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Pain is one of the most common symptoms reported by individuals presenting
to hospitals and clinics and is associated with significant disability and
economic impacts; however, the ability to quantify and monitor pain is
modest and typically accomplished through subjective self-report. Since pain
is associated with stereotypical physiological alterations, there is potential for
non-invasive, objective pain measurements through biosensors coupled with
machine learning algorithms. In the current study, a physiological dataset
associated with acute pain induction in healthy adults was leveraged to
develop an algorithm capable of detecting pain in real-time and in natural
field environments. Forty-one human subjects were exposed to acute pain
through the cold pressor test while being monitored using
electrocardiography. A series of respiratory and heart rate variability features
in the time, frequency, and nonlinear domains were calculated and used to
develop logistic regression classifiers of pain for two scenarios: (1)
laboratory/clinical use with an F1 score of 81.9% and (2) field/ambulatory use
with an F1 score of 79.4%. The resulting pain algorithms could be leveraged
to quantify acute pain using data from a range of sources, such as ECG data
in clinical settings or pulse plethysmography data in a growing number of
consumer wearables. Given the high prevalence of pain worldwide and the
lack of objective methods to quantify it, this approach has the potential to
identify and better mitigate individual pain.
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Introduction

Pain is one of the most common symptoms reported by individuals presenting to

hospitals and clinics (1) and is defined as an unpleasant sensory and emotional

experience induced by noxious stimuli detected by nociceptive neurons (2). The

economic cost of pain including medical care, lost wages, and reduced productivity

eclipses heart disease, cancer, and diabetes (3). The concurrent opioid and COVID-19

epidemics have accelerated the costs associated with pain along with an increasing

number of overdoses (4). Previous research has defined the underlying mechanisms

associated with nociceptive pain and distinguished two types, including first pain, and

secondary/affective pain (5). First pain is associated with myelinated A-Delta fibers

which synapse onto primary somatosensory cortex, and provide fast localization of

injury, triggering withdrawal reactions. Secondary pain is associated with the
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activation of slower, unmyelinated C-fibers which synapse onto

the forebrain/affective areas, providing the emotional context to

pain. Pain can also be characterized by the duration or time

course; while acute pain allows for rapid localization of injury,

prevention of self-harm, and generally persists while tissues

heal, up to one third of individuals in the United States

experience chronic pain and associated disability associated

with diseases such as cancer, post-surgical and post-traumatic

pain, neuropathic pain, headache, visceral, and

musculoskeletal pain (6). Given its significant economic and

social impacts, the ability to quantify and treat pain is of high

importance.

Pain is commonly assessed through self-report (7), but such

approaches are highly variable, subjective, and are influenced by

a number of internal and external factors (8). For example,

recent reports indicate that common self-reported pain scales

used for screening only have modest accuracy (7), and some

patients will systematically under or over-report pain (9, 10).

Given the risks of relying on self-reported pain, other groups

have attempted to leverage clinical imaging such as fMRI to

analyze brain regions associated with pain, which have

revealed a pain matrix of regions reliably activated by painful

stimuli (11). These regions include the somatosensory cortex

which localizes pain, the anterior cingulate cortex and insula,

which are associated with the emotional and motivational

aspects of pain (12), along with higher brain areas. While

such an approach has provided for the development of high

specificity/high sensitivity biomarkers for pain (13), it still

requires the use of expensive imaging equipment and highly

trained personnel. There is thus a need for an objective

approach to pain identification that is both cost-effective and

scalable to minimize the reliance on costly and limited

neuroimaging.

Available evidence suggests that pain has objective,

physiological signatures that manifest outside of the brain. For

example, acute and chronic pain are associated with

stereotypical physiological alterations (14) such as increasing

cardiovascular activity including heart rate (HR), blood

pressure and heart rate variability (HRV) (14–17), respiration

rate and depth (18), and electrodermal activity (19, 20). Such

observations form the scientific basis for current guidelines

for patient care in anesthesiology (21), but also have the

potential to objectively assess pain in ambulatory settings.

Combined with advances in non-invasive persistent

physiological monitoring devices, physiological pain

assessment may allow for real-time, objective pain sensing

and mitigation. In the current study, a physiological dataset

associated with acute pain induction in healthy adults was

leveraged to develop algorithms capable of detecting pain in

real-time. These methodologies provide a foundation for

future work in developing advanced pain classification

algorithms to be used in field/ambulatory environments using

wearable sensors.
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Methods

Participants

All methods involving human subjects were approved by an

independent Institutional Review Board (Copernicus Group,

Durham, NC). Forty-one participants [thirty-eight male;

average age 21.8 ± 2.4 (SD) years] completed and received

payment of $100 USD for participation in the study. The

demographics were designed to correlate with the United

States military service member population. All participants

were recruited from the community and met minimum

requirements including age (18–30), normal visual acuity, and

no medical conditions such as endocrine disorders.
Data collection procedure

Upon arrival, participants provided written informed

consent and completed a demographics questionnaire.

Wireless physiological sensors were then placed on the

participants, followed by a 5-min recording of baseline (BL)

physiological activity while participants remained seated.

Participants then underwent the cold pressor test (CPT),

consisting of up to 3 min of non-dominant hand immersion

in ice cold water (1–2°C) under experimenter observation.

The CPT was initially developed in 1932 as a clinical

cardiovascular challenge to monitor changes to HR and blood

pressure (17) and is considered a reliable experimental

method for controlled pain induction (22). Physiological

measures (detailed in Section “Physiological measurements”)

were captured throughout the baseline and pain-induction

phases. At the end of the experiment, participants were

debriefed and paid for their participation.
Physiological measurements

Participants were fitted with a 3-lead electrocardiogram

(ECG) with bandlimits set between 1 and 35 Hz. ECG was

sampled at 500 Hz and wirelessly sent to an MP-150 system

running AcqKnowledge software (Biopac Systems, Goleta

CA). Gain was set on the ECG channel to 2000.
Data featurization

Peak detection was used to identify and extract the R-R

intervals (RRI) for each ECG recording (Figure 1). For each

recording, the RRIs were separated into 60-second, non-

overlapping epochs to coordinate with known temporal

dynamics of pain (23). This RRI data was analyzed to convert

the time-series data into featurized observations for use as
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FIGURE 1

Data measurement, featurization, and modeling overview; *peaks of the ECG signal.
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model inputs (Figure 1). These features (N = 46) fell into one of

four categories: (1) time domain HRV, n = 18; (2) frequency

domain HRV, n = 20; and (3) nonlinear HRV, n = 4; and (4)

respiration, n = 4 which are described in the following sections.

HRV features were calculated using the pyHRV open source

toolbox (24). The toolbox bundles a selection of functions to

compute time domain, frequency domain, and nonlinear

HRV features. Time domain features contain statistical

information from two different classes: (a) features derived

directly from RRI or instantaneous HR, and (b) those derived

from the differences between successive RRI. Time domain

features included RRI (min, max, mean, count), differences in

successive RRI (RRIdiff; mean, min, max), heart rate (HR;

mean, min, max, standard deviation), standard deviation of

RRI (SDNN), root mean square of RRI (RMSSD), standard

deviation of successive RRIdiff (SDSD), number of RRI

greater than 50 ms (RRI-50), ratio between RRI-50 and total

number of RRI (pRRI-50), number of RRIdiff greater than

20 ms (RRI-20), and the ratio between RRI-20 and the total

number of RRI (pRRI-20).

Frequency domain HRV was obtained using Fast Fourier

Transform to compute the power spectral density, followed by

an analysis of very low frequency (VLF) power (0–0.04 Hz),

low frequency (LF) power (0.04–0.15 Hz), indicative of

sympathetic activity, high frequency (HF) power (0.15–
Frontiers in Pain Research 03
0.4 Hz), indicative of vagal activity, and very high frequency

(VHF) power (0.4–3 Hz) (25). For each frequency band, peak

frequency, absolute power, log power, and relative power were

calculated. Normalized power was also calculated for LF and

HF, along with LF/HF ratio and total power.

Nonlinear HRV parameters were also included to enhance

the unpredictability of the R-R series caused by various

complex physiological dynamics of the cardiovascular system

that lead to HRV (26, 27). The Poincaré plot is a scatter plot

where a given RRI is plotted against its successor RRI, which

allows a rapid first judgment of a subject’s health as the shape

of the scatter plot provides a visual representation of the

overall HRV (28). In addition to the plot, analysis of the

Poincaré ellipse provides additional parameters that can be

used for an analysis of the RRI scatter plot: standard

deviation of the minor axis (SD1), standard deviation of the

major axis (SD2), SD1/SD2 ratio, and the ellipse area.

Respiration was derived from RRI data by leveraging the

respiratory sinus arrhythmia (RSA). RSA represents HRV in

synchrony with respiration, by which the RRI on an ECG is

shortened during inspiration and prolonged during expiration

(29). First, the RRIs were linearly interpolated to create a

uniformly sampled time-series (fs = 4 Hz). This interpolated

time-series data was then filtered using a Butterworth

bandpass filter in the range of 0.2–0.8 Hz to isolate the
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frequency components relevant for respiration. Then, a peak

detection algorithm was run on the bandpass-filtered signal to

detect breaths. The inter-breath intervals (IBI) were then

calculated (in ms) for each of the detected peaks/breaths.

Finally, the IBIs were converted to respiration rate (in breaths

per minute). The respiratory features used to create the pain

classifier were calculated based on the instantaneous respiration

rate data. These included a total of four time domain features

(mean, min, max, standard deviation) in breaths/min.

After calculating all features (N = 46) for each epoch, the

features were baseline normalized. This was done to reduce the

confounding influence of interindividual variability on the

classifier. This normalization process began by pairing each

participant’s BL epochs with all of their other epochs. The

features were then subtracted between each of these BL/BL and

BL/CPT epoch pairs, and the absolute values of the differences

were taken. The resulting data that were used as classifier inputs

therefore describe the magnitude of the difference between an

epoch of data and a physiological baseline for a given participant.
TABLE 1 List of sociodemographic factors of study sample (N = 41).

Study sample % (n)

Gender

Male 92.7 (38)
Data modeling

To ensure that a pain classification approach was developed

that could be used outside of controlled environments, two

pain classification pipelines were generated: (1) laboratory grade

classifier, which is more computationally intensive and

intended to be used on higher-end computing equipment; and

(2) field grade classifier leveraging only time-domain HRV

features and intended to be used with current wearable sensors

(Figure 1). RRIs were used for derivation of all features and

initial model selection of the field grade classifier in an effort to

mimic a real-world collection scenario from a smartwatch.

Training and test datasets were created dynamically using the

Leave-One-Subject-Out (LOSO) cross-validation method. LOSO

was utilized in evaluation to allow for better subject-to-subject

variation in training while also limiting autocorrelation for a

single subject. Next, a BL vs. CPT preprocessing and

classification pipeline was developed utilizing Python’s Scikit-

learn (sklearn) library (30). The pipeline applied a standard

scaler (i.e., subtract mean and divide by standard deviation) to

all features as well as a principal component analysis (PCA) for

dimensionality reduction. Finally, a logistic regression classifier

was implemented to differentiate BL vs. CPT.

Female 7.3 (3)

Age group

18–21 51.2 (21)

22–25 39.0 (16)

26–30 9.8 (4)

Education

High School Diploma 26.8 (11)

Some College/University 51.2 (21)

University Degree 22.0 (9)
Data analysis and statistics

For each classifier developed, several classification metrics

were calculated using the sklearn library including precision,

recall, support, and F1 score. Precision is defined as the ratio

of true positives to the sum of true and false positives. Recall

is defined as the ratio of true positives to the sum of true
Frontiers in Pain Research 04
positives and false negatives. The F1 score is the weighted

harmonic mean of precision and recall with a maximum

value of 1.0 and a minimum value of 0.0. Support is the

number of occurrences of the given class in the overall dataset.
Results

The sociodemographic characteristics of the participants in

the study are presented in Table 1. Participant ages ranged from

19 to 30, with a mean of 21.9 ± 2.4 (SD) years. The average

duration of the CPT was 2.51 (0.80) min, with 29/41

participants completing the full 3-min duration. Among the

12 individuals who did not complete the CPT, the average

duration was 1.34 (0.44) min.
Feature permutation importance

Box plots in Figure 2 show the feature importance values

across iterations of the algorithm for all 41 participants. These

values are used to compute the average feature importance

and the corresponding standard deviations shown in the bar

chart. The x-axis shows the impact that permuting a given

feature had on the model’s prediction score. The y-axis shows

the different features in the relative importance order. The

minimum, first quartile, median, third quartile, and a

maximum of the feature importance values across different

iterations of the algorithm are shown by each box.

HRV time domain features most heavily influenced the

model F1 score. To further illustrate the importance of these

features in classifying pain, Figures 3, 4 show boxplots to

visualize differences in features for the BL and CPT (pain)

conditions. The top four contributing HRV time domain

features included the maximum HR, mean and max RRI and

RMSSD. Figure 3 shows clear differences within these top

features across the BL and CPT classes. Conversely, the lowest
frontiersin.org
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FIGURE 2

Permutation importance utilized to estimate individual feature importance. Boxplots for each feature are plotted by importance level, with median
shown as vertical lines, standard deviation bars, and outliers shown as small circles. LF, low frequency; HF, high frequency; VLF, very low frequency;
VHF, very high frequency; P, power; Rel, relative; Abs, absolute; SD1, standard deviation of minor axis; SD2, standard deviation of major axis; RRI, R-R
interval; RRIdiff, differences in successive RRI; RMSSD, root mean square of RRI; SDNN, standard deviation of RRI; SDSD, standard deviation of
successive RRIdiff; RRI-20, number of RRIdiff greater than 20 ms; RRI-50, number of RRI greater than 50 ms; pRRI-20, ratio between RRI-20 and
total RRI; pRRI-50, ratio between RRI-50 and total RRI.
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contributing HRV features included low frequency peak, the

minimum respiration rate, Poincare ratio, and VLF frequency

peak. Figure 4 shows little distinction within these lowest four

features across the BL and CPT classes.
Laboratory/clinical classifier

The computationally intensive, laboratory/clinical pain

classifier was generated utilizing all available features (N = 46,
Frontiers in Pain Research 05
listed in Figure 2). This laboratory-grade approach classified

pain at an F1 level of 81.9% (Table 2).
Field/ambulatory classifier

Since HRV time-domain features had the highest influence

on the model, the same preprocessing and classification pipeline

described above was utilized to create a field grade classification

model with only the HRV time-domain features (n = 18). This
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FIGURE 3

Baseline-normalized, HRV time domain features contributing most to the model included maximum HR, RMSSD, mean RRI, and max RRI. The data
overlay on each boxplot represents the entire dataset (blue circles) used to generate the corresponding boxplot with medians shown in red and
outliers shown as black circles.
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algorithm was capable of classifying pain at an F1 level of 79.4%

(Table 3). Finding the optimal balance between model

complexity and performance ensures both that the model can

run efficiently when deployed and that the potential for

overfitting is minimized.
Discussion

The current study demonstrated the ability to create a

series of algorithms capable of automatically detecting pain
Frontiers in Pain Research 06
in controlled and natural environments. Two algorithms

were developed, one that is more computationally intensive

with a higher number of features and an F1 score of 81.9%,

as well as a less computationally intensive classifier more

suited for field settings with fewer features and an F1 score

of 79.4%. Such approaches could be leveraged to quantify

acute pain in the presence of RRI data from a range of

sources, from ECG data in clinical settings to data derived

from PPG in consumer wearables. The use of the CPT

allowed for controlled, replicable pain induction promotes a

moderately painful but rapidly reversible stimulus, as
frontiersin.org
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FIGURE 4

Baseline-normalized, non-HRV time domain features contributing least to the model included low frequency (LF) peak, the minimum respiration rate,
Poincare ratio, and very low frequency (VLF) peak. The data overlay on each boxplot represents the entire dataset (blue circles) used to generate the
corresponding boxplot with medians shown in red and outliers shown as black circles.

TABLE 2 Sklearn classification report for laboratory grade pain
classifier with all features.

Precision Recall F1-score Support

BL 0.765 0.861 0.811 231

CPT 0.875 0.785 0.828 284

BL, baseline; CPT, cold pressor test (pain induction task).

TABLE 3 Sklearn classification report for field grade pain algorithm
with HRV time domain features.

Precision Recall F1-score Support

BL 0.736 0.844 0.786 231

CPT 0.856 0.754 0.801 284

BL, baseline; CPT, cold pressor test (pain induction task).
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widely reported via self-report (31) or behavioral change

(32). Given the high prevalence of pain worldwide, which

reaches up to 25% of the population in some countries
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(33), and the lack of objective methods to classify pain, this

approach has the potential to identify and better mitigate

individual pain.
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A number of previous groups reported physiology-based

approaches to pain classification, but to date such

approaches require the use of laboratory equipment or

controlled settings (34), and have leveraged modest sample

sizes. For instance, one group leveraged fMRI data and

support vector machines to develop a pain algorithm with

81% accuracy in a group of 24 subjects (35). Another

group reported an electroencephalography (EEG)-based

pain algorithm by analyzing 64 channels of EEG data with

an accuracy of 80% in a group of 29 subjects (36).

Multimodal approaches integrating cardiovascular,

respiratory, electrodermal, and electromyography sensors

were able to classify acute heat pain at 76% accuracy in a

group of 30 subjects but required significant experimental

setup and was not realistic for field environments (37).

Previous ECG-based methods developed for postoperative

patients have reported accuracy levels from 62% to 84% in

a group of 25 subjects, but were targeted only to clinical

environments (38). Deep-learning approaches are expected

to improve on this accuracy, at the cost of significant

algorithm complexity and reduced transparency (39).

Remarkably, the current study presented an 79.4% accurate

classifier of acute pain leveraging only HRV features from

sample size approximately 25% larger than previous work,

allowing for field grade classification in natural

environments.

Various approaches to HRV quantification have been used

in the past to classify pain. A systematic review argued for the

use of frequency domain measures, including increased low

frequency (sympathetic) and decreased high frequency (vagal)

HRV for monitoring acute pain (15). The authors

recommended assessing individual differences and the impact

of alterations on pain induction tasks to HRV. An additional

systematic review focused on changes to HRV under chronic

pain (40). Leveraging both time and frequency domain HRV

metrics, the authors identified a moderate to large effect of

decreased high-frequency HRV in chronic pain, indicative of

decreased parasympathetic activity. Our data suggests that

acute thermal pain induction, using cold stimuli can be

assessed with high accuracy in field settings using time

domain HRV. As various HRV changes have also been noted

following psychological stress (41), movement (42), and

mental workload (43), understanding context is critical to the

successful use of limited sensor approaches to quantifying

human status.

The current effort achieved comparable accuracy to

previous approaches by leveraging RRI data which is

becoming common in emerging wearable fitness devices.

Such data can be obtained via monitoring changes to HR

from optical sources including PPG, ECG recordings, or

radio frequency at various body sites including the chest,

wrist, or earlobe (44). Increasingly, the ability to gather
Frontiers in Pain Research 08
cardiovascular data from non-traditional sources, such as

cameras or smartphones, will allow for more persistent and

accurate tracking. For instance, independent component

analysis of visual spectrum imagery from the face, followed

by Fast Fourier Transform within a biologically relevant

frequency band was capable of extracting cardiac pulse with

high accuracy from multiple subjects simultaneously in the

presence of motion artifacts, differences in skin coloration,

and illumination (45). In addition, digital phenotypes (46)

developed using sensors embedded in smartphones and

machine learning have shown the potential to extract

cardiovascular variables without the need for external

monitoring devices (47).

The average duration of the CPT was similar to previous

studies (48), but the percentage of participants that did not

complete the CPT was approximately double previously

reported percentages (49). Duration of CPT has been used

previously as a proxy for pain tolerance (32). In our study,

participants found the CPT highly painful, unpleasant,

difficult to complete, and stressful (49). Since pain

experience is associated with significant individual

differences, various demographic factors including age and

ethnic group, along with genetic and psychosocial factors

could contribute to the individual differences in pain

toleration observed in this study (50). Additionally,

physiological differences were seen in baseline-normalized

responses to pain-induction tasks, reflected by the outlier

datapoints observed in Figures 3, 4, and could be

associated with underlying cardiovascular health (51), or

pain tolerance (52). Sex-related influences on pain and

analgesia have also been previously reported (53). However,

such largely self-reported differences are not associated

with discernible differences between sexes in cardiovascular

activity under pain (16). Thus, although the sample

population was majority male, the algorithms reported in

this manuscript could be expected to perform well in both

sexes. However, additional replication, expansion, and

increasing the diversity of the underlying dataset is needed

prior to generalizing to a larger cohort.

In summary, a high accuracy classification of acute pain

using HRV time domain features was developed with

potential to be implemented with existing and emerging tools

in natural environments. Current work is focused on altering

the binary output to reporting pain on a scale to more closely

model existing pain reporting scales. Current work is also

focused on leveraging this approach to quantify and mitigate

pain in fighter pilots, who are at high risk for experiencing

chronic pain in the upper back and neck due to exposure to

high G-forces while flying (54). A mobile application that

implements the automated pain classification algorithm along

with flight approved, wireless wearable sensors are being

leveraged to detect and mitigate pain.
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