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Tumor growth in situ or bone metastases in cancer patients all can induce bone
cancer pain. It is frequently occurred in patients with breast, prostate, and lung
cancer. Because of the lack of effective treatment, bone cancer pain causes
depression, anxiety, fatigue, and sleep disturbances in cancer patients, disrupts
the daily quality of life, and results in huge economic and psychological
burden. Over the past years, transient receptor potential channels (TRPs),
especially TRP vanilloid 1 (TRPV1) in dorsal root ganglion (DRG), have been
considered to be involved in bone cancer pain. The characteristic of TRPV1
had been well studied. The mechanisms under TRPV1 regulation in DRG with
bone cancer pain are complex, including inflammatory mediators,
endogenous formaldehyde, and other mechanisms. In the present review, we
summarize the role and potential mechanism of TRPV1 in DRG in bone
cancer pain. As the primary sensory neurons, targeting the TRPV1 channel in
DRG, might have fewer side effects than in central. We hope systematically
understand of TRPV1 modulation in DRG will bring more effective strategy.
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Literature selection

We searched on PubMed with the keyword [“Bone cancer pain” or “Cancer-

associated bone pain” and “transient receptor potential vanilloid subfamily member 1

or TRPV1”] or [“Bone cancer pain” or “Cancer-associated bone pain” and “transient

receptor potential vanilloid subfamily member 1 or TRPV1” and “dorsal root

ganglion or DRG”]. A total of 58 articles were retrieved, because of the absence of full

text, 6 articles were excluded. Next, we excluded 24 articles based on title or abstract,

including 4 reviews and 20 articles, that had very little to the subject. On the other

hand, we added one article that related to the definition of bone cancer pain, two

articles that related to the characteristics of TRPV1, two articles related to the

expression profile of TRPV1 in DRG, one article about the regulation of TRPV1 by

TNF, two articles, and one review about PD-L1. Finally, 37 articles were included,

containing 27 basic research articles and 10 reviews.
TRPV1 channel

In 1997, transient receptor potential vanilloid subfamily member 1 (TRPV1) was

first described as the receptor of capsaicin (1). Since then, more and more
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researchers gave their attention to the TRPV1 channel (2–4). In

addition to capsaicin, TRPV1 also can be activated by other

factors, including heat, protons, resiniferatoxin (RTX, found

in the latex of Eucalyptus resinifera), eugenol (a compound

present in cloves), allicin (found in garlic), piperine (an

irritant found in black pepper), gingerol and zingerone (from

ginger), camphor (found in the wood of camphor), and the

hot component of pepper (1, 5–8). In bone cancer pain, the

acidic microenvironment could activate the TRPV1 channel

although the expression of TRPV1 mRNA had no change

(9). TRPV1 is broadly expressed in peripheral nervous system

and the abnormal activity of TRPV1 is involved in a variety

of pathophysiological processes, such as pain and itch. In

DRG neurons, TRPV1 is predominantly located in small and

medium neurons (10–12), the distribution of TRPV1 is

consistent with the heat sensitivity of TRPV1. The bone

cancer pain model led to an overall shift in the distribution

of TRPV1 from small to large neurons, validating that large

DRG neurons expressed TRPV1 (10, 11). In the bone cancer

pain model, the TRPV1 channel contributes to the

sensitization of DRG neurons (13, 14).
TRPV1 contributed to bone
cancer pain

Bone cancer pain can be classified into primary cancer pain

or secondary cancer pain (15, 16). Due to the complexity and

not fully understand the mechanism (17), resulted in the

effective treatment of bone cancer pain was blocked. In 2005,

TRPV1 was first demonstrated to be involved in bone cancer

pain (18). In this study, bone cancer pain was induced by the

injection of 2,472 osteolytic sarcoma cells to the mouse

femur. Resulted in a large proportion of sensory neurons

innervating the tumor-bearing bone expressed TRPV1.

Subcutaneous injection of TRPV1 antagonist JNJ-17203212

alleviated pain behaviors at different stages of cancer

progression. Although the antagonist of TRPV1 attenuated

the pain behavior, blockade TRPV1 not always reduced bone

cancer pain indicating that the regulation of TRPV1 was

multiple (19–21). Furthermore, the TRPV1+/+ and TRPV1+/−

animals had normal development of pain behaviors, whereas

TRPV−/− mice showed a reduction in the development of

behaviors. In another study, Walker 256 cells were injected

into the bone cavity of rat tibial to induce bone cancer pain.

The rats developed mechanical allodynia and thermal

hyperalgesia. Intrathecal injection of adeno-associated virus

(AAV) mediated siRNA against TRPV1 significantly

suppressed the expression of TRPV1 mRNA in DRG and

alleviated the pain behavior of rats (7). Upregulation of

membrane TRPV1 in DRG was also found in rats with bone

cancer pain. In the study, the animal model was induced by

injection of mammary rat metastasis tumor (MRMT-1) cells
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(carcinoma) into tibial bone cavity. Not only that, the current

density of TRPV1 was significantly increased in DRG

neurons (14). All the studies suggested that TRPV1 in DRG

was upregulated and involved in bone cancer pain. But we

also noted that there are some contradictions in the

expression of TRPV1. A study showed that the expression of

TRPV1 in DRG was decreased in bone cancer, but

capsazepine, an another antagonist of TRPV1, significantly

alleviated the pain behavior by subcutaneous injection (22).

In another research, the expression of TRPV1 mRNA had no

change in DRG (9). Different experimental conditions may

affect the expression of TRPV1. In addition to experimental

conditions, membrane TRPV1 plays more important role in

bone cancer pain. The activity of TRPV1 could increase

when the expression had no change and involved in cancer

pain. The decreased expression of TRPV1 did not necessitate

their decreased activity in neuron membrane (22).
Mechanisms of TRPV1 regulation in
DRG of bone cancer pain

Inflammatory mediators

TRPV1 receptor can be regulated by inflammatory

mediators, including interleukin-6 (IL-6), tumor necrosis

factor-α (TNF-α), insulin-like growth factor-1 (IGF-1), and

so on. In cultured DRG neurons, IL-6 treatment significantly

upregulated the membrane protein level and current density

of TRPV1. Additionally, the suppression of the IL-6

signaling by sgp130 reversed the phenomena and companied

with bone cancer pain behavior relief in rats (14).

Administration of TNF-α to cultured DRG neurons, the

protein level and current density of TRPV1 were all both

upregulated. Furthermore, the study found that TRPV1

protein level in DRG was increased in wild-type mice but

not in TNFR2−/− mice with tumor (23). In DRG neurons,

IGF-1 receptor co-expressed with TRPV1. Cultured DRG

neurons with IGF-1, increased the total and membrane

protein level of TRPV1. Inhibition of IGF-1 receptor with

picropodophyllotoxin alleviated the pain behavior (24, 25).

These results suggested that IGF-1 might regulate the

expression of TRPV1 and contribute to bone cancer pain.

In the bone cancer pain model, tumor growth disrupted the

balance between osteoclast and osteoblast in bone (26). On the

one hand, cancer cells not only promoted osteoclasts secretion

of proton, but also inflammatory mediators (27), on the other

hand, cancer cells also can secret inflammatory mediators and

other substance (28). These substances can activate or

upregulate TRPV1 and then contribute to the sensitization of

sensory nervous in pain signaling transmission.
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Endogenous formaldehyde

The local microenvironment in the bone is complex. In the

development of cancer, tumor tissues can secrete formaldehyde.

In cultured cancer cell lines, such as MRMT-1 cells, H1299 cells,

SY5Y cells, and Walker 256 cells, the formaldehyde

concentration was significantly increased. The same results

could be observed in tumor tissues from cancer patients (29).

Formaldehyde treatment increased the expression and current

density of TRPV1 (29, 30). These results suggested in bone

cancer pain models, formaldehyde upregulated the expression

of TRPV1 and contributed to pain behavior. The fact

suggested that target the formaldehyde production might be a

potential treatment for bone cancer pain.
Other mechanisms

It is generally believed that cancer pain is complex, so the

regulation mechanisms of TRPV1 are also complex. In

addition to the above mentioned, there are other mechanisms.

In the early phase of cancer, patients feel no pain or minimal

pain may be due to the antinociceptive effects of programmed

death ligand 1 (PD-L1) (31–33). In a study, Liu and colleagues

found the expression of PD-1, receptor of PD-L1, was also

increased. PD-L1 activated Src homology 2 domain-containing

tyrosine phosphatase-1 (SHP-1) and inhibited the expression

of TRPV1 in DRG. Besides, PD-L1-induced analgesia on bone

cancer pain was only observed in wild-type but not in

TRPV1-KO mice (34). High mobility group box 1 (HMGB1)

is one of the damage-associated molecular patterns. There was

a report indicated that HMGB1 contributed to bone cancer

pain by upregulation of TRPV1, but the behind mechanism

had not been fully illustrated (35). Lysophosphatidic acid

(LPA) is a lipid metabolite released after tissue injury, and

plays a key role in cancer development. In bone cancer pain

rats, LPA potentiated TRPV1 current via a protein kinase C

(PKC)-dependent pathway in DRG neurons (36).
Conclusion

In this mini review, we summarized the role and potential

mechanism of DRG TRPV1 in bone cancer pain, including
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inflammatory mediators, endogenous formaldehyde, and other

mechanisms. Although the mechanisms about TRPV1

regulation had been studied, target TRPV1 for bone cancer

pain treatment is still limited because of the side effect. The

mechanisms of pain include the peripheral and center

nervous systems, when compared to the central, the structure

of the peripheral is simpler. In the future, target TRPV1 in

DRG might be a better choice for bone cancer pain treatment

(37). In order to find more specific drug that target TRPV1,

further research is still needed.
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