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Luteolin: A promising natural
agent in management of pain in
chronic conditions
Foteini Ntalouka* and Athina Tsirivakou

Department of Research and Development, Whisper P.C., Athens, Greece

Pain due to chronic conditions is a frequent and insufficiently addressed problem.
Current drug options for pain management (either in cases of chronic
inflammatory conditions or neuropathy) do not adequately treat pain. Moreover,
they are associated with important adverse events in long term use. Luteolin is a
flavonoid widely present in the plant kingdom and its sources have been
assembled in a comprehensive list of this paper. Luteolin has shown in several
research studies a range of pharmacological properties; anti-inflammatory,
antioxidant, neuroprotective, and analgesic. In this article, we summarize the
effects and potential benefits from introducing luteolin as an adjuvant agent in
established protocols for pain management. We review the most indicative in
vivo and in vitro evidence of how luteolin can target the molecular pathways
involved in pathogenesis of chronic inflammatory and neuropathic pain. The
data reviewed strongly support luteolin’s promising benefits in pain management
and raise the need for further clinical trials that can establish its role in
clinical practice.
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1. Introduction

Pain is defined by The International Association for the Study of Pain (IASP) as: “An

unpleasant sensory and emotional experience associated with, or resembling that

associated with, actual or potential tissue damage” (1).

Acute pain comes from the activation of the nociceptors to noxious stimuli. It works as a

normal, warning system that protects the body from potential damage that can be caused by

physical, thermal, or chemical threats. It can also result from a damaged (inflamed) tissue. In

the latter case, pain is expected to be relieved when resolution of inflammation is achieved

and the healing process is completed (2, 3).

Four processes occur during pain perception: Transduction, transmission, perception

and modulation (Figure 1). The ascending pathway represents the signal transmission

from peripheral nerves to the brain, whereas modulation can follow an ascending and/or

descending pathway. Through modulation, pain impulses can be either enhanced or

inhibited. Inhibitory mechanisms have been the basis for various pain control

management approaches, e.g., opioids drugs that mimic the endogenous opioid inhibitory

system. Neurotransmitters play an important role in the pain transmission and

modulation. They can be either produced from peripheral nerves to facilitate pain

transmission (e.g., serotonin released at the site of injury or inflammation) or to inhibit

pain impulses (e.g., serotonin, GABA and opioids acting in spinal dorsal horn) (4, 5).

In contrast to acute pain, pain in chronic disorders is a much more complicated state and

may involve concurrently different mechanistic types of pain. It can be either nociceptive,
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FIGURE 1

Pain pathways: transduction-transmission-perception-modulation. Transduction refers to activation of peripheral nociceptors (primary afferent neurons)
from various stimuli. Cell bodies of nociceptors neurons are located in the dorsal root ganglia (DRG) (innervating the skin, deep tissues, visceral organs)
and trigeminal ganglia (innervating the face). Nociceptors express transducers on their distal terminus, which are high-threshold ion channels, such as
transient receptor potential ion channels [TRPs, ATP- gated ion channels, and acid-sensing ion channels (ASIC)]. These are responsible for converting
the stimuli to action potential (AP). Next is the transmission process during which primary afferent neurons transmit the AP to the spinal cord, via
their axons that terminate in the spinal dorsal horn (DH). Perception refers to the projection of pain signals in the brain, during which complex
neuronal networks in the brain receive and “translate” from the spinal cord information about duration, location, and intensity of pain. Modulation is
the process by which the nervous system either enhances or inhibits pain signals. Alteration of pain impulses occurs due to three endogenous
mechanisms. 1. Segmental inhibition during which the inhibitory nerve in the spinal cord can be blocked to transmit noxious stimuli from C-fibers as
a result of stimulation of the non-noxious Aβ fibers nociceptors (the “gate theory”). The method of pain management with transcutaneous electrical
nerve stimulation is based on this theory. 2. The opioid system consists of opioid receptors in the brain, spinal cord and peripheral nerves that are
activated by the binding of endogenous opioids (enkephalins, endorphins, and dynorphins). 3. The descending inhibitory nerve system, projecting via
the midbrain, inhibits nociceptive transmission at the spinal cord dorsal horn.
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neuropathic, or include both components. Nociceptive is defined as

the pain caused by damage in non-neuronal tissues, whereas

neuropathic pain is the pain resulting from damage in the

neuronal system. Prolonged stimulation of the nervous system

leads to sensitization, during which the threshold of nociceptors

is reduced, and to the phenomenon of hyperalgesia (increased

sense of pain from a stimulus that causes pain) or allodynia

(pain provoked by a stimulus that normally is not painful) is

induced (3) (Figure 2).

Experiencing pain due to chronic disorders can have a serious

impact on the quality of life of the afflicted individuals. Sleep

deprivation, stress, anxiety, and social withdrawal are common

consequences which seem to also have a bidirectional

relationship in pain perception (6).

Therefore, effective management of pain is crucial in chronic

conditions and despite the advances in medical treatments, it

remains a challenge in clinical practice. Maximizing effectiveness

and minimizing the risks for side effects in long-term use, are the

goals in treating pain. However, current drug options do not seem

to completely achieve this goal, neither in targeting pain as a

symptom of a chronic inflammatory disease, nor as a result of a
Frontiers in Pain Research 02
neuropathic condition. Thus, the need for complementary

approaches, which can be both effective and safe, has emerged (7, 8).

In the last decade natural compounds have gained much

attention for their potential use in therapeutics. Flavonoids are a

group of phytochemicals that is perhaps one of the most studied.

They are a group of secondary metabolites of plants, found

extensively in fruits, vegetables, and herbs. Due to their wide

range of pharmacological activities and safety profile are

considered to be promising agents against chronic inflammation

and neuropathy (7, 8). Luteolin, a flavone that is abundant in a

wide range of medicinal plants and herbs, has been reported to

have a range of pharmacological properties. Among these, the

anti-inflammatory, antioxidant (9, 10), neuroprotective (11), and

analgesic (7) effects are the ones that can be of significant value

in pain management.

In this article we will summarize the current knowledge about

the activities of luteolin which bring out its potential in managing

pain. We will focus on the two “classic” types of pain, chronic

inflammatory-nociceptive and neuropathic, and how luteolin

could target the mechanisms involved in their pathogenesis. The

recently defined as nociplastic pain, referring to central nervous
frontiersin.org
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FIGURE 2

Allodynia and hyperalgesia vs. “normal” pain. Allodynia is the pain perception triggered by stimuli which under normal conditions are not painful. It is
caused by a lowered pain threshold of nociceptors. Hyperalgesia is characterized by increased sensitivity to pain intensity triggered by normally
painful stimuli.

FIGURE 3

Flavonoids main skeleton and chemical structures of flavonoids different groups.
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sensitization in the absence of obvious damage (as seen in

fibromyalgia, irritable bowel syndrome, and medically

unexplained conditions) (12) is not covered in this review, since

the mechanisms implicated have not yet been adequately

elucidated to support a beneficial role for luteolin.
2. Chemical structure, plant and
dietary sources of luteolin

Luteolin belongs to a huge group of substances called flavonoids

which are secondary metabolites characterized by a diphenylpropane

structure (C6–C3–C6) and which are classified to many groups

(Figure 3). They are divided into several subgroups based on

structural differences in their ring C involving its oxidation state.

The A and B-rings of flavonoids are usually functionalized by OH,

OMe, isoprenyl, and glycosyl groups (13).

Luteolin is a tetrahydroxyflavone in which the four hydroxyl

groups are located in positions 3, 4, 5 and 7 as seen in

Figures 4A,B. It is a flavone (3′, 4′, 5, 7-tetra hydroxyl flavone)

with a yellow crystalline appearance. Due to its color, the plant

Reseda luteola that contains luteolin, has been used as a source

of dye from the first millennium B.C. Michel Eugène Chevreul, a

France chemist, was the first who isolated luteolin in 1829, but

the correct structure was proposed in 1896 by the English

chemist Arthur George Perkin (14).

Luteolin is a substance found in several plant species, including

those used in traditional medicine for the treatment of many

diseases. It is widely distributed in the plant kingdom and has

been studied extensively for its pharmacological properties, such

as anti-inflammatory, antioxidant, and neuroprotective.

Glycosides of luteolin have been identified in fossils of Ulmaceae

species, 36 to 25 million years old. Over 350 plant species have

been found to contain luteolin and/or its various glycosidic

forms (Supplementary Table S1) (15).

Depending on the country, the daily intake of flavonoids in the

human diet differs. The highest intake of flavonoids including

polymers is in Ireland with a daily intake of 851 mg/day, while

for the same group, (flavonoids including polymers) the lowest

daily intake is 225 mg in the Czech Republic. Correspondingly,
FIGURE 4

Chemical structure of luteolin in 2D and 3D.
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the lowest intake is in the Flavones with the highest being

10 mg/day in Italy, while the lowest is 2 mg/day in Sweden,

Netherlands and the United Kingdom (Table 1).

With regards to luteolin, although there are many plant sources

(Supplementary Table S1), the daily intake in the European Union

in adults ranges from 0 to 2 mg/day (Table 2) (16).
3. Luteolin in management of pain in
chronic inflammatory conditions

3.1. Chronic inflammation

Pain, along with redness, warmth, swelling are the characteristic

symptoms of inflammation. Inflammation is an evolutionary

conserved and protective reaction of the body against factors that

are threatening its normal functioning and homeostasis. Acute

inflammation is a high-grade type of inflammation, triggered

either by the presence of pathogenic microorganisms or cellular

damages caused by noxious stimuli. Pathogen-associated molecular

patterns (PAMPs) are activated in case of infections from

pathogens, whereas damage-associated molecular patterns

(DAMPs) are activated in case of cellular damage. These

molecules are recognized from immune cells such as macrophages

and dendritic cells (DC), which in turn are activated to produce

inflammatory enzymes, such as cyclooxygenase 2 (COX-2)

producing prostaglandin E2 (PGE2), and cytokines, such as tumor

necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), and

interleukin 1-beta (IL-1β) (17). Recruited neutrophils are further

promoting the inflammatory state. All the inflammatory mediators

are playing a key role in acute inflammatory pain, through

activating the nociceptors (17–19).

After a reasonable period of time and under normal conditions,

when threat is eliminated and healing of the tissue has been

completed, the resolution of inflammation will be achieved and

relative symptoms including pain, will stop. Various factors,

including environmental and genetic parameters, can contribute

to preserved chronic inflammation, usually activated by DAMPs

(sterile type). Persistent, non-resolving inflammation can lead

gradually to detrimental effects in tissues and organs’ normal
frontiersin.org
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TABLE 1 Daily intake (mg) of flavonoids in adults in the European union (16).

Countries/
Flavonoids

Flavonols Flavanones Flavones Flavonoids (monomeric compounds
only)

Flavonoids (including
polymers)

Denmark 19 13 3 128 379

Finland 17 30 3 134 354

Sweden 18 19 2 110 310

Northern Region 18 ± 1 21 ± 5 3 124 ± 7 348 ± 20

Belgium 19 12 3 97 281

Czech Republic 16 10 4 75 225

Germany 27 19 3 181 573

Hungary 23 11 4 122 408

Ireland 38 8 3 249 851

Latvia 25 4 9 135 411

Netherlands 31 18 2 201 643

United Kingdom 28 9 2 195 655

Central Region 26 ± 2 11 ± 2 4 ± 1 157 ± 21 506 ± 75

France 18 10 7 115 352

Italy 20 20 10 96 291

Spain 15 17 3 75 260

Southern Region 18 ± 1 15 ± 3 7 ± 2 95 ± 11 301 ± 27

Europe 23 ± 2 14 ± 2 4 ± 1 136 ± 14 428 ± 49
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structure and functioning. Pain can be one of the symptoms where

the underlying pathology is a low-grade, progressive inflammatory

state (3, 17, 18). Chronic conditions like osteoarthritis, rheumatoid

arthritis, inflammatory bowel disease, are characterized by

pathological and persistent pain. This type of pain results from

sensitization of nociceptors to the inflammatory mediators’

stimuli in the foci of inflammation, causing a shift from their

high-threshold to low-threshold activation.

In the absence of cure, inhibition of inflammation is the gold

standard approach in management of chronic inflammatory

conditions, in order to achieve prolonged remission state, and

consequently relief of pain. Non-steroidal anti-inflammatory

drugs (NSAIDs), analgesics, corticosteroids, opioids,

immunobiological molecules are being used in chronic

inflammatory pain. Clinicians’ choice is based on pathogenesis of

the inflammatory condition itself, as well as on outweighing the

effectiveness of the protocols designed and the risks for side

effects. However, there is still a need for more effective and safe

agents that can complement the current therapies (8).
3.2. Anti-Inflammatory properties of
luteolin in chronic inflammatory pain

Luteolin, shows pleiotropic actions in various pathways

involved in chronic inflammation, and due to its safe profile can

be considered as a promising adjuvant therapeutic choice in

inhibition of inflammation and related pain.

Luteolin has shown important effects in regulation of

inflammation, in both in vitro and in vivo studies. Its actions are

mostly exerted by inhibiting several biochemical pathways and

inflammatory mediators, which are involved in several chronic

diseases where prolonged inflammation is the common

denominator of pathogenesis.
Frontiers in Pain Research 05
The anti-inflammatory activities of luteolin were

comprehensively reviewed in literature in two review papers (9,

10). The reader can refer to these reviews for very detailed

information on preclinical evidence about the anti-inflammatory

effects of luteolin in various in vitro cell lines and in vivo animal

models. Authors described extensively the regulatory effects of

luteolin on inflammatory mediators such as cytokines IL-6, IL-

1β, TNF-α, enzyme COX-2 and prostaglandins PGEs. Moreover,

luteolin can inhibit the increased expression of inducible nitric

oxide synthase (iNOS) and metalloproteinases (MMPs) in

chronic inflammatory conditions (9, 10).

Nitric oxide (NO) has various roles under normal conditions.

It promotes vasodilation, works as a neurotransmitter, and

regulator of immune response. However, in chronic

inflammation, an inducible form of NO is synthesized by

synthase iNOS, leading to nitric oxide overexpression, even 1,000

times more than its physiological production. In this case, nitric

oxide acts as an inflammatory mediator (20, 21).

MMPs are a family of metalloproteinases, and their primary

action is to degrade extracellular matrix proteins. Although they

have been attributed with many physiological roles in various

essential functions, such as cell proliferation, tissue repair, wound

healing, and others, they are also involved in inflammatory

processes. In particular, increased expression of various types of

MMPs have been implicated in tissue remodeling and

destruction in chronic inflammatory conditions (22, 23).

The inflammatory response requires the orchestrated activation

of different but interacting signaling pathways. Among of those,

nuclear factor kappa B (NF-κΒ), Janus kinase - signal transducer

and activator of transcription (JAK-STAT), and inflammasome

NOD-like receptor (NLR family) pyrin domain containing 3

(NLRP3) play important roles in expression of pro-inflammatory

genes. NF-κB is considered a master transcription factor in both

acute and chronic inflammation, involved in expression of pro-

inflammatory cytokines, chemokines, adhesion molecules, iNOS,
frontiersin.org
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and metalloproteinases (MMPs) (24). JAK-STAT is another

signaling pathway whose activation is implicated in auto-immune

and inflammatory disorders. It is used as a signal transduction

pathway from cytokines to promote the inflammatory response

and it relates to NF-κΒ signaling pathway activation (25). NLRP3

is the most studied inflammasome, a multiprotein complex

whose oligomerization activated by PAMPs or DAMPs, leads to

maturation of the potent immune modulators IL-1β and IL-8

(26). Research studies showed that luteolin can beneficially

regulate these pathways during the inflammatory process (10,

27–29), as summarized in Figure 5.

Based on its multi-targeted anti-inflammatory actions, luteolin

appears to be a very promising natural agent for inhibiting

abnormal inflammatory responses in chronic inflammatory

conditions. In Table 3, we provide a summary of recent in vitro

and in vivo studies, reflecting this flavonoid’s potential effects on

conditions characterized by significant pain during flares of the

inflammatory diseases: Rheumatoid Arthritis, Osteoarthritis, and

Inflammatory Bowel Disease.

Antioxidant properties of luteolin could also contribute to

inhibition of chronic inflammation. Oxidative stress and

inflammation are closely related. In fact, evidence shows that

there is a bidirectional relationship between excessive free

radicals’ production and inflammation. Chronic inflammatory

conditions are characterized by oxidative stress, and vice versa.

Excessive production of free radicals is implicated in the

pathogenetic triggers of chronic inflammation: It leads gradually
FIGURE 5

Luteolin’s anti-inflammatory and antioxidant effects. Luteolin inhibits major i
consequently to reduced expression of pro-inflammatory mediators (e.g., TN
to activate the major antioxidant factor Nrf2, and increase the expression of a

Frontiers in Pain Research 07
to accumulation of damages to fundamental components of cells,

such as DNA, lipids and proteins, and induces activation of

inflammatory pathways, such as the NF-κΒ (39, 40).

Flavonoids are potent antioxidant agents (41). Luteolin has

shown important antioxidant actions, acting directly, via its

ability to scavenge free radicals, but also by inducing endogenous

antioxidant cell defenses. In various in vitro and in vivo

experiments, it was found that luteolin promotes increased

production of antioxidant enzymes (9). One of the main

pathways involved in this pathway is suggested to be the

activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)

pathway (Figure 5) (42).

More detailed information on Luteolin’s antioxidant capacity

will be discussed in the next section about Neuropathic pain,

where oxidative stress seems to play a primary role in pathogenesis.
4. Luteolin in management of
neuropathic pain

4.1. Neuropathic pain

Neuropathic pain is the type of pain that results from damage

or disease of the somatosensory nervous system. Its origin can be

either peripheral (e.g., peripheral nerve injury pain,

chemotherapy induced, cancer pain, diabetes peripheral

neuropathy, alcoholic neuropathy) or central (e.g., spinal cord or
nflammatory signaling pathways (e.g., NF-κΒ, JAK-STAT, NLRP3), leading
F-α, IL-6, COX-2, iNOS, MMPs, IL1β, IL18). Moreover, luteolin seems able
ntioxidant enzymes (e.g., SOD, CAT, GPx, GSH, HO-1).
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TABLE 3 Effects of luteolin on chronic inflammation as shown from in vitro and in vivo studies.

in vitro/
in vivo

Cell line/Animal model Concentration/Dose and route of
adminstration of luteolin

Effect Refs

Rheumatoid Arthritis
in vitro Human synovial sarcoma cell line, SW982 1 or 10 μM Inhibited IL-1b-induced MMPs (MMP-1 and -3),

cytokines TNF-a and IL-6
(27)

Rat FLS cells (RSC-364) luteolin 25 μmol/l in combination with
Chlorogenic acid

Inhibited the proliferation of fibroblast-like synoviocytes (30)

LPS-induced RAW 264.7 macrophages 0.25–0.5 μM Inhibited iNOS, IL-6 and TNF-α (31)

in vivo Collagen Induced Arthritis (CIA) mice co-ultramicronized PEA/
Palmitoylethanolamide + luteolin 1 mg/kg,
intraperitoneally

Reduced neutrophil and mast cell infiltration into the
joints, improvements in locomotor activity and pain
sensitivity

(32)

(FCA)-induced arthritis (AA) in male rats 10 and 20 mg/kg intragastrically Reduced, TNF-α, IL-6, IL-1β and IL-17, alleviated
synovial hyperplasia, protected from joints destruction

(33)

Osteoarthritis
in vitro rabbits cultured articular chondrocytes 100 μM Inhibited IL-1β MMP3 induced expression, and other

degradative enzymes
(34)

in vivo knee joint of rats on in vivo IL-1b-stimulated
production of MMP-3 from articular
cartilage tissues.

100 μM injection into the right knee joint Inhibited IL-1b-induced production level of MMP3

in vitro interleukin (IL)-1β-stimulated rat chon-
drocyte

25, 50, 100 μΜ Reduced iNOS, NO, PGE2, COX-2, TNF-α, MMP1,
MMP2, MMP3, MMP-8, MMP-9, MMP13, reversed
collagen II degradation

(35)

in vivo MIA-induced mice model of OA 10 mg/kg daily by gavage Alleviated articular cartilage destruction

Inflammatory Bowel Disease
in vitro Human mast cells - HMC-1 50 μM Inhibited TNF-α, IL-8, IL-6, GM-CSF, and COX-2 (36)

Human colon epithelial cells - HT-29 50 and 100 μM Inhibited IL-8, COX-2, iNOS (28)

in vivo DSS-induced colitis mouse model 8 mg/kg oral administration Inhibited IL-17 pathway (37)

DSS-induced colitis mouse mode 50 mg/kg by gastric gavage Reduced IL-1β IL-6 (38)
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brain injury, stroke, neurodegenerative disease). Though the

pathogenetic mechanisms have not been fully elucidated, there is

growing evidence that nitrosative and oxidative stress, along with

neuroinflammation, have crucial roles in neuropathic pain.

Oxidative stress and nitrosative stress represent the loss of redox

balance in the cells, due to high levels of reactive oxygen species

(ROS) and reactive nitrogen species (RNS) respectively. ROS,

produced by nicotinamide adenine dinucleotide phosphate (NAPDH)

oxidase (NOX) enzymes, and RNS, produced by iNOS enzymes, are

generated constantly during normal metabolic cellular processes.

When in low concentrations they have various protective roles, e.g.,

contributing to a normal immune response, but they are potentially

detrimental when highly increased. ROS and RNS can easily react

with other molecules, causing important oxidative damages to

components which are fundamental for cells’ healthy functioning and

survival (lipid peroxidation, protein and DNA oxidation) (43–45).

Cells normally have endogenous defenses to maintain

concentrations of these reactive species under control (redox

balance), including a series of antioxidant enzymes, such as

superoxide dismutases (SODs), catalase (CAT), glutathione

(GSH), heme oxygenase 1 (HO-1). The transcription factor Nrf2

is considered the governor for the expression of more than 200

antioxidants enzymes. However, this antioxidative ability can be

compromised as a result of disease or injury, due to excessive

production of ROS and NOS (45, 46).

Nerve cells are more vulnerable to nitro-oxidative damage,

because they have weaker antioxidant defenses mechanisms and

higher lipid content, compared to other types of cells. Therefore,
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nitro-oxidative stress in neurons can be considered as a primary

cause of neuropathic pain. It can lead to mitochondrial

dysfunction - further increasing ROS levels - and induce pro-

inflammatory cytokines production. Moreover, ROS have been

involved in the enhancement of excitatory signaling of nociceptive

nervous cells. They can induce excitatory N-methyl-D-aspartate

(NMDA) receptors, inhibiting glutamatergic regulation, and

contribute to reduction of GABA-ergic inhibitory signaling. In

addition, ROS seem to contribute to activation of the ion channels

TRP, which are highly expressed in nociceptors neurons and have

an important role in transduction of pain (44, 47).

Apart from damage caused directly by ROS and NOS,

neuroinflammation seems to be a key process in induction and

maintenance of neuropathic pain. Neuroinflammation is the type

of inflammation triggered by damage of neuronal tissue in the

peripheral or central nervous system. When the peripheral nerve

is damaged, resident immune cells (e.g., mast cells and

macrophages), along with immune cells recruited from blood

circulation (e.g., neutrophils and T-cells) release inflammatory

mediators, such as cytokines IL-1b and TNF-a, prostaglandins,

and ROS. Moreover, microglia and astrocytes in the spinal dorsal

horn are activated, which in turn contribute to the release of

inflammatory mediators in the central nervous system and

enhancement of excitability. This cascade of inflammatory events

leads to peripheral and central sensitization (44, 48).

Both inflammation and nitro-oxidative stress shall not be

considered as independent processes in neuropathic pain, as they

rather interact in a bidirectional relationship.
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Excessive ROS and RNS induce neuronal inflammatory

response and vice versa. For example, the transcriptional factor

NF-κΒ is one of the most characteristic examples of an

inflammatory biochemical pathway that can be activated by ROS/

RNS leading to increased expression of inflammatory mediators,

but also itself can result to increased nitro-oxidative species

production (44, 48, 49).

Pharmacological options currently available for neuropathic

pain target the pain as a symptom, rather than inhibit the causes

of its pathogenesis. First line drugs include tricyclic

antidepressants, serotonin-norepinephrine reuptake inhibitors,

gabapentin and pregabalin. Second-line therapy includes

tramadol, capsaicin patches, and lidocaine patches. Last line of

choice are strong opioids. Due to their inadequate efficacy and

important side effects in long-term use of these drugs, effective

management of neuropathic pain seems to be quite difficult. An

outcome of 30%–50% pain reduction is considered meaningful

(50, 51), with a significant number of patients, even >50% in

relative surveys, reporting insufficient management of their

painful symptoms (52, 53).

Direct antioxidants (e.g., Vitamins C, E, coenzyme Q) have

been tried but clinical outcomes failed to support their use

(α-Lipoic acid seems however to have therapeutic efficacy in case

of diabetic neuropathy). It is worth noting that apart from their

unfavorable pharmacokinetic and pharmacodynamic profile,

another possible reason for the failure of direct antioxidants is

that they may interfere with the physiological (and protective)

functions of ROS (44, 45).
FIGURE 6

Oxidative damage and neuroinflammation in neuropathy. An illustration of the
can induce nitro-oxidative damage in the vulnerable neuronal cells and activa
Neuroinflammation - induced from neuronal cell damage - involves the activ
neuroinflammation, which are considered to be reciprocal processes, can be
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Newer and safer approaches that could target selectively

multiple pathways may be more effective, protecting from nitro-

oxidative damage and at the same time inhibiting

neuroinflammation.
4.2. Neuroprotective and analgesic
properties of luteolin in neuropathic pain

Luteolin is a very promising agent against neuropathic pain, due

to its effects on two molecular mechanisms involved in neuropathy

pathogenesis: oxidative stress and inflammation. Its potent

antioxidant abilities, its actions against neuroinflammation,

along with its analgesic effects, justify luteolin as a possible

complementary therapeutic compound in neuropathy (Figure 6).

Luteolin’s antioxidant properties are well established. It

works as a direct free radical scavenger, due to the presence of

the hydroxyl groups in the B ring that act as an electron-

donating system. In addition, it has been shown that luteolin

can induce the enhancement of endogenous antioxidant

capacity. It can lead to increased expression of antioxidant

enzymes, such as SOD, CAT, glutathione peroxidase (GPx),

GSH, HO-1, NADPH quinone dehydrogenase 1 (NQO1). This

particular action is of very special interest in the case of

neuropathic pain (9, 42, 54–56). As mentioned previously,

direct antioxidants may not be as effective as expected, and

current research has turned its focus on agents that induce

endogenous antioxidant mechanisms, rather than just
pathogenetic mechanisms implicated in neuropathic pain. ROS and NOS
tion of TRP channels which are involved in neuropathic pain transduction.
ation of resident immune cells and glial activation. Oxidative damage and
inhibited by luteolin.
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TABLE 4 In vivo studies of luteolin’s analgesic effects in neuropathic models.

Animal model Dose and route of administration
of luteolin

Effect Refs

male Sprague–Dawley rats intrathecally administered luteolin 1.5 mg -
intraperitoneally administered luteolin 50 mg/kg

Attenuated mechanical and cold hyperalgesia (62)

diabetic rats - neuropathy induced by
intraperitoneal injection of streptozotocin
in rats

intraperitoneally 50 mg/kg, 100 mg/kg and
200 mg/kg

improved the impaired nerve functions, activated Nrf2, increased
activities of antioxidant enzymes SOD, GST, GPx and CAT, and reduced
ROS production, attenuated hyperalgesia and allodynia in a dose
dependent manner

(63)

sciatic nerve ligated mice luteolin intraperitoneally 5 mg/kg and 10 mg/kg body
weight

reduced hyperalgesia in acute and chronic phase of formalin test (64)

Lewis’s lung cancer induced bone pain in
mice

intraperitoneally 10 mg/kg and 50 mg/kg ameliorated pain in the pain behavior test in a dose-dependent manner,
inhibited activation of glial cells in spinal dorsal root and NLRP3
inflammasome

(65)
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neutralize directly the free radicals. Luteolin seems to achieve this

action by activating the major antioxidant transcription factor

Nrf2. Moreover, luteolin has been extensively researched for its

neuroprotective effects. It appears that it can cross the blood-

brain barrier and exert important antioxidant and anti-

inflammatory effects in the brain (57–59).

In various preclinical studies, it has been shown that luteolin

has a pleiotropic function against mechanisms involved in

neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and

Multiple Sclerosis. It can prevent the activation of microglial and

astrocytes, the upregulation of inflammatory mediators, such as

cytokines and iNOS, and can also reduce oxidative stress. Again,

the major signaling pathways on which Luteolin acts, inducing

this anti-inflammatory and antioxidant profile, include the

inhibition of NF-κΒ and induction of Nrf2 respectively, among

others (11, 60, 61).

Even though the neuroprotective role of luteolin in the central

nervous system is well established from in vitro and in vivo studies,

its benefits on peripheral neuroinflammation still lack evidence.

However, as one would notice from the present review, the

pathways involved in inflammatory response and oxidative

damage are universal, independently of the tissue damaged.

Therefore, we can suspect that luteolin will most likely act

beneficially also against damages of the peripheral nervous

system. In fact, the limited but important in vivo studies about

luteolin’s effect on neuropathic pain are very encouraging

(Table 4).

Luteolin could attenuate in a dose dependent manner, the

mechanical and cold hyperalgesia in an animal model of

neuropathic pain (62). The researchers also investigated the

mechanism of its antinociceptive action. Antihyperalgesic effects

of luteolin (intrathecally administered luteolin 1.5 mg or

intraperitoneally administered luteolin 50 mg/kg) were inhibited

by intrathecal pretreatment with the γ-aminobutyric acid A

(GABAA) receptor antagonist bicuculline and μ-opioid receptor

antagonist naloxone, but not by intrathecal pretreatment with

either the benzodiazepine receptor antagonist flumazenil or

glycine receptor antagonist strychnine.

In a diabetic neuropathy model, luteolin was able to improve

the impaired nerve functions (63). Intraperitoneally daily

treatment with luteolin (50 mg/kg, 100 mg/kg and 200 mg/kg)

induced activation of Nrf2, increased activities of antioxidant
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enzymes SOD, GST, GPx and CAT, and reduced ROS

production. Nerve function, as measured by increase of motor

and sensory conduction velocities were also improved with

luteolin treatment. Moreover, mechanical withdrawal threshold,

cold, and heat withdrawal latencies were increased, indicating

that luteolin can attenuate hyperalgesia and allodynia. All results

were induced in a dose dependent manner, with doses of

100 mg/kg and 200 mg/kg of luteolin treatment leading to a

significantly better outcome than dose of 50 mg/kg.

Administration of luteolin dose (5 mg/kg and 10 mg/kg body

weight) significantly reduced neuropathic pain in another animal

model. Interestingly, co-administration of luteolin and morphine

(1 mg/kg), potentiated morphine analgesic effects (64).

Intraperitoneally treatment with luteolin ameliorated Lewis’s

lung cancer (LLC)-induced bone pain in mice in a dose-

dependent manner (65) (50 mg/kg significantly improvement in

pain behavior, than 1 mg/kg and 10 mg/kg). Bone cancer pain

(BCP) is a severe complication in cancer patients with both

inflammatory and neuropathic components. Intrathecal injection

of luteolin 0.1 mg also reduced BCP in this study. Further analysis

about the mechanism of action, showed that luteolin inhibited

important components of neuroinflammation, such as activation

of glial cells in spinal dorsal root and NLRP3 inflammasome.
5. Discussion

Pain management, especially in chronic conditions, remains a

major challenge for clinicians. In case of a chronic inflammatory

disorder, the goal of treatment is to inhibit the inflammatory

process, prolong, and increase frequency of remission stages, and

consequently reduce pain symptoms. In neuropathic pain,

management is mainly symptomatic, targeting the pain as a

symptom rather than the pathogenetic mechanisms involved. In

either case, we are looking mostly at management rather than

therapeutic approaches. Moreover, the drugs used are associated

with important side effects in long term use, which raises the

need for more efficient and safer options (8).

In this paper, we reviewed the potential beneficial effects of a

flavone, luteolin, in pain management. Luteolin has potent anti-

inflammatory actions, inhibiting important mediators of

inflammation, that are also involved in pain, such as cytokines
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(e.g., TNF-a, IL-1, IL-6, IL-8) and enzymes (COX-2, iNOS).

Luteolin also exhibits strong antioxidant activity, acting as a

scavenger of free radicals, but also inducing expression of

endogenous antioxidant enzymes (e.g., SOD, CAT, GPx, GSH)

(9, 10). Since inflammatory process and nitro-oxidative damage

are key mechanisms in both chronic inflammation and

neuropathy, luteolin shows favorable effects in management of

these conditions.

Moreover, the antinociceptive effects of flavonoids, including

luteolin and its derivatives, have been observed in experiments

even from earlier decades (7, 66–68). The mechanism of

luteolin’s effect on pain modulation process still remains unclear.

There have been indications from in vitro and in vivo studies

about its possible activity in GABA and opioid receptors. As

mentioned previously in this review, analgesic effects of luteolin

in a rat neuropathic model were inhibited by pretreatment with

the γ-aminobutyric acid (GABAA) receptor antagonist

bicuculline and μ-opioid receptor antagonist naloxone, but not

by pretreatment with either the benzodiazepine receptor

antagonist flumazenil or glycine receptor antagonist strychnine

(62). The proposed mechanism that luteolin may act on GABAA

receptor in a bicuculline-sensitive and flumazenil-insensitive

manner has been further supported (69, 70). However, further

studies are required to provide strong evidence on the

involvement of luteolin effect on the GABAergic system and its

activity profile at GABAA receptor subtypes. It will also be

interesting to investigate any possible activity of luteolin on pain

transmission, e.g., via modulation of ion channels activity, such

as TRP, since other flavonoids have shown such effects (71).

However, from research studies to actual establishment luteolin

as a therapeutic agent there are crucial parameters that need to be

examined and fully clarified.

Bioavailability is one of these important factors. This

measurement identifies the proportion of the substance that is

available in the systemic circulation, taking into account the

intestinal absorption and first-pass metabolism. Flavonoids, in

general, are well known for their low oral bioavailability, because

of their low water solubility and their rapid, and extensive first-

pass metabolism. However, this does not necessarily reflect a low

bioactivity. There is an evidence-based theory trying to explain

the paradoxical phenomenon for polyphenols’ high bioactivity, in

contrast to their low bioavailability. According to this theory,

polyphenols, including flavonoids, could also exert their

beneficial effects through their metabolites. In addition,

prolonged bioavailability due to flavonoids’ enterohepatic

recycling, can contribute to their bioactivity (72, 73).

Luteolin, after its efficient absorption in intestinal epithelium, is

extensively metabolized via glucuronidation, sulphation, or

methylation. Research data (in vivo and in humans) have shown

that after oral administration, luteolin presents in systemic

circulation mainly in the form of luteolin conjugates, with more

abundant being the luteolin glucuronides and luteolin sulfates

(74, 75). Apart from the known bioactivity of free luteolin, its

metabolites seem to be also biologically active, with evidence on

their anti-inflammatory activity (76, 77). Another interesting

process that was identified in a study, is the hydrolysis of luteolin
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monoglucuronide to luteolin at the site of inflammation.

β-glucuronidase released from neutrophils as a result of the

inflammation, was able to transform the luteolin glucuronide

conjugates to free luteolin (78). Moreover, there are indications

for the enterohepatic recirculation of luteolin, as studies have

shown a second peak of their concentration and prolonged

presence of luteolin and its metabolites in plasma (74, 77). From

these data we can conclude that despite luteolin’s low

bioavailability (e.g., ranging from 4,1% at dose of 50 mg/kg (79),

to 17,5% at dose 200 mg/kg (77) in rats), luteolin metabolites

and recycling can contribute to luteolin’s bioactivity.

In any case, a variety of methods have been tried successfully to

enhance water solubility, bioavailability, and efficacy of luteolin.

For example, complexes of luteolin with cyclodextrin

(physicochemical data) (80) and phospholipids (physicochemical

and in vivo evidence) (81, 82) have shown promising results.

Moreover, nanoencapsulation of luteolin in liposomes (83, 84),

micelles (85) and nanoparticles (86) as well as utilization of a

microemulsion system (87) were able to improve in vivo

luteolin’s bioavailability and efficacy. Undoubtedly, there is a

need for clinical studies proving these effects in humans.

To increase the effectiveness of luteolin against inflammatory

and neuropathic pain, an interesting approach is to investigate a

possible synergistic action in combination with other flavonoids.

Quercetin is one of the most studied flavonoids, including in

vitro, in vivo, and human studies. Like luteolin, quercetin shows

potent antioxidant (88), anti-inflammatory (89), and

neuroprotective (90) actions. Clinical trials have provided

promising evidence on quercetin’s beneficial role in alleviating

chronic inflammation (91). A randomized, double-blind, placebo-

controlled study investigated quercetin effects (500 mg/day) in 50

women with rheumatoid arthritis. Inflammation, stiffness and

pain significantly reduced (92). Moreover, extensive preclinical

research supports quercetin’s protective actions against

neuroinflammation and neuropathy. In addition, quercetin exerts

analgesic effects (93). Examples of other flavonoids, well known

for their anti-inflammatory, antioxidant, and analgesic properties

are apigenin, rutin, naringenin, genistein (8, 94).

Even though there is already strong evidence on the anti-

inflammatory, antioxidant, and neuroprotective effects of luteolin

from preclinical studies, results from clinical trials are only

scarce. However, beneficial outcomes of these studies pave the

way for further investigation of luteolin’s effects on patients

suffering from chronic inflammatory conditions and/or

neuropathies.

A nutritional supplement containing a mixture of flavonoids,

luteolin (100 mg), quercetin (70 mg), and rutin (30 mg), has

shown to improve clinical outcome in children with autism

spectrum disorder (ASD). Treatment with 2 capsules/20 kg of

body weight for at least 4 weeks led to significant improvement

in gastrointestinal and allergy symptoms in about 75% of the

children, eye contact and attention in 50%, social interaction in

25%, and resumption of speech in about 10% (95). These results

were followed by another clinical study, during which treatment

with 1 capsule/10 kg of body weight for 26 weeks, resulted in

significant benefit in ASD children both in adaptive functioning
frontiersin.org

https://doi.org/10.3389/fpain.2023.1114428
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


Ntalouka and Tsirivakou 10.3389/fpain.2023.1114428
and behavioral difficulties (assessed by the Vineland Adaptive

Behavior Scales, and Aberrant Behavior Checklist respectively)

(96). Researchers collected and analyzed a series of serum

inflammatory markers from the children with ASD who

participated in the latter study, before and after treatment with

luteolin supplementation. Control samples were gathered from

healthy children unrelated to the ASD subjects. The analysis

showed that cytokines TNF-α and IL-6 were elevated in ASD

patients compared to controls, and treatment with the formula

containing luteolin led to a significant decrease of these

inflammatory indices. The decrease was observed in the children

with ASD whose behavior improved the most after

supplementation (97). It is worth noticing that this is the first

study that provided clinical evidence about luteolin’s effects on

inflammatory markers in relation to a beneficial clinical outcome.

Another interesting observation is the potential synergistic and

beneficial effect of luteolin with Palmitoylethanolamide (PEA).

Preclinical and clinical studies have reported an anti-

inflammatory and analgesic action of PEA, a naturally occurring

lipid mediator molecule (98). A two-arms study was performed

to investigate the neuroprotective effects of a co-ultramicronized

composite containing PEA and luteolin (co-ultraPEALut). In the

first arm, rats subjected to middle cerebral artery occlusion and

treated with co-ultraPEALut showed reduced edema, improved

neurobehavioral functions, and reduced neuroinflammation after

treatment. In the second arm, researchers examined the effects of

a pharmaceutical co-ultraPEALut preparation treatment for 60

days on a cohort of 250 stroke patients undergoing

neurorehabilitation. At study end, indices of neurological status,

cognitive abilities, degree of spasticity, pain, and independence in

daily living showed significant gains (99). Despite this being an

observational rather than a controlled clinical trial, it adds

clinical evidence on luteolin’s beneficial effects.

In efforts to manage pain in chronic conditions we shall also

consider that anxiety and depression are frequent comorbidities.

In fact, there is evidence that a bidirectional relationship exists

between them. Increased pain perception may result because of a

chronic condition, and vice versa. A chronic painful condition

increases the risk for psychopathological disorders (6, 100, 101).

Flavonoids, including luteolin, have shown anxiolytic actions

(102, 103). Characteristic example is the case of Chamomilla

matricaria, a herb used traditionally for centuries in anxiety and

depression. Its anxiolytic effects are attributed to its content in

the flavonoid apigenin (104, 105).

Apart from its bioavailability and efficacy, safety is also of

utmost importance when considering any compound for

therapeutic purposes. Flavonoids are generally considered quite

safe compounds even in doses largely exceeding daily dietary

intake (106). Oral administration of luteolin has shown LD50

values even above 5,000 mg/kg (10, 106). In the clinical trials

mentioned previously, safety of oral supplementation with

luteolin was also recorded (95–97, 99). However, there is still a

need for further toxicological studies to fully determine luteolin

safety profile.

This review summarized the key properties of luteolin englighting

its potential in management of pain in chronic conditions.
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• Luteolin appears to be an excellent candidate for alleviating

pain in chronic inflammatory conditions (e.g., rheumatoid

arthritis, osteoarthritis, inflammatory bowel disease),

inhibiting major inflammatory mediators involved in

manifestation of pain as a symptom of the disease.

• Based on its strong anti-inflammatory and antioxidant

properties shown in preclinical studies, luteolin can inhibit

the major components of pain pathogenesis in neuropathy,

namely oxidative stress and neuroinflammation, that lead

to nerve damage and chronic pain.

• Moreover, as we described previously, there is evidence that it

can also show analgesic effect via interaction with GABAA

receptors.

• Luteolin appears (from preclinical and clinical data) to have

a very good safety profile, making it even more appealing for

clinical implementation.

However there are limitations before it can be further

developed into an analgesic drug for pain management.

Additional studies in chronic inflammatory and neuropathic

disease models should be conducted to expand knowledge about

luteolin’s efficacy, methods enhancing its bioavailability,

mechanism of its direct analgesic action, and to ascertain its

safety. Clinical trials specifically using luteolin as a

complementary analgesic strategy in chronic inflammatory and

neuropathic conditions are necessary to establish an effective and

safe dose for patients.

In conclusion, luteolin is considered a very promising, safe, and

effective natural compound in the management of pain, both in

chronic inflammatory conditions and neuropathy. Further

studies, especially clinical trials, are necessary to establish its role

as an adjuvant agent in therapeutic protocols.
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