed loss of effect for the SR144528 group, indicating CB2R dependence [Reversal AUC: KCl +MJN110 vs. KCl +MJN110+
SR141716: p= 0.7303; KCl +MJN110 vs. KCl +MJN110 + SR144528: p= 0.0405; one-way ANOVA F(2,24) = 5.388; Dunnett, n= 9/group]. Values are
the mean ± SEM (n= 9/condition). ns = non-significant, *p < 0.05, **p < 0.01.

FIGURE 7

Summary of our findings. Our results indicate reduced level of 2-AG in PAG caused by cortical spreading depression (CSD) in female Sprague Dawley rats.
This is accompanied by increased level of hydrolyzing enzymes, ABHD6 and MAGL, and induces a neuroinflammatory response. Pharmacological
blockade of 2-AG degradation via inhibiting MAGL or ABHD6 both prevented and reversed periorbital allodynia associated with CSD induction.
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are consistent with other pain models showing that PGE2 in the

PAG can facilitate hypersensitivity and that increased PAG

functional activity corresponds to pain in migraine (25, 28).

However, these results regarding ABHD6 and MAGL functional

expression and the discrete circuits engaged will need to be

confirmed in future studies, since total expression of these

protein might not reflect their actual activity level.

Administration of ABHD6 and MAGL inhibitors significantly

prevented and reduced CSD-induced periorbital allodynia,

suggesting both a new strategy to treat headache pain and

supporting prior reports with MAGL inhibitors in other

headache models (12). Former work shows that administration of

MAGL inhibitors, URB602 or JZL184 reversed established

hyperalgesia in nitroglycerine-induced migraine models. Reduced

neuronal activation in the ventrolateral PAG and Vc was also

observed after MAGL blockade in the nitroglycerine migraine

model (12). However, NO-donor induced periorbital allodynia

was not reduced in MAGL knock-out mice (29). Therefore,

further research is required to fully elucidate the role of MAGL

in circuits implicated in headache-like pain. CB2R mediated the

preventative and reversal effects of MAGL inhibition on CSD-

induced periorbital allodynia. Notably, several recent Phase I

clinical trials for the MAGL inhibitor ABX-1431 have shown

promise in treating multiple neuropathic and pain-related

disorders, including post herpetic neuralgia, diabetic peripheral

neuropathy, and post-traumatic neuralgia though its clinical

effects for migraine and headache have yet to be tested (30). The

CB1R-independent nature of MAGL inhibition discovered in our

model system prompts the development of such inhibitors to

treat headache pain without producing psychotropic effects

mediated by CB1R (31).

The effects of ABHD6 inhibition before CSD induction were

cannabinoid receptor independent, whereas reversal of periorbital

allodynia by ABHD6 blockade required CB1R. The cannabinoid

receptor independence of ABHD6 inhibition in the prevention

paradigm may be explained by how ABHD6 regulates activity-

dependent increases of 2-AG levels, as ABHD6 degrades 2-AG

prior to release (32). The difference of cannabinoid receptor

dependency between ABHD6 and MAGL inhibition can also be

explained by the different localization of the two enzymes, since

MAGL is considered to express presynaptically, however ABHD6

localize in postsynaptic neurons (Figure 7). Furthermore,

ABHD6 modulates the activity of multiple protein targets in

addition to cannabinoid receptors, including GABAA receptors,

which may explain these findings (33). Alternatively, ABHD6 can

metabolize mono-acylglycerols which may be elevated during

ABHD6 inhibition that act at other receptor systems (e.g.,

GPR55, GPR119, PPAR) (34). Thus, the receptor(s) that mediate

this preventative role of ABHD6 inhibition, as well as elucidation

of cannabinoid-dependency/independency of MAGL and ABHD6

inhibitors remain to be identified.

At the cellular level, activation of CB2R by 2-AG controls

microglial polarization and migration towards a resting state or

anti-inflammatory response. Accordingly, reduction in 2-AG levels

in PAG described is likely to reduce this drive and facilitate an M1,

proinflammatory state (35, 36). Together, these studies suggest that
Frontiers in Pain Research 13
reversal of CSD-associated allodynia by ABHD6 inhibition reflects

control of neurotransmitter release, while MAGL blockade limits

neuroinflammatory response. A recent review paper highlighted the

role of neuroinflammation in the pathogenesis of migraine, beyond

the classic neurogenic inflammation characterized by the release of

neuropeptides such as CGRP and substance P (37). Peripheral

levels of pro-inflammatory cytokines, such as interleukin-1β (IL-

1β), IL-6, IL-8, and tumor necrosis factor-α (TNFα) were elevated

in patients with migraine. Reduced levels of the anti-inflammatory

cytokines, like IL-4 and IL-5 were also reported during migraine

attack. Results obtained from animal models of headache also

support that immunological responses associated with cytokines are

involved in the mechanism of migraine, including enhanced

production of several inflammatory cytokines, such as IL-1β, IL-6,

and TNF-α during CSD. Endocannabinoids have been recognized

as important players in mitigating neuroinflammation (38). Thus,

controlling neuroinflammatory cascade by targeting

endocannabinoid degradation can open a new avenue for future

therapeutic options in migraine.

Limitations: Several limitations of this study exist. First, we

administered enzyme inhibitors and receptor antagonists

systemically. A recent study showed that the activity of MAGL in

trigeminal ganglia is higher as compared to central sites, suggesting

peripheral mechanisms of MAGL inhibition in alleviating migraine

pain (39). Though peripheral activity of cannabinoid receptor

antagonists is possible, SR141716 is shown to be brain penetrant,

but similar studies have not been performed for SR144528 (40).

SR144528 is, however, of consistent size with other molecules that

demonstrate paracellular leak during CSD (18). Future studies are

therefore warranted to examine microinjection of ABHD6/MAGL

inhibitors and cannabinoid receptor antagonists into PAG to

confirm central activity and specificity for cannabinoid receptor

activity in the PAG. Secondly, there is a possibility that other brain

areas that were not evaluated in the current study have impact on

the endocannabinoid-dependent regulation of migraine pain,

therefore investigation of additional brain regions is warranted in

future studies. Third, the data suggesting that behavioral outcomes

after MAGL inhibition occur via CB2 whereas ABHD6 inhibition

leads to CB1R are not fully known; further studies investigating

with respect to time and spatial organization are required. Lastly,

all antibody-based assays are limited by the selectivity to the

protein during normal and in post-translationally modified states;

thus, the changes in antibody detection may reflect changes in

antigen access, rather than changes in total expression.
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