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Contribution of microvascular
dysfunction to chronic pain
Terence J. Coderre*

Department of Anesthesia and Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC,
Canada

There is growing evidence that microvascular dysfunction is a pathology accompanying
various injuries and conditions that produce chronic pain and may represent a
significant contributing factor. Dysfunction that occurs within each component of
the microvasculature, including arterioles, capillaries and venules impacts the health
of surrounding tissue and produces pathology that can both initiate pain and
influence pain sensitivity. This mini review will discuss evidence for a critical role of
microvascular dysfunction or injury in pathologies that contribute to chronic pain
conditions such as complex regional pain syndrome (CRPS) and fibromyalgia.
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Introduction

While pain physicians and researchers have for centuries concentrated on the role of nerve

and inflammatory injury to chronic pain and have more recently studied the potential role of

neuron-glia interactions, very little attention has been paid to microvascular function. This is

surprising given that a healthy microvasculature is critical for endoneurial health, and

microvascular injury plays a significant role in various components of the inflammatory

response to tissue damage.

Endoneurial microvessels are essential to the control of ion, solute and water transfer

between the bloodstream and the endoneurium. These functions allow for nutrient,

macromolecule and leukocyte influx and efflux, as well as contributing to interstitial fluid

balance between layers of the endoneurium (1). Alterations in these processes may result in

nerve damage that leads to neuropathic pain.

All three element of the microvasculature contribute to inflammation (see Figure 1), with

arterioles involved in impaired vasomotor function, capillaries critical for reduced perfusion

and poor oxygenation of tissue, and post-capillary venules playing a role in increased vascular

permeability (2). These actions trigger various other inflammatory responses including the

adhesion of platelets and leukocytes, activation of the coagulation cascade, increased

thrombosis, and the enhanced proliferation of blood and lymphatic vessels (3).

In the current minireview, I will assess the role of microvascular dysfunction in two chronic

pain conditions, complex regional pain syndrome (CRPS) and fibromyalgia. I concentrate on

these two syndromes due to both the elusive nature of their etiologies and/or to the growing

evidence of the role played by microvascular dysfunction to their underlying pathologies. A

brief section will also discuss the role of the microvasculature in other chronic pain

syndromes, such as migraine and neuropathic pain.
Evidence for microvascular dysfunction in CRPS

CRPS, until recently known as reflex sympathetic dystrophy, is a chronic pain condition that

usually follows deep-tissue injuries such as fractures, crush injuries or sprains, with incidence
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FIGURE 1

Microvascular response to tissue injury. (A) Swelling or edema is caused by a leakage of plasma proteins from microvessels within the post-capillary venules.
(B) Extensive edema within damaged tissue can cause vasospasms within arterioles that can produce prolonged tissue ischemia. (C) Reperfusion of
microvessels in the ischemic tissue generates the production of oxygen and nitrogen free radicals, which produce injury of the endothelial lining,
attraction and adhesion of platelets and leukocytes, activation of the coagulation cascade, and increased thrombosis. (D) The adhesion of platelets and
leukocytes leads to a blockade of blood flow within capillaries, or the phenomenon capillary no-reflow, which encourages arteriovenous shunting and
the enhanced proliferation of blood and lymphatic vessels.
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estimates as high as 26.2 per 100,000 person years (4). Symptoms of

CRPS include spontaneous pain (”burning” pain referred to the skin,

and “aching” pain referred to deep tissues), and a variety of stimulus-

evoked abnormal pain sensations, including mechanical allodynia and

hyperalgesia, cold allodynia, and sometimes heat hyperalgesia (5).

CRPS-I pain is disproportionate to the injury and is not associated

with injury of a major nerve, unlike CRPS-II a similar syndrome, but

with concomitant major nerve damage. Non-painful symptoms of

CRPS include disorders of vasomotor and sudomotor regulation;

trophic changes in skin, hair, nails, and bone; and dystonia and other

motor abnormalities (5). Vascular abnormalities are prominent

symptoms in CRPS patients, with either increased or decreased skin

temperature observed, typically corresponding with increased or

decreased blood flow (6, 7), and alterations in bone (8, 9). However,

it is a common finding that CRPS vascular symptoms change over

time. The general picture often reported is a short initial “hot” phase

lasting weeks to months, followed by a “mixed hot/cold” phase, and

finally a chronic “cold” phase lasting for years (10, 11). During the

“hot” phase, the limb displays increased skin temperature, edema,

sweating and inflammation, while in the “cold” phase it shows

lowered skin temperature, dryness, and cyanosis.

There is a growing body of evidence which suggests that at least

some cases of CRPS may also depend on ischemia in deep tissues,

and occasionally skin, secondary to limb trauma. Muscle tissue
Frontiers in Pain Research 02
obtained after amputation of the affected limbs of 8 CRPS patients

was found to exhibit lipofuscin pigment, atrophic fibers, and

collapsed lumens and severely thickened basal membrane layers of

the capillaries (12). These findings are consistent with oxidative

stress, lipid peroxidation and ischemic conditions resulting from

microvascular injury in deep tissue. Although amputation may

reflect the most severe cases of CRPS, this conclusion is supported

by observations of increased density of perfused vessels; lower

capillary filtration capacity, and arteriovenous shunting of peripheral

subcutaneous tissue in the intact limbs of patients with CRPS (13,

14). Co-incident with these changes appears to be high arterial flow

to the CRPS limb, but low oxygen consumption (indicated by high

venous oxygen saturation), as well as high lactate flux—indicative of

tissue ischemia despite increased flow in large vessels (15, 16). There

is also an impairment of high-energy phosphate metabolism in

muscle tissue of CRPS limbs (16, 17), suggestive of mitochondrial

oxygen deficiency. A role of oxidative stress in CRPS is suggested by

finding that symptoms are relieved in these patients following

treatment with antioxidants and free radical scavengers (18, 19).

These observations suggest that ischemia in deep tissues may

contribute to the induction and maintenance of CRPS. Increased

activity in the sympathetic vasoconstrictor innervation of the

affected limb would exacerbate any underlying ischemic condition

and might be an important contributor to ischemia in some cases. It
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has also been shown that skin capillary hemoglobin oxygenation

(HbO2) or skin nutritive flow is reduced in CRPS patients (6, 10,

20) limbs. CRPS patients can have either hot limbs with high blood

flow, or cold limbs with reduced blood flow, but whether patients

experience pain or not, is independent of the direction of the

alteration in skin temperature or thermoregulatory flow (10, 21).

The findings summarized above indicating that there may be

microvascular dysfunction and ischemia in deep tissues of CRPS

patients, suggest that a disruption of nutritive flow may be a more

important factor underlying pain in CRPS patients than changes in

thermoregulatory flow. Thus, although thermoregulatory flow may

be low or high, reduced nutritive flow to deep tissue in either case

would reduce oxygenation leading to tissue ischemia.
Evidence for microvascular dysfunction
in fibromyalgia

Fibromyalgia (FM) is a chronic pain condition that affects about 2%–

3% of the adult population. The defining feature of FM is chronic

widespread pain, but patients often exhibit other symptoms, including

fatigue, sleep disturbance, irritable bowel syndrome, mood disorders

and headache (22, 23). Although the underlying causes of FM are not

well understood, the syndrome has been associated with medical

illness, stress, various other pain conditions, as well as disturbances in

various neurotransmitter and neuroendocrine systems (23, 24). There

is also evidence for both peripheral and central sensitization in FM, as

well as dysfunction of descending inhibitory control systems (24, 25).

Widespread pain is one of the diagnostic criteria for FM, with the

common diagnostic requirement of tenderness in 11 of 18 defined

tender points (26). Pain is described as deep, gnawing or burning, and

can be accompanied by stiffness, skin tenderness, pain after exercise,

paraesthesias, restless legs, and Raynaud’s phenomenon, a process in

which the fingers or toes become blanched in response to cold or

stress (27). Theories about the role of muscle pathology in FM have

been controversial (28), although numerous studies have reported

histological abnormalities in muscle tissue (29, 30).

The controversy over the role of muscle pathology in FM likely

stems from findings that the muscle pathology is subtle, and

typically detected by histological rather than functional assessments

(28). Studies indicate that muscle pathology includes capillary

dysfunction and abnormalities of mitochondria in myocytes (31–33).

Mitochondrial abnormalities are significant since mitochondria

provide the energy source in the form of ATP through oxidative

phosphorylation, and function poorly when not supplied with

enough oxygen (34). Recent studies do indicate that there are signs

of oxidative stress or increases in oxygen free radicals in FM

patients. Thus, in FM patients there is increased serum

malondialdehyde and lipid hydroperoxide, indicators of free radical-

induced lipid peroxidation, and decreases in xanthine oxidase, which

is normally depleted when oxygen free radicals are produced

(35, 36). There are also decreases in the endogenous antioxidants –

glutathione and superoxide dismutase and total antioxidant status in

serum, which would be depleted in response to oxidative stress

(35, 37). FM patients also have higher levels of oxygen free radicals

in blood mononuclear cells (38), and neutrophils from FM patients

produce greater levels of the oxygen free radical hydrogen peroxide
Frontiers in Pain Research 03
(39). This may explain why antioxidants have been useful as

analgesics for fibromyalgia in some studies (40).

Additional evidence suggests that oxidative stress in FM patients

may occur in response to microvascular dysfunction in affected

muscle tissue and possibility in skin. Indeed, it has been shown

that FM patients have reduced capillary flow and fewer capillaries

in the nail fold (31, 32), perhaps explaining why Raynaud’s

phenomena is common in FM patients (41). As for muscle, recent

microdialysis studies suggests that FM patients have reduced

nutritive blood flow and increased lactate in skeletal muscle in

response to exercise (42). These results support earlier findings of

reduced capillaries, thickened capillary endothelial cells and

lowered ATP in biopsies from the vastus lateralis muscle of FM

patients (33). These are consistent with findings of reduced muscle

blood flow in FM patients as measured using xenon 133 clearance

(43), and reduced muscle blood flow in cervical spine trapezius of

FM patients following exercise (44). There was also one report

indicating that muscle tissue oxygenation is lower in the tender

point areas of FM patients (45). Also, while blood flow and skin

temperature has been reported to be either lower (46) or higher

(47) over tender points in FM patients, there is no correlation

between skin temperature and pressure pain threshold (48).
Evidence for microvascular dysfunction in
other pain syndromes

The space limitations of mini reviews prevent a detailed

description of similar pathology within in other pain syndromes.

However, there is considerable evidence for a role of microvascular

dysfunction contributing to chronic pain in various syndromes such

as angina, frostbite, sickle cell disease, and peripheral vascular

disease (49, 50). Data suggest a role for dysfunction in the

endoneurial tissues of patients with painful diabetic neuropathy

(51, 52), and experimental animals with neuropathic pain (53).

There is also evidence that patients with migraine have contributing

or associated alterations in microvascular function within the retina

(54), dura matter (55), cerebral cortex (56) and coronary tissue (57).
Conclusion

In this mini review, we summarized the potential contribution of

microvascular dysfunction to the chronic pain conditions CRPS and

fibromyalgia. Evidence of microvascular dysfunction is exhibited by

numerous findings of thickened capillary endothelial cells,

disruptions in capillary or nutritive blood flow, increases in lactate

and oxidative stress, and arteriovenous shunting and abnormalities

in mitochondria for both conditions. Numerous studies have

concentrated on the effects of mediators released from various

immune cells, including mast cells, neutrophils, macrophages and T-

cells and their impact on neural function. Far fewer studies have

investigated the role of mediators released by or from endothelial cells,

including adhesion factors, endothelins, cytokines, chemokines,

selectins, additional vasodilatory and vasoconstrictive factors,

antithrombotic and procoagulant factors, matrix products, endothelial

growth factors, and others, on both immune and neural function (58).
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It is hoped that future research and targeted therapy will be aimed at

microvascular dysfunction and its role in the etiology and

maintenance of symptoms in these and potential other chronic pain

syndromes. These studies would add to the above-mentioned studies

demonstrating the effectiveness of antioxidants or free radical

scavengers as analgesics for CRPS (18, 19) and fibromyalgia (40), and

why combinations of topical agents aimed at improving both arterial

and capillary blood flow (59), or salts and co-crystals comprised of

vasodilators and antioxidants are effective analgesics in animal models

of CRPS and neuropathic pain (60).
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