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Background: Anticoagulants, renowned for their role in preventing blood clot
formation, have captivated researchers’ attention for the exploitation of their
potential to inhibit cancer in pre-clinical models.
Objectives: To undertake a systematic review and meta-analysis of the effects of
anticoagulants in murine cancer research models. Further, to present a
reference tool for anticoagulant therapeutic modalities relating to future
animal pre-clinical models of cancer and their translation into the clinic.
Methods: Four databases were utilized including Medline (Ovid), Embase (Ovid),
Web of science, and Scopus databases. We included studies relating to any
cancer conducted in murine models that assessed the effect of traditional
anticoagulants (heparin and its derivatives and warfarin) and newer oral
anticoagulants on cancer.
Results: A total of 6,158 articles were identified in an initial multi-database
search. A total of 157 records were finally included for data extraction. Studies
on heparin species and warfarin demonstrated statistically significant results in
favour of tumour growth and metastasis inhibition.
Conclusion: Our findings constitute a valuable reference guide for the
application of anticoagulants in cancer research and explore the promising
utilization of non-anticoagulants heparin in preclinical cancer research.

Systematic Review Registration: PROSPERO [CRD42024555603].
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1 Introduction

Despite advances in surgery, imaging technologies, and new targeted treatment

modalities for advanced cancers, cancer remains the leading cause of death globally,

accounting for approximately 10 million deaths in 2020 (1). In 2020, it was estimated

that 10 million lives were lost due to cancer and it is suspected that, by 2040, around

28 million people will have been newly diagnosed with cancer (2).
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Cancer is an umbrella term that encompasses a large group of

diseases involving any part of human body (3). Several risk factors

have been documented as contributing to cancer initiation,

including tobacco smoking, alcohol, ionizing radiation,

electromagnetic field, UV light, dietary factors, lack of physical

activity, infections, and chemical exposure (4). Cancer therapy

depends on the type and location of the cancer and degree of

invasiveness. Currently, multiple therapeutic options are available

for cancer as primary and/or secondary adjuvant therapies, that

include but not limited to; surgery, chemotherapy, radiotherapy,

immunotherapy, CAR T cell therapy, hormone therapy, anti-

angiogenic treatment, stem cell therapy, ablation therapy,

targeted therapy, photodynamic therapy, sonodynamic therapy,

chemodynamic therapy, ferroptosis-based therapy, and cancer

mRNA vaccines in development (5, 6). Murine preclinical

models are important tools in oncology research due to their

90% genetic similarity to humans enabling researchers to

study cancer biology (7), test new therapy combinations, and

expedite the development of novel treatments to enhance

patient outcomes (7).

Cancer patients are at a higher risk of developing venous

thromboembolism (VTE), (approximately 4–7 times) compared

to non-cancer patients, with 15% experiencing venous

thromboembolic events (8). Therefore, anticoagulants (ACs) are

commonly prescribed for these patients to prevent cancer-

associated thrombosis (9). Furthermore, a significant number of

cancer patients may already be on concurrent AC treatment for

systemic reasons. As an example, in our recently conducted

multicentre study across three Australian hospitals, we found out

that approximately 6.5% of oral cancer patients were being

treated simultaneously with ACs for systemic purposes

(unpublished data).

The debate over AC efficacy as anti-cancer agents has been

ongoing for over 50 years. However, there is now considerable

evidence derived from both in vitro and in vivo studies to

indicate that conventional ACs (heparin and warfarin) are not

only effective for blood clot formation prevention, but also may

exert anti-cancer effects (10, 11). Heparin and its derivatives have

been shown to have anti-metastatic properties in multiple

preclinical animal’s studies, including impeding cancer cell

proliferation, adhesion, invasion and metastasis. These have been

shown to occur through multiple mechanisms, such inhibition of

heparanase, P-L selectin mediated-cell adhesion, angiogenesis,

and inhibition of lymphogenesis process via the VEGF-C/

VEGFR-3 axis. However, ACs have limitations that are dose

dependent, including excessive bleeding and heparin induced

thrombocytopenia (HIT) (10–12).

Historically, warfarin was the oral AC drug of choice for

more than half century until the recent advent of novel oral

anticoagulants drugs (NOAC). Notably, warfarin has a narrow

therapeutic window due to its broad drug and food

interactions (13, 14). However, the mechanism behind the

proposed anti-cancer properties appears not to be related to

its anticoagulation properties, rather due to inhibition of the

receptor tyrosine kinase Axl that is associated with cancer cell

proliferation, migration and invasiveness (15). NOACs are
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novel classes of anticoagulants, including the direct thrombin

inhibitor (dabigatran) and factor Xa inhibitor (edoxaban,

rivaroxaban and apixaban) (16). The National Comprehensive

Cancer Network (NCCN) and the International Society on

Thrombosis and Haemostasis (ISTH) recommended the use

of NOAC as an alternative to low molecular weight

heparin (LMWH) and warfarin for the treatment of cancer

associated thrombosis (16).

We designed our systematic review and meta-analysis to

address the following key questions using the PICOS framework:

In preclinical murine models of cancer (P), how does the

administration of traditional anticoagulants (such as heparin and

warfarin) and newer oral anticoagulants (I), compared to placebo

or no treatment (C), affect cancer biology? Additionally, what are

the most common routes of administration, dosage protocols,

and therapeutic time windows for anticoagulant administration

concerning tumour initiation and progression (O) in in vivo

preclinical studies (S)?

To the best of the authors’ knowledge, this is the first study

investigating and achieving the above aims. We comprehensively

summarise the knowledge base regarding the effects of both

traditional ACs (heparin and its derivatives and warfarin) and

novel oral ACs (NOACs) in relation to cancer therapy in

preclinical murine studies, which may have clinical

translative ramifications.
2 Methods

2.1 Study design

This systematic review and meta-analysis was conducted in

accordance with updated PRISMA guidelines (2020 PRISMA

statement) (17), and has been registered through PROSPERO

(CRD42024555603).
2.1.1 Inclusion criteria
1. Publications documenting preclinical mice models of any type

of cancer.

2. Studies that included assessment of traditional ACs (heparin

and warfarin) and/or NOACs relating to cancer.

3. Articles published in the English language.

4. Studies assessing single AC groups regardless of other

treatment arms.

5. No limit on date of publication.

2.1.2 Exclusion criteria
1. Any study that included nanoparticles-based heparin, heparin-

based multidrug delivery system, heparin-based hydrogel,

heparin analogue or combinative treatment groups.

2. Any studies relating to in-vitro work, human patients, in silico

studies, or in vivo studies relating to animals other than mice.

3. Conference reviews, letters to editor, short communications,

abstracts, book chapters and unpublished thesis.
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2.2 Data sources and search strategy

Medline (Ovid), Embase (Ovid), Web of science, and Scopus

databases were selected for this systematic review. The keywords for

our database search were stratified into three domains: study

sample, disease/condition, and medications including (mice or

mouse or murine AND cancer or neoplasia or tumour or tumor or

malignancy AND anticoagulant or anti-coagulant or heparin or

DOAC or apixaban or dabigatran or rivaroxaban or edoxaban). mp.

Search with animal limit was applied to all databases to retrieve

specific studies related to our subject of choice, mice. The citations

obtained from the database search were imported into Covidence

(Melbourne, Australia) and all duplicates and ineligible records were

removed before screening by automation tools and manually.
2.3 Study selection process

An electronic search for appropriate studies within the defined

databases was established by two independent reviewers (H.A and

S.H) on 22.9.2022. Conflicts between reviewers were solved by

discussion between reviewers (H.A and S.H) and by a third

investigator (A.C).

Two independent reviewers (H.A and S.H) extracted data from the

studies meeting our inclusion criteria using a standardized data

extraction form created in excel. The excel format included

information regarding study characteristics (authors, year of

publication and country of author origin), animals characteristics

(mouse strain, age, weight, and gender), sample size, cancer

induction method, anticoagulant treatment characteristics (type of

AC, dose, route of administration, timing relative to tumour cell

inoculation and duration of administration) and the effectiveness of

these ACs on cancer initiation, progression, and metastasis. We also

captured any reported complications relating to ACs administration

in the included studies.
2.4 Statistical analyses

Datawere exported intoMicrosoft®Excel® forMicrosoft 365MSO

(Version 2403 Build 16.0.17425.20176) and descriptive analyses were

performed. Absolute percentage inter-rater agreement and Cohen’s

kappa coefficient were calculated using IBM Statistics (SPSS).

Risk of bias was assessed for all the included studies using

Office of Health Assessment and Translation (OHAT) risk of bias

tool for animal studies. It includes eleven Risk-of-bias domains

that are grouped under 6 types of bias (selection, confounding,

performance, attrition/exclusion, detection, and selective reporting).

A meta-analysis was performed only if there were studies with

similar comparisons reporting the same outcome measures. Mean

differences were combined for continuous data and odds ratios for

dichotomous ones, using either fixed-effects models or, in the

presence of heterogeneity between the studies or paucity of included

studies (less than 5), random-effects models. Moreover, in case of a

high degree of heterogeneity, the data were explored further to
Frontiers in Oral Health 03
determine if they should be excluded from the meta-analysis. For

each meta-analysis a forest plot was created to illustrate the effects of

the different studies and the global estimation. In case of meta-

analysis performed with fixed effects model a funnel plot was

created with the aim of depicting publication bias. Review Manager

5 was used to perform all analyses. The significance cut-off was set

at p-value < 0.05. Moreover, each meta-analysis underwent a further

analysis with the aim of correcting them for the presence of alpha

and beta errors, as well as for assessing the power of the analysis.

For the abovementioned scope, the authors used the Trial

Sequential Analysis (TSA) software (version 0.9 beta, http://www.

ctu.dk/tsa). TSA software gave the possibility to calculate the

required information size (RIS), the alpha-spending function, the

trial sequential monitoring boundaries for benefits and harms, and

the futility boundaries. All data collected from the included studies

were entered into the TSA software, the alpha error was set at 0.05

and the beta error at 20%. The results of the TSA analysis are

presented as a graph with a cumulative z-curve and its relationship

with the other curves (trial sequential monitoring boundary, futility

boundary and the RIS threshold).

The chi-square test was used to determine if the variation between

studieswas due toheterogeneity rather than chance.Heterogeneitywas

assessed using Review Manager 5 (RevMan current version: 5.3.5).

Cochrane’s test for heterogeneity, which is considered significant at a

probability value of less than 0.1, and the I2 statistic, which measures

inconsistency, were used to detect any discrepancies in the estimates

of the treatment effects among the studies. A value of I2 over 50%

typically indicates high heterogeneity and relevant inconsistency. A

fixed-effect model was applied when heterogeneity among studies

was reasonably low (I2 less than 30%), otherwise a random-effect

model was used in the other studies. For the assessment of the mean

difference or odds ratio between groups, a fixed-effects model was

used or, in case of not negligible heterogeneity >50%, a random

effect model was used. In the case of a fixed effects model a funnel

plot was used to assess the publication bias.
3 Results

A total of 6,158 articles were identified through initial database

searches. These citations were imported into Covidence, and

duplicates (n = 2,242) removed before establishment of a

screening process (Figure 1). A total of 3,916 records were

screened by title and after resolving conflicts between reviewers,

the excluded records totalled 3,370. The probability of agreement

between reviewers was po = 94.91% [CI] with a Cohen’s kappa of

0.782, indicative of substantial agreement.

Total records screened by abstract numbered 546, with the

probability of agreement between reviewers po = 96.7% and Cohen’s

kappa = 0.931, almost perfect agreement. Records selected for full

text article screening totalled 329, with 172 excluded from further

analysis for various reasons (Figure 1). The probability of agreement

between reviewers was po = 98.1%, with Cohen’s kappa = 0.961,

again indicative of almost perfect agreement. Finally, 157 records

were deemed suitable to be included in our study and for initiation

of the data extraction process, (Figure 1).
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FIGURE 1

Flow chart showing the process of search and elimination involved in preparing the systematic review for the anticancer effects of anticoagulants in
pre-clinical murine models of human and murine cancer.

Al-Azzawi et al. 10.3389/froh.2024.1495942
3.1 Characteristics of studies meeting
inclusion criteria

A total of 157 independent studies were included for data

extraction. Studies were published between 1952 and 2022
Frontiers in Oral Health 04
from 30 different countries: USA (n = 51), South Korea

(n = 21), Germany (n = 13), Japan (n = 13), China (n = 12), UK

(n = 10), Netherlands (n = 8), Italy (n = 8) and others (n = 41).

All studies were conducted in preclinical murine models,

among these studies 135 used heparin and its derivatives,
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20 reported warfarin and 10 studies utilized NOACs.

Occasionally, studies tested multiple AC types at the same

time. Studies were conducted using different 50 human cancer

cell lines and 127 mouse cancer cell lines and other cell lines

with non-reported origin.

Studies conducted using various cancer models including

Melanoma (n = 51), breast cancer (n = 34), lung carcinoma (n = 29),

squamous cell carcinoma (n = 13), sarcoma (n = 12), colon cancer

(n = 10) and types of cancer (n = 46). Cancer was induced via

allograft tumour (syngeneic mouse models) in 97 experiments,

followed by cell line-derived xenograft (CDX) in 60 experiments.

Chemically induced models were utilized in three studies, and

patient-derived xenografts (PDX) were utilized in 6 studies, while

nine studies did not report their method. It is worth mentioning that

some studies used more than one type of cancer induction method.

Studies were performed utilizing multiple murine strains, the six

most common strains utilized in these studies, from most to least

common, were C57BL/6, Balb/c, nu/nu, CBA, SCID and C3H/Ne.

3.1.1 Heparin and derivative cancer studies
Heparin and its derivatives (heparin (UFH), Low molecular

weight heparin (LMWH), conjugated heparin and non-

anticoagulant heparin and other derivatives) were used in 135

studies, including: heparin (UFH) (n = 68); Low molecular weight

heparin (LMWH); studies that didn’t specified the name of
TABLE 1 Effects of heparin and derivatives on tumour growth and metastasis

Drug Studies n Exp n Effect on p
growth n

exp
Heparin (18–84) 68 137 No effect ↓

25 30

LMWH studies (Didn’t specified
the name of LMWH) (81, 82, 85–93)

11 16 No effect ↓

6 4

Tinzaparin (42, 54, 73, 94–104) 14 24 No effect ↓

2 10

Dalteparin (45, 76, 97, 105–108) 7 11 No effect ↓

3 3

Nadroparin (58, 109–113) 6 7 No effect ↓

4 2

Enoxaparin (35, 58, 110, 113–117) 7 11 No effect ↓

3 3

Drug Studies (n) Exp n. Effect on p
gr

Danaparoid (76) 1 2 No effect ↓

1 1

Fragmin (118) 1 1 No effect ↓

1

Necuparanib (119) 1 1 No effect ↓

Fraxiparine (32, 46, 120) 3 12 No effect ↓

8 2

Supersulfated low-molecular weight
heparin (ssLMWH) (40, 121)

2 2 No effect ↓

1

*N/R, not reported; #N/E, not extractable explain what this abbreviation means; ↓, reduced; ↑, i
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drug (n = 11); tinzaparin (n = 14); dalteparin (n = 7); enoxaparin

(n = 7); nadroparin (n = 6); and other LMWHs. Other heparin

derivatives included heparin conjugates (n = 23) and non-

anticoagulants heparin derivatives (n = 29).

Multiple routes of ACs administration were performed. The

most common was subcutaneous (n = 49, 36%), followed by

intravenous (n = 28, 21%). The duration of AC treatment was

extensive and ranged from 1 to 140 days (mean ± SD= 17.1 ±

16.13 days). There was also variability relating to ACs dosing

schedules for the various heparin derivatives (i.e., dose adjusted by

weight vs. not weight-adjusted) and the frequency of

administration was similarly varied (i.e., single vs. multiple doses,

once a day, twice a day, etc.). Our findings in relation to the anti-

cancer effects of heparin and its derivatives are summarised

(Tables 1, 2). In most cases, heparin appears to have anti-

metastatic effects in preclinical mice models. While different types

of LMWH have been utilized in these studies, they demonstrated

varying effects. For example, tinzaparin appears more potent than

other LMWHs in terms of reduction of tumour growth and

metastasis. Nadroparin and Fraxiparine appear to have no effects

on tumour growth, while dalteparin and enoxaparin showed

inconclusive results in terms of reduction of tumour growth. On

the other hand, non-anticoagulants derivatives of heparin showed

promising anti-cancer effects, specifically sulfated-non-

anticoagulant heparin (S-NACH) as demonstrated in Table 3.
in preclinical murine models of cancer.

rimary tumor
= number of
/study

Effect on metastasis
n= number of

exp/study

Summary
conclusions

↑ *N/R or #N/E No effect ↓ ↑ N/R or N/E Heparin reduces
metastasis1 81 32 71 1 33

↑ N/R No effect ↓ ↑ N/R or N/E LMWH reduces
metastasis6 1 3 12

↑ N/R No effect ↓ ↑ N/R Tinzaparin reduces
tumor growth and
metastasis

12 5 12 7

↑ N/R No effect ↓ ↑ N/R or N/E Dalteparin
inconclusive effect on
tumor growth, but it
reduces metastasis

5 1 6 4

↑ N/R No effect ↓ ↑ N/R Nadroparin does not
influence tumor
growth or metastasis

1 1 6

↑ N/R No effect ↓ ↑ N/R Enoxaparin is effective
in reducing metastasis5 1 7 3

rimary tumor
owth

Effect on metastasis Summary
conclusions

↑ N/R No effect ↓ ↑ N/R Inconclusive

2

↑ N/R No effect ↓ ↑ N/R Inconclusive

1

↑ N/R No effect ↓ ↑ N/R Inconclusive

1 1

↑ N/R No effect ↓ ↑ N/R No effect

2 11 1

↑ N/R No effect ↓ ↑ N/R Inconclusive

1 1 1

ncreased.
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TABLE 2 Effects of heparin conjugate on tumour growth and metastasis in preclinical murine models of cancer.

Drug
Heparin derivative conjugates

Studies (n) Exp n. Effect on primary
tumor growth:

(Number of Exp):
some studies

perform multiple
exp

Effect on metastasis
(Number of Exp): some

studies perform
multiple exp

Summary
conclusions

LMWH-taurocholate conjugate (LHT7)
studies LHTR7 (122–128)

7 12 No effect ↓ ↑ N/R No effect ↓ ↑ N/R or N/E Reduce tumor growth. No
available studies on
metastasis

1 10 1 12

LMWH-taurocholate-tetrameric
deoxycholate (LHTD4) studies (127, 129,
130)

3 8 No effect ↓ ↑ N/R no effect ↓ ↑ N/R Reduce tumor growth and
metastasis1 3 4 5 3

LHbisD4 (131) 1 2 No effect ↓ ↑ N/R No effect ↓ ↑ N/R Inconclusive

2 2

LMWH conjugated with deoxycholic acid
(DOCA); LMWH-DOCA, (LHD, (LHD 1.5,
1, 2, 4); and Heparin conjugate with
deoxycholic acid (Doc-heparin, HFD 1, 2,3)
and (HD) (70, 85, 90, 132–135)

7 23 No effect ↓ ↑ N/R No effect ↓ ↑ N/R Orally active heparin
derivatives reduce tumor
growth

19 4 4 19

Heparin. Folate-HL conjugate (FHL) (136) 1 1 No effect ↓ ↑ N/R No effect ↓ ↑ N/R Inconclusive

1 1

Conjugate Heparin-Lithocholic Acid (HL)
(70, 136)

2 2 No effect ↓ ↑ N/R No effect ↓ ↑ N/R Inconclusive

2 2

(LHsura) (89) A low molecular weight
heparin and suramin fragment conjugate

1 1 No effect ↓ ↑ N/R No effect ↓ ↑ N/R Inconclusive

1 1

GH1, GH2, GH3 Glucosylated heparin
derivative (120)

1 3 No effect ↓ ↑ N/R No effect ↓ ↑ N/R Inconclusive

GH1, GH2 2 2

GH3 Glucosylated heparin derivative 1 1

Al-Azzawi et al. 10.3389/froh.2024.1495942
3.1.2 Warfarin cancer studies
Warfarin was evaluated in 20 studies meeting our selection

criteria. Warfarin was tested on different types of cancer in

murine models, including lung carcinoma (6 out of 20 studies),

sarcoma and fibrosarcoma (7 out of 20 studies), breast carcinoma

(4 out of 20 studies) and other types of cancer, including bladder

cancer, melanoma and neuroblastoma. The cancer cell line

utilized in 18 of these studies was of murine origin, while only

two studies used human cancer cell lines. The most common

route of administration was via the drinking water (14 out of 20

study), with the dose ranging from 0.5 mg/L to 9.4 mg/L (average

of 5.6 mg/L). Treatment duration ranged from 1 to 28 days with

mean ± SD (11.16 +−7.25) days as demonstrated in Table 4.

3.1.3 NOAC cancer studies
NOACs, including dabigatran and rivaroxaban, were investigated

in 10 studies meeting our selection criteria. For dabigatran, the most

common route of administration was oral, either gavage or chow diet.

For administration of dabigatran by oral gavage, the average dose was

80.6 mg/kg (45–120 mg/kg), and via chow diet it was consistent

across all studies at 10 mg/g of chow. In most studies, duration of

dabigatran administration was not clearly defined and therefore not

extractable, however treatment duration ranged from 10 to 28 days

(average 19.6 ± 9.07 days). The effects of dabigatran on tumour

growth and metastasis in relation to timing of administration were

variable (no effect/decreased tumour growth and metastasis not

recorded) and not consistent across the studies evaluated, albeit
Frontiers in Oral Health 06
with only two available (Table 5). Murine cancer cell lines were

utilized in 6 out of 8 studies in the dabigatran group, with two

studies utilized human cancer cell lines, both being breast cancer

cell lines. Dabigatran showed controversial results in these two

studies against human breast cancer; in one study, it had no effect,

while in the other it reduced metastasis.

Murine breast cancer models were utilized in 3 studies of the

dabigatran group in which dabigatran’s effect ranged from no

effect to an increase in the metastatic burden.

Rivaroxaban was evaluated in three studies in the literature. It was

administrated via chow diet in all studies (0.4–0.5 mg/g chow) and

had no effect in almost all studies on tumour growth and metastasis

(Table 5). This may be related to timing of administration which

was post tumour inoculation in all studies (Table 5). Rivaroxaban

was tested in two murine model of cancer of human cell origin

including human breast cancer and human pancreatic cancer. It

showed no effect on tumour growth and/ormetastasis in bothmodels.

3.1.4 Primary and secondary outcomes
Across all studies the primary outcomes in our systematic

review included the effects of AC on tumour growth (volume

and weight) and tumour metastasis (incidence of metastasis,

number of nodules, site, and staging). The secondary outcome

pertained to the optimal dosage of AC, the most common route

of administration, the duration of AC treatment in murine

preclinical models of cancer, and the timing of administration in

relation to tumour inoculation (human and murine).
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TABLE 3 Effects of non-anticoagulant and low anticoagulant heparin derivatives on cancer in preclinical murine models of cancer.

Drug
Non anticoagulants heparin derivatives

Studies
(n)

Exp
(n)

Effect on
primary tumor

growth

Effect on
metastasis

Summary conclusions

Sulfated-non-anticoagulant heparin (S-NACH)
(42, 95, 96, 137)

4 8 No
effect

↓ ↑ *N/R No
effect

↓ ↑ N/R S-NACH reduces tumor growth and
metastasis

4 4 1 5 2

Non-anticoagulant heparin derivatives (NAC);
NAC-HCPS, NAC2500, NAC6000, NAC8000,
NAC10000, N-desul N-ac Heparin, O/N-desul N-
ac heparin derivatives (44, 74, 101, 138)

4 10 No
effect

↓ ↑ N/R No
effect

↓ ↑ N/R Non-anti-coagulant (NAC) heparin
derivatives reduce tumor growth, but it
appears to have no effect on metastasis2 8 4 4 2

Heparin adipic hydrazide (HAH) (139) 1 1 No
effect

↓ ↑ N/R No
effect

↓ ↑ N/R Inconclusive

1 1

Non-anticoagulant form of LMWH/NA-LMWH
(114)

1 1 No
effect

↓ ↑ N/R No
effect

↓ ↑ N/R Inconclusive

1 1

Low anticoagulant activity heparin derivatives
SST0001 Roneparstat (100 NA-RO.H.A); 100% N-
acetylated and 25% glycol-split heparin studies
(140–142)

3 9 No
effect

↓ ↑ N/R No
effect

↓ ↑ N/R or
#N/E

Roneparstat reduces tumor growth

1 4 4 1 8

Carboxyl-reduced heparin (CR-heparin) (41, 55,
84)

3 3 No
effect

↓ ↑ N/R No
effect

↓ ↑ N/R Low anticoagulant activity, reduced tumor
metastasis

3 3

Reduced oxyheparin heparin derivatives (RO.H),
and (100 NA-RO.H.A) (143)

1 8 No
effect

↓ ↑ N/R No
effect

↓ ↑ N/R Reduced metastasis in one study

8 2 6

LAC-heparin (82) 1 12 No
effect

↓ ↑ N/R No
effect

↓ ↑ N/R Periodate-oxidized and borohydride-
reduced heparin with low anticoagulant
activity (LAC heparin). reduced metastasis
in one study

12 2 10

Butanoylated heparin; (83) 1 3 No
effect

↓ ↑ N/R No
effect

↓ ↑ N/R O-acylating low molecular weight heparin
with butyric anhydride—weak
anticoagulant; reduced tumor growth in one
study

3 3

N-desulfated, 6-O desulfated, 2-O-desulfated
heparin, N-desulfated, 2-O,3-O-desulfated heparin,
N-desulfated heparin, N-2,3-DS-heparin (84, 144–
146)

4 13 No
effect

↓ ↑ N/R No
effect

↓ ↑ N/R or N/
E

reduced anti-coagulant activity, reduced
metastasis

1 2 10 9 4

N-acetylated N-desulfated heparin, N-resulfated
N-and O-desulfated heparin (41, 55)

2 4 No
effect

↓ ↑ N/R No
effect

↓ ↑ N/R Almost devoid of anti-coagulant activity. It
reduces metastasis

4 4

LABH (93) 1 1 No
effect

↓ ↑ N/R No
effect

↓ ↑ N/R Low-anticoagulant bovine heparin (LABH):
inconclusive

1 1

58 NA-H; 58% N-acetylated heparin (58NA-H)
(143)

1 6 No
effect

↓ ↑ N/R No
effect

↓ ↑ N/R Reduced anti-coagulant activity; reduced
tumor metastasis in one study

6 1 5

Heparin-DOCA (bile acid acylated-heparin
derivative (heparin-DOCA) (68, 69)

2 6 No
effect

↓ ↑ N/R No
effect

↓ ↑ N/R Lower anticoagulant activity, reduced tumor
growth and metastasis

3 3 3 3

*N/R, not reported; N/E not extractable; ↓, reduced; ↑, increased.
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Additionally, survival rate, mortality, complications associated with

administration of AC in mouse models were reported.
3.2 Study quality and risk of bias

Risk of bias was assessed utilizing Office of Health Assessment

and Translation (OHAT) risk of bias tool for animal studies. Two
Frontiers in Oral Health 07
reviewers independently conducted the risk of bias assessment (HA

and FA). All studies, except one were probably at high risk of bias

(N/R) for at least two criteria. These studies failed to report the

allocation concealment process and the blinding process involved

in exposure given to animals (Figure 2). Reviewed studies

(60.5%) reported successfully the primary and secondary

outcomes, while 39.4% reported with insufficient information

about selective outcomes. Fifty six percent of the studies showed
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TABLE 4 Effects of warfarin on cancer in preclinical murine models.

Study Cancer type Dose schedule;
(Dose, frequency,

route)

Duration of
treatment
(Days)

Timing in reference
to tumor

inoculationa

Effect on
Primary tumor

growth

Effect on
metastasis

Baker et al.
(147)

Mouse Sarcoma 7.6 mg/L/Daily/DW 13 +9 day ↓ No effect

Biggerstaff
et al. (148)

Mouse Neuroblastoma 3.5 mg/L/Daily/DW 14 −4 days ↓ N/R

Brown (149) Mouse Sarcoma 7.5 mg/L, 5 mg/L/daily/DW 7 −4 days N/R ↓

Mouse breast cancer 7.5 mg/L, 5 mg/L/daily/DW 7 −4 days N/R ↓

Carmel and
Brown. (150)

Mouse Sarcoma N/R/daily/DW 7 −4 days N/R ↓

Colucci et al.
(37)

Mouse Lewis lung
carcinoma

7.5 mg/L, 1.5–2 mg/L,/
Daily/DW

N/R N/R N/R ↓

Dumont et al.
(151)

Mouse Lewis lung
carcinoma

3 mg/kg/every two days/
oral (NOS)

14 +24 h No effect No effect

Mouse Lewis lung
carcinoma

3 mg/kg, every two days,
oral (NOS)

14 −7 days No effect ↓

Fasco et al.
(152)

Mouse Lewis lung
carcinoma

4.8 µg/ml, 2.4 µg/ml, daily/
DW

N/R N/R ↓ ↓

Ghersa and
Donelli (153)

Mouse Lewis lung
carcinoma

5 mg/L, 1 mg/L/daily,/oral
(NOS)

N/R +13 days No effect No effect

Gorelik (38) Mouse Melanoma;
Madison lung
carcinoma

8 µg/ml/daily/DW 2 −2 days N/R ↓

Gorelik (43) Mouse Melanoma;
Madison lung
carcinoma

8 mg/L, daily/DW 2 −2 days N/R ↓

Ketcham et al.
(154)

Human Bladder cancer 9.1 mg/L, 9.4 mg/L, Daily/
N/R

N/R N/R N/R ↓

Breast Adenocarcinoma 9.1 mg/L, 9.4 mg/L,/Daily/
N/R

N/R N/R N/R ↓

Fibrosarcoma 9.1 mg/L, 9.4 mg/L, Daily/
N/R

N/R N/R ↓ ↓

Ocal et al.
(155)

Pancreatic ductal
adenocarcinoma

0.2 mg/kg/5 days a week, N/
R

14 N/R No effect N/R

Lione et al.
(29)

Mouse melanoma 1.5 mg, 2 mg, 4 mg/Once a
day/ip

2 −24 h, −48 h N/R ↓

Lorenzet et al.
(156)

Mouse Fibrosarcoma 7.5 mg/L, 1–2.5 mg/L/N/R/
DW

19 +N/R N/R No effects

Maeda et al.
(157)

Mouse melanoma 0.03 mg/kg 1 −6 h N/R No effect

0.1 mg/kg N/R No effect

0.33 mg/kg N/R ↑

1 mg/kg/once a day/Oral
gavage

N/R ↑

Kirane et al.
(15)

Human pancreas cancer
Pan02

0.5 mg/L daily/DW 14–28 +when tumor visible by
ultrasound (∼10 mm3)

↓ ↓

Human pancreas cancer
KIC

0.5 mg/L/daily/DW ↓ ↓

Human pancreas cancer
Panc-1

1 mg/L/daily/DW No effect No effect

Human pancreas cancer
AsPC-1

1 mg/L/daily/DW No effect ↓

Human pancreas cancer
Capan-1

1 mg/L/daily/DW No effect No effect

Human pancreas cancer
Panc-1

1 mg/L/daily/DW N/R −48 hr N/R ↓

Human pancreas cancer
Panc-1

1 mg/L/daily/DW N/R +48 hr N/R ↓

Seth et al. (97) Murine colon
carcinoma CT26LacZ

0.000266 g/N/R/DW N/R −3 N/R ↓

−1
+1

Ryan et al.
(158)

Autochthonous
tumours

9.10 mg/L/N/R/DW N/R N/R N/R ↓

9.325 mg/L/N/R/DW 15 N/R N/R ↓

(Continued)
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TABLE 4 Continued

Study Cancer type Dose schedule;
(Dose, frequency,

route)

Duration of
treatment
(Days)

Timing in reference
to tumor

inoculationa

Effect on
Primary tumor

growth

Effect on
metastasis

Ryan et al.
(159)

Mammary
adenocarcinoma

anaplastic sarcoma
T241

9.215 mg./L./N/R/DW 21 N/R N/R ↓

Ryan et al.
(160)

Sarcoma T241 9.235 mg/L/N/R/DW 10 +2 days N/R ↓

Mammary
adenocarcinoma

9.215 mg/L/N/R/DW 12 +2 days N/R ↓

aTiming of the warfarin administration given in reference to injection of tumour cells. A negative value refers to NOAC administration prior to tumour inoculation/induction, ↓, reduced; ↑,
increased; *N/R, not reported; N/E, not extractable; DW, drinking water; ip, intraperitoneal.
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a confidence in exposure characteristics by performing the

anticoagulant activity tests for the administered drugs; while

43.9% failed to report information regarding coagulation test or

stability of the compounds used. In most studies (90.4%), the

outcomes were assessed utilizing well established methods in the

literature, while 9.6% failed to report the method of assessment.

There was no clear method of animal randomization to

treatment or control groups in 78.3% of the studies, while only

21.6% reported randomization of animals in these studies. The

majority of the studies (90.4%) did not report the survival or

mortality rate of animals in general and only 9.5% of studies

reported the survival statistics of experimental animals (Figure 2).
3.3 Meta-analysis

We conducted a meta-analysis on a subset of studies in this

systematic review. Meta-analysis was performed only on studies

with a homogeneous design, using Review Manager 5.3 (RevMan)

software with a significance cut-off value set at p < 0.05. A forest

plot was used to show the results of the meta-analysis and the

contribution of the individual studies along with the global

estimation. The meta-analysis excluded all studies that solely

reported percentage of metastasis inhibition without providing

additional information regarding the event or total event. This

exclusion was necessary since such percentage data lacked

clarification regarding whether the study referred to the number of

animals with metastasis or to the percentage of metastasis extent

per animal. Moreover, all studies reporting data in a graphical

format were excluded, since such data was deemed not extractable.

We divided anticoagulants in to four main categories and three

comparisons:

1. Warfarin vs. control

2. Heparin & derivatives vs. control

3. Non anticoagulant heparin vs. control

4. Direct oral anticoagulants vs. control

In each comparison, 3 outcomes (when possible) were

evaluated:

a. Metastasis formation (expressed as %)

b. Metastasis formation (expressed as number of colonies)

c. Tumour weight or volume
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Initially 50 studies were selected for further analysis.

Subsequently, because of insufficient studies in each category, we

performed metanalysis on 41 out of 157 studies; thirty one

student on heparin and its derivatives (18–36, 85, 86, 94, 95, 105,

109–111, 122, 168–170) and ten warfarin studies (29, 37, 147,

149, 153, 154, 156, 158–160). All studies with an undefined

number of participants were excluded and meta-analysis with

less than 3 included studies in each category was not performed.

For that reason, non-anticoagulants heparin studies were

excluded from further analysis. For NOACs, there was only a

single study, which hindered meta-analysis for this group.
3.3.1 Heparin and its derivatives metanalysis
results

Our analysis of studies relating to heparin and its derivatives

showed statistically significant results in favour of heparin and

its derivatives in terms of metastasis formation inhibition (%)

with a factor of 36%, Odds ratio was 0.36 (95% CI: 0.25–0.50)

(Figure 3A). Since heterogeneity among studies was low enough

(27%) a fixed effect model was used, and a Funnel Plot was

performed (Figure 3B) for the analysis of the publication bias.

Such evidence is considered to have high power as the TSA

analysis demonstrated that the z-curve crosses both the alpha-

spending function and the conventional boundary, as well as

reaching the RIS threshold (Figure 3C). Additionally, results

were statistically significant in favour of heparin and its

derivatives in terms of metastasis formation inhibition

(expressed as number of colonies). In this case the mean

difference is 57.81 (Figure 3D). Moreover, in terms of tumour

weight or volume inhibition, results were statistically significant

in favour of heparin and its derivatives, the mean difference of

tumour weight or volume is 0.48 (Figure 3E). Nevertheless, it

should be noted that the evidence retrieved by the last two

meta-analyses cannot be considered enough reliable as the TSA

analyses depicted that, even if the z-curves crossed both the

alpha-spending function and the conventional boundary, they do

not reach the RIS threshold (Figures 3F,G).
3.3.2 Warfarin metanalysis results
Results were statistically significant in favour of warfarin (with

a factor of 100%) in terms of metastasis formation inhibition, Odds

ratio 0.12 (95% CI 0.06–0.23) (Figure 4A). Further, results
frontiersin.org
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TABLE 5 Summary of studies assessing the effects of NOAC on cancer in pre-clinical murine models.

Study Drug Cancer type Tumor
model: site

of cell
inoculation

Dose
schedule;
(Dose,

frequency,
route)

Duration of
treatment
(days)

Timing in
reference to

tumor
inoculationa

Effect on
Primary
tumor
growth

Effect on
metastasis

Alexander
et al. (161)

Dabigatran
etexilate

Mouse mammary
adenocarcinoma

4T1

Orthotopic 80 mg/kg/twice/day/
weekdays/oral

gavage; 120 mg/kg
once/day/weekend/

oral gavage

#N/E +2 weeks No effect *N/R

Alexander
et al. (162)

Dabigatran
etexilate

Mouse ovarian
cancer ID8-luc

Ectopic 80 mg/kg twice a
day/weekdays/oral
gavage; 10 mg/g

once/day/weekend/
food

28 +5 weeks ↓ N/R

Buijs et al.
(106)

Rivaroxaban Human breast
cancer MDA-MB-

231

Orthotopic 0.4 mg/g chow/daily N/E N/R No effect No effect

Dabigatran
etexilate

10 mg/g chow/daily N/E N/R No effect No effect

Rivaroxaban 0.4 mg/g chow/daily N/E N/R No effect No effect

Rivaroxaban 0.4 mg/g chow/daily N/E N/R No effect No effect

Rivaroxaban 1 mg/g chow/daily N/E N/R No effect No effect

Dabigatran
etexilate

10 mg/g chow/daily N/E N/R No effect No effect

DeFeo et al.
(163)

Dabigatran
etexilate

Mouse mammary
carcinoma 4T1

Orthotopic 45 mg/kg twice/day,
weekday/oral gavage;
60 mg/kg, once/day/
on weekend oral

gavage

N/E −1 day ↓ ↓ liver
metastasis

No effect on
lung metastasis

Feinauer
et al. (98)

Dabigatran
etexilate

Human breast
cancer Jimt1

Ectopic 80 mg/kg/oral
gavage/twice/day

10 −2 days N/R ↓

Graf et al.
(107)

Rivaroxaban Fibrosarcoma T241 Ectopic 0.4 mg/g chow/daily N/E +14 days ↓ ↓

Peraramelli
et al. (164)

Dabigatran
etexilate

Mouse, N/R,
melanoma B16

Ectopic N/R/N/R/food N/R −4 days ↓ ↓

Dabigatran
etexilate

N/R −4 days No effect N/E

Dabigatran
etexilate

N/R −4 days No effect N/E

Dabigatran
etexilate

Mouse melanoma
YUMM3.1

Ectopic N/R/N/R/Food N/R −4 days ↓ No effect

Maqsood
et al. (165)

Rivaroxaban Human pancreas
BxPc-3

Ectopic 0.5 g/kg chow/N/R/
food

N/R +When tumours
reached a mean

volume of
∼100 mm3

No effect N/R

Rivaroxaban Human pancreatic
cancer MIA PaCa-2

Ectopic 0.5 g/kg chow/N/R/
food

N/R + When tumours
reached a mean

volume of
∼100 mm3

No effect N/R

Smeda et al.
(166)

Dabigatran
etexilate

Mouse mammary
adenocarcinoma

4T1-luc2-tdTomato

Ectopic 100 mg/kg/twice/day
(weekday), once daily

(weekend)/oral
gavage

N/E −3 days N/R ↑

Shi et al.
(167)

Dabigatran
etexilate

Murine pancreatic
Panc02

Orthotopic 80 mg/kg/twice
daily/oral gavage

21 +7 days No effect ↑

aTiming of the NOAC administration given in reference to injection of tumour cells. A negative value refers to NOAC administration prior to tumour inoculation/induction, ↓, reduced, ↑,
increased. *N/R, not reported; N/E, not extractable.
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demonstrated statistically significant metastasis formation

inhibition in favour of Warfarin with a mean difference of

number of colonies being 36.7 (Figure 4B). All evidence

regarding Warfarin was considered to have high power as in

both cases the TSA analysis depicted that the z-curve crosses

both the alpha-spending function and the conventional boundary

while also reaching the RIS threshold (Figures 4C,D).
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4 Discussion

Anticoagulants (ACs) are frequently prescribed medications for

patients at high risk of developing blood clots. The anti-

inflammatory and anticancer effects of anticoagulant therapy in

patients with malignancies have been outlined in a recent review

on this topic (171). However, to date, only the anti-inflammatory
frontiersin.org

https://doi.org/10.3389/froh.2024.1495942
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/


FIGURE 2

Bar chart of the probability of bias among reviewed studies. (N/R) or (-), indirect evidence of high risk-of-bias practices or there is insufficient
information. (--), direct evidence of high risk-of-bias practices. Number of studies (n= 157).
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effects have been documented in studies involving human

participants (171).

Recently, studies have shown that ACs also improve survival

of cancer patients. A systematic review of 29 studies relating to

warfarin and heparin explored their effects on cancer patient

survival, revealing that warfarin may improve patient survival

and it may reduce the risk of urogenital cancer, while

LMWH improved the survival of patients with small cell lung

cancer (172). In a similar vein, a study retrospectively assessed

1,486 patients diagnosed with primary gastric cancer (GC)

who underwent radical resection. Among these patients, 34.5%

received postoperative anticoagulation therapy (AC), and the

findings indicated that anticoagulation therapy after radical

gastrectomy can significantly enhance the overall survival of GC

patients, while those who did not receive AC exhibited reduced

overall survival (173).

Contradictory evidence from a further systematic review

(9 studies, 5,987 patients, 98.4% with advanced-stage disease)

reported no survival benefit of LMWH in cancer patients (174).

An additional systematic review assessing LMWH on survival

outcomes of patients with solid tumours (45 randomized

clinical trials studies) showed that LMWH treatment failed to

improve survival of patients with malignancy (175). Pertinently,

our unpublished data demonstrate that oral cancer patient

survival in those treated with chemotherapy and simultaneously

receiving anticoagulant therapy had their survival reduced

by half. Overall, there is no conclusive evidence for ACs

influencing cancer outcomes and additional research is needed

to determine whether this experimental evidence could

influence patient prognosis and overall survival rates (171).

Therefore, we a performed a first systematic review and meta-

analysis of Acs (both traditional and NOAC) in preclinical

cancer research using human and murine cancers and conducted

in murine models.
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The anti-cancer effects of heparin were first reported in animals

in 1931 by Goerner (176). Their anti-metastatic properties can be

attributed to various factors, including inhibition of the

heparanase enzyme, mainly involved in cancer progression;

inhibition of angiogenesis, lymphogenesis, and P-selectin-

mediated platelets-cancer cell adhesion (96), Additionally,

heparanase may enhance the recognition of the cancer cell by

NK cells and enhance cancer clearance (25). In most studies,

heparin showed anti-metastatic effects when administrated before

tumour cell inoculation, but it had no further anti-tumour effects

after this stage (38). This may be attributed to its inhibitory

effect on P selectin. There appears to be a synergistic effect of P

and L selectins in facilitating metastasis as demonstrated in

murine research. L-selectin-deficient (L−/−) mice showed a

significant reduction in metastasis highlighting the role of L-

selectin in facilitating metastasis; therefore, heparin administered

at early time point before tumour inoculation acts by inhibiting

P selectin (platelets-tumour interaction) while when administered

in a later time after tumour inoculation, heparin acts on L

selectin on leukocyte, NK, monocyte (39, 177).

In this systematic review, we identified 4 main types of heparin

and heparin derivatives including un-fractioned heparin (UFH),

low molecular weight heparin (LMWH), conjugated heparin and

non-anticoagulant heparin and other derivatives in most heparin

studies, heparin was shown to have anti-cancer effects in

different cancer models and in terms of reducing primary

tumour growth and metastasis (Table 1). In some studies, the

percentage of metastasis inhibition by heparin was impressive,

ranging from 74% to 94.3% (31, 40).

Since heparins side-effect of bleeding limits its use in preclinical

murine studies, heparin derivatives that have a high antiangiogenic

properties and low anticoagulant effects have been created. LMWH-

taurocholate conjugate (LHT7) has been introduced as a heparin

conjugate with a 100 times binding affinity to angiogenic growth
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FIGURE 3

(A) Cumulative meta-analysis of heparin and derivatives effect on cancer metastsis formation (%) in the included studies. Results were statistically
significant in favour of Heparin & its derivatives. (with a factor of around 36%). Odds ratio was 0.36. (B) A Funnel Plot (FUNNEL PLOT 3) for the
analysis of the publication bias among heparin studies. (C) TSA analysis of heparin group and its derivatives demonstrated that the z-curve crosses
both the alpha-spending function and the conventional boundary and also reaches the RIS threshold. (D) Cumulative meta-analysis of heparin and
its derivatives effects on cancer in terms of metastasis formation inhibition (expressed as number of colonies) in the included studies. It deals with
comparison 2 outcome b: statistically significant in favour of heparin & derivatives (the mean difference of number of colonies is around 58).
(E) Cumulative meta-analysis of heparin and its derivatives effects on tumour growth (volume or weight) in the included studies. It demonstrated
the comparison 2 outcome c. Results were statistically significant in favour of heparin and its derivatives, the difference of tumour weight or
volume is around 0.48. (F) TSA analyses of heparin group and its derivatives depicted that, even if the z-curves cross both the alpha-spending
function and the conventional boundary, they do not reach the RIS threshold. (G) TSA analyses of heparin group and its derivatives depicted that,
even if the z-curves cross both the alpha-spending function and the conventional boundary, they do not reach the RIS threshold.
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factor VEGF compared to LMWH. We also identified 7 studies that

showed that LHT7 reduced tumour growth in preclinical murine

models (123–126). However, since there is a requirement for

frequent parental injection of LHT7 and low oral bioavailability, an

oral active heparin conjugated to tetrameric deoxycholic acid

(DOCA) has more recently formulated (LHTD4). The effects of

LHTD4 on cancer were assessed in 3 studies, which similarly showed

a reduction of tumour growth and metastasis (125, 127). LHTD4

was evaluated in three types of cancers, including an ectopic murine

SCC7 model, an orthotopic human and murine breast cancer model,

and in ectopic human lung cancer model. In all these studies

LHTD4 was administrated orally and after tumour inoculation, the

most common utilized dosages were 5 and 10 mg/kg. LHTD4

inhibited tumour growth in mice model (ranging from 73% to

56.8%) (125, 127).
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A non-anticoagulant heparin or derivative with low

anticoagulant activity was formulated by selective desulfation,

removing sulfated groups from the antithrombin binding region

(ATBR). This non-anticoagulant heparin that retained other

biological activities can be produce by periodate oxidation such

as Glycol-split heparins (178). We retrieved 29 studies using

these compounds to treat cancer in preclinical murine models.

Among such non-AC compounds, sulfated-non-AC heparin

(S-NACH); non-AC (NAC) heparin derivatives and low AC

heparin derivatives; SST0001 Roneparstat, Carboxyl-reduced heparin

(CR-heparin) and desulfated heparin derivatives demonstrated

promising results in reducing both tumour growth and metastasis

(41, 42, 95, 114, 140) (Table 3).

Despite the fact that warfarin is a veteran drug and the existence

of new guidelines for cancer therapy associated thrombosis with
frontiersin.org

https://doi.org/10.3389/froh.2024.1495942
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/


FIGURE 4

(A) Cumulative meta-analysis of warfarin on cancer metastsis in the included studies. It demonstrated the comparison 1 outcome a: statistically
significant in favour of warfarin (with a factor of around 100%). (B) Cumulative meta-analysis of warfarin effects on cancer metastasis in the
included studies. It showed comparison 1 outcome b: statistically significant in favour of warfarin (the difference of number of colonies is around
37). (C) TSA analysis for warfarin groups depicted that the z-curve crosses both the alpha-spending function and the conventional boundary and
also reaches the RIS threshold. (D) TSA analysis for warfarin groups depicted that the z-curve crosses both the alpha-spending function and the
conventional boundary and also reaches the RIS threshold.
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NOACs medications, warfarin remains a common treatment strategy

for many cancer patients due to its low cost and patient preference

(179). Therefore, it is important to determine the effects of warfarin

on cancer biology. We assessed 20 articles pertaining to warfarin

effects on various types of human and murine cancer in

preclinical murine models. Our meta-analysis showed statistically

significant in favour of warfarin (with a factor of 100%) in terms

of metastasis formation inhibition, as well as metastasis inhibition.

Moreover, in most studies, warfarin reduced metastasis specifically

when administrated before tumour inoculation (15, 43, 97, 151).

While its effect on tumour growth was unconclusive, warfarin was

shown to have no effect on primary tumour growth or metastasis

in almost all studies when administrated after tumour inoculation.

The proposed anti-cancer properties of warfarin may

mechanistically involve prevention of fibrin formation around

tumour cells circulating in the blood, making these cells more

susceptible to clearance by immune cells (22). Moreover, GAS6

(growth arrest–specific 6), the ligand of the AXL receptor tyrosine

kinase family is associated with immune regulation and cancer

development. Warfarin treatment inhibits AXL receptor signalling,

blocking the malignant traits of aggressive carcinoma cells and

enhancing anti-tumour natural killer cell activity at doses that do

not affect coagulation (180).

Recently, four randomized clinical trials (RCTs) have

demonstrated that new oral anticoagulants are good alternatives

to LMWH for the acute management of cancer-associated

thrombosis, yielding effective and safe outcomes (181–184).
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Moreover, NOACs have been shown to improve overall survival

for patients with head and neck cancer compared to warfarin

(185). We retrieved 10 studies in the literature (98, 106, 107,

161–167) that studied the anti-cancer effects of NOACs,

including dabigatran and rivoroxaban, in preclinical mice models

(Table 5). We found variable findings relating to the impact of

dabigatran on tumour growth and metastasis. Dabigatran effects

on cancer was purported to be related to its antithrombin

properties, since thrombin can enhance tumour progression via

fibrin formation and activation of protease-activated receptors

(PARs) and platelets. Therefore, dabigatran is likely to be useful

in cancer patient (161, 162). Rivaroxaban was tested in 3 studies

(106, 107, 165), and in 2 out of 3 studies it showed no effect on

tumour growth and metastasis that may be related to timing of

administration occurring after tumour inoculation in these

studies. These findings align with those of Najidh et al. whose

systematic review included 9 studies demonstrating that NOACs

had no effects in a xenograft mouse models, while their effects on

tumour growth and metastasis in syngeneic mouse models

depended on the timing of NOACs administration in relation to

tumour inoculation and type of cancer model (9). On the

same occasion, a recent study examined Edoxaban, one of

the NOACs, and found that it significantly inhibits tumour cell

proliferation via the factor Xa-PAR2 (Protease-Activated

Receptor 2) pathway, which is activated by coagulation and

inflammation in Colon26-inoculated mice, ultimately resulting in

tumour cell apoptosis (186).
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This study systematically evaluates the effects of anticoagulants

in murine cancer models, offering a comprehensive analysis of

their therapeutic potential in preclinical research. By synthesizing

data from various studies, it aims to provide valuable insights

into the role of anticoagulants in cancer treatment, focusing on

their applicability in future animal models. Additionally, the

study seeks to create a reference tool to facilitate the translation

of these findings into clinical settings, contributing to the

development of more effective cancer therapies.

However, several limitations must be considered. The meta-

analysis included only 41 of the 157 eligible studies due to

insufficient data documentation, with much of the relevant

information presented graphically, complicating extraction for

analysis. Additionally, 90% of the studies on warfarin were over

ten years old. Considerable variability and a lack of

standardization in the dosage units used for heparin

administration across the included murine studies also made it

difficult to establish the optimal dosage for different heparin species.

The risk of bias was high for certain criteria, impacting the

validity of the conclusions. For instance, only 56% of the studies

provided reliable information on treatment characteristics by

conducting anticoagulant activity tests on the administered drugs

in murine models. Furthermore, only 60.5% of the studies

reported sufficient information on selective outcomes.

Randomization and allocation procedures were largely absent,

which further affects the internal validity of the findings.

Findings from our study will serve as a reference and

lay the groundwork for appropriate implementation of

anticoagulants in designing future preclinical studies, which,

if successful, may contribute to the advancement and design

of future cancer therapy combinative trials with ACs. Our

systematic review and meta-analysis results indicate that

heparin and its derivatives have anti-cancer properties in

preclinical murine models of human and murine cancer cell line

origin. Pertinently, newly developed heparin derivatives also

exhibited positive anti-cancer findings with little side effects.

Future studies should focus on such new heparin derivatives,

including LHT7, LHTD4, and non-anticoagulants compounds of

heparin. In the same manner, warfarin exhibited anti-cancer

effects in preclinical cancer models, while newer direct oral

AC agents showed unconclusive results in our systematic review

and meta-analysis.

Our findings highlight the need for future studies to optimize

the use of anticoagulants (ACs) in cancer treatment within

preclinical models, specifically by examining their interactions

with chemotherapeutic agents to explore translational potential.

The demonstrated anticancer properties of these compounds

provide a strong basis for their evaluation in clinical settings,

particularly newer heparin derivatives. If validated in human

trials, these results could lead to the integration of ACs into

cancer treatment regimens, especially in combination with

chemotherapy, potentially enhancing therapeutic efficacy and

influencing future treatment guidelines.
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