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The oral microbiome is a complex community of microorganisms residing in the
oral cavity interacting with each other and with the host in a state of equilibrium.
Disruptions in this balance can result in both oral and systemic conditions.
Historically, studying the oral microbiome faced limitations due to culture-
dependent techniques that could not capture the complexity and diversity of
the microbial community. The emergence of advanced genomic technologies
and the ease of sample collection from the oral cavity has revolutionized the
understanding of the oral microbiome, providing valuable insights into the
bacterial community in both health and disease. This review explores the oral
microbiome in children, discussing its formation and dynamics in both states
of health and disease, its role in various conditions such as dental caries,
periodontal disease, oral cancer, cleft lip and palate, and explores its
connection to several systemic consequences.
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Introduction and background

First introduced by Joshua Lederberg, the human microbiome represents an ecosystem

of microorganisms that inhabit the human body and interact with each other in a

symbiotic way (1). The current microbiome reflects millions of years of coevolution

between humans and microorganisms. Over time, both have mutually adapted to each

other, and the microbiome now plays an essential role in our health and disease (2). To

research host-microbe interactions, traditional microbial ecology methods have relied on

culture-dependent methodologies which led to a limited perspective of microbiota (3).

These methods rely on cultivating microorganisms in laboratory settings, enabling in-

depth analysis of their biochemical and physiological traits, such as metabolic functions

and resistance to antibiotics. While these methods have been fundamental in

microbiology, they face notable limitations, particularly in detecting anaerobic microbes

that cannot easily grow in standard lab environments. Research indicates that

traditional culturing techniques can overlook a large portion of the oral microbiome,

with estimates suggesting that more than 50% of oral bacteria are “unculturable” using

conventional approaches (4). Molecular technologies, such as next-generation

sequencing, enabled comprehensive investigation of the microbes in the different body

habitat, including those that cannot be cultured in a laboratory. This approach has led
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to a revolution in understanding microbial communities, allowing

researchers to explore the composition, diversity, and interactions

of these communities in their natural habitat (3). However, these

techniques also have limitations, including higher costs, the need

for advanced bioinformatics expertise, and the inability to

directly measure microbial viability or activity as culture-based

studies do (5).

The oral cavity represents the second most diverse microbial

community in the human body after the gut, harbouring over

700 different types of bacteria (6). These bacteria inhabit various

locations in the mouth, including the teeth, tongue, periodontal

structures, and cheeks; all are interconnected by saliva (7).

The human oral microbiome was reported to be influenced

by different factors from maternal and environmental sources.

The interactions occurring between the microbiome and the

human host during early life are accountable for shaping innate

and acquired immune functions, as well as physiological

development, which in turn have implications for future

health outcomes (8).

Most of the literature on the oral microbiome focuses on

adults, detailing both its composition in healthy individuals and

its alterations in various pathological conditions, in contrast, the

studies exploring the microbiome of children is relatively sparse,

with a predominant focus on dental caries (9). This review aims

to highlight the current state of knowledge regarding the

microbiome of children in both health and disease, state gaps in

current understanding, and propose future research directions.
Materials and methods

A literature search was conducted across several electronic

databases, including PubMed/MEDLINE, Scopus, the

COCHRANE library and Web of Science. The search was

performed using a combination of relevant keywords and MeSH

terms such as “oral microbiome”, “oral microbiota”, “oral

bacteria”, “children”, “pediatric oral health”, “dental caries”,

“periodontal disease”, “Molar-Incisor Hypomineralization”, “oral

cancer”, “cleft lip and palate”, “systemic disease”, “diseases”. Only

articles published between January 1990 and January 2024 in

English have been included.

The search obtained 345,163 results, after the screening of the

titles and abstracts, non-topic entries were excluded. References

were exported and managed using EndNote 20.

Due to the extensive number of articles included and the

diverse methods and outcomes among the identified studies, it

was not feasible to present the findings as a systematic review or

meta-analysis. As a result, a narrative review was carried out.
Acquisition and establishment of the
oral microbiome

A pregnant woman’s oral health and oral microbiome can have

a direct impact on her pregnancy and her developing baby.

Additionally, it is proposed that the immune system of the fetus
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develops a prenatal tolerance to the maternal microbiome

considering it safe during postnatal exposure to and potentially

contributing to the successful development of a balanced

microbiome (10). Once a healthy microbiome is established, it

must constantly adapt to changes in the oral environment,

including changes in temperature, pH, forces of brushing and

mastication, and the presence of different types of food and oral

hygiene products (10).

At birth, infants encounter their mother’s microbiome via

vertical transmission. Vaginally born babies are exposed to their

mother’s vaginal and rectal microbes, while caesarean section

babies are exposed to their mother’s skin and hospital

environment microbes (11, 12). This difference in exposure can

have a significant impact on the development of the baby’s

microbiome. At the age of 3 months, vaginally born infants

exhibit higher diversity of the microbiome at the taxonomic level

(13). A study comparing maternal factors in the acquisition of

Streptococcus mutans in infants revealed that infants born with

caesarean section acquired S. mutans almost 12 months earlier

compared to vaginally born infants (14). Diet is also reported as

a factor affecting the microbiome, breast-fed infants possess oral

Lactobacillus spp. that are absent in formula-fed infants at 3

months of age both in vivo and in vitro (15, 16). It has been

proposed that microorganisms are obtained during a specific

period during which colonization of certain bacteria occurs,

known as “window of infectivity”. In the case of S. mutans, its

colonization occurs between 19 and 31 months of age (17). An

additional suggested “window”, occurring between the ages of 6

and 12 years, aligns with the emergence of permanent dentition (18).

In addition to vertical transmission, the oral microbiome

can also be shared among individuals living in the same

environment, such as siblings, this is termed horizontal

transmission which contributes to the diversity of the oral

microbiome (19, 20). This transmission may occur due to shared

use of toys, foods, or utensils, potentially influenced by hygiene

practices and awareness in these environments (21).
Microbial diversity in the healthy oral
cavity

Analysis of the composition of the healthy oral microbiome in

infants, children, and adolescents based on 16S rRNA gene

sequencing techniques using plaque and saliva samples found

that Proteobacteria, Fusobacterium, Actynobacteria, Bacteroidetes,

Firmicutes, Synergistetes, Tenericutes, Capnocytophaga, Neisseria,

Sreptococcus, Kingella, Leptotrichia. Burkholderia, and

Strenotrophomas Enterobacteriaceae are dominant genera with a

high level of abundance at 12–24 months old. On the other

hand, Firmicutes, Proteobacteria, Actinobacillus, Bacteroidetes,

Fusobacterium, Streptococcus, Prevotella, Veillonella, Neisseria,

Rothya, and Haemophilus are predominant genera in children (9).

In a cohort of 1-year old infants with a healthy oral cavity, a

notable difference in the oral microbial composition was

identified between children who maintained a caries-free status

and those who developed cavitated caries. The relative abundance
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of Prevotella nanceiensis, Leptotrichia sp. HMT 215, Prevotella

melaninogenica, and Campylobacter concisus was found to be

significantly higher in the group of children who remained

caries-free. This observation suggests a potential association

between the prevalence of these specific microbial species and a

reduced likelihood of developing cavitated caries in the studied

population (22).

A multicenter longitudinal study exploring the establishment of

a healthy oral microbiome in caries-free children aged 1–4 years,

based on a sample of 119 individuals, the microbial composition

in saliva and plaque experienced significant alterations from the

age of 1–2.5 years, followed by more subtle microbial changes up

to the age of 4 years. The study identified a general increase in

microbial diversity as age increased, with limited number of taxa,

including various species of the Streptococcus and Gemella

genera, were consistently present in all samples across different

time points in children. The study concluded that the oral

ecosystem of caries-free children is characterized by significant

heterogeneity and dynamic changes (23). By adolescence, puberty

brings significant hormonal changes that influence the oral

microbiome. Increased levels of sex hormones (e.g., estrogen,

progesterone) create an environment conducive to the growth of

Porphyromonas spp. and Prevotella spp. associated with gingival

inflammation and periodontitis (24) (Table 1).

Studies have also compared the oral microbiome between

primary and permanent dentition, particularly focusing on the

transitional period of mixed dentition. During this stage,

significant differences in microbial composition are observed

between primary and permanent teeth within the same oral

cavity. One study found that permanent molars tend to have a

distinct microbial profile compared to primary teeth, with

variations in the abundance of specific bacterial genera including

Fusobacteria and Bacteroidetes. These differences are influenced

by the physicochemical and developmental changes in the oral

environment during the eruption of permanent teeth, such as

oxygen levels (25). Another study revealed that the transition

from primary to permanent dentition is accompanied by

increased microbial diversity. As it leads to the colonization of

additional microbial species from genera such as Streptococcus,

Gemella, Granulicatella, and Veillonella. As well as expanded

functional capacities within the oral microbiome. These changes
TABLE 1 Comparative summary of microbiome dynamics across different
Age groups.

Age
group

Key microbial
communities

Key
influences

Health
implications

Infants Streptococcus salivarius,
Lactobacillus spp.

Mode of delivery,
breastfeeding

Early establishment
of beneficial
microbes

Toddlers S. mutans, Gamella spp.
and Fusobacterium spp.

Teething, diet,
oral hygiene,
horizontal
transmission

Susceptibility to
early childhood
caries, increased
microbial diversity

Adolescents P. gingivalis, Prevotella
spp., A.
actinomycetemcomitans

Hormonal
changes, diet

Periodontal
inflammation,
greater risk of
gingivitis and caries
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reflect the oral microbiome’s adaptation to new niches created by

the eruption of permanent teeth (26).
Microbiome of children with dental
caries

Dental caries is a complex disease caused by the interaction of

four main factors, the susceptible host, the microbiome, the

substrate, and the element of time (27). It is important to

highlight that S. mutans, the extensively researched species linked

to caries, comprises merely <1% of the overall bacterial

community (28). As a result, identifying the microorganisms

causing dental caries has been a significant focus of research for

decades, and developments in the field of oral microbiome

identification and analysis techniques have resulted in changes in

the documented composition and characteristics of oral

microbiota (29). Caries can develop in the absence of

Streptococcus and Lactobacillus species, in addition, the S. mutans

count has been found to be low even when caries is present,

suggesting that other species may be responsible for caries

development and progression (30). Besides S. mutans, various

other species associated with caries were reported in the

literature, including but not limited to species such as Veillonella

dispar, Prevotella spp., Lactobacillus spp., Leptotrichia spp.,

Actinomyces spp., Neisseria spp., Porphyromonas spp., Treponema

spp., and Streptococcus sobrinus (31–41).

When comparing microbial composition, the unstimulated

saliva of children affected by severe early childhood caries with

that of caries-free children, saliva of caries-free individuals

showed elevated quantities of Capnocytophaga and Leptotrichia

while levels of Porphyromonas and Neisseria were lower at genus

level (34).
Microbiome of children with molar
incisor hypomineralization (MIH)

As alterations in the microbiome can contribute to oral

disease, certain conditions can, in turn, induce changes in the

microbiome, thereby influencing the oral health. MIH is one of

those unique conditions in which microbiome is altered and

caries progress faster in the affected teeth compared to none-

affected teeth (42). Molar-incisor hypomineralization (MIH) is

defined as a developmental enamel defect that affects at least

one permanent first molar. Affected anterior teeth might also

be observed (43). Caries can easily develop in the affected teeth

due to their porous nature, and this problem is exacerbated by

the fact that children avoid cleaning their sensitive teeth,

resulting in greater food and biofilm stagnation (43). The study

by Hernández et al. observed more bacterial diversity, higher

count of bacterial niches, and predominance of proteolytic

bacterial genera such as Catonella, Fusobacterium, Campylobacter,

Tannerella, Centipeda, Streptobacillus, and Alloprevotella in teeth

affected with MIH, suggesting the presence of a unique

microbiome related to MIH (42).
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Microbiome of children with
periodontal disease

The term “periodontal diseases” encompasses both inherited

and acquired disorders affecting the tissues that surround and

support the teeth, including the gingiva, cementum, periodontal

ligament (PDL), and alveolar bone (44). The evidence suggests

that the development of periodontal diseases is associated with

an increase in the quantities of Gram-negative bacteria and

anaerobes in subgingival plaque (45, 46). Gingivitis is very

common in children and adolescents (47, 48) and can progress

to more severe forms of periodontal disease, such as

periodontitis, involving the loss of connective tissue and bone

around the teeth (12, 49–51). A systematic reviews on the

relationship between maternal periodontitis and adverse

pregnancy outcomes concluded that mothers with periodontal

disease face a higher risk of preterm birth, delivering a low-birth-

weight baby, and developing preeclampsia (52). It is suggested

that periodontal pathogens or their by-products, such as

endotoxins, reach the placenta and the fetus (53).

Several studies have investigated the microbiome of periodontal

disease in children. The main evidence related to a particular

microbial cause of periodontitis in children is derived from

research on a distinct clinical periodontal syndrome that impacts

adolescents exhibiting a pattern of lesions distributed around

molars and incisors, known as localized juvenile periodontitis

(LJP). In LJP, A. actinomycetemcomitans, Capnocytophaga sp.,

Eikenella corrodens, Prevotella intermedia, and motile anaerobic

rods, such as Campylobacter rectus are the most detected

organisms (54). A. actinomycetemcomitans, Capnocytophaga sp.,

and P. intermedia have been commonly identified as well in the

subgingival microbiota of periodontitis in the primary dentition

in children (55–60). A recent study found that schoolchildren

with early-onset periodontitis had a higher abundance of certain

bacteria, such as Campylobacter species, Prevotella intermedia,

and Fusobacterium nucleatum, Porphyromonas gingivalis,

Treponema denticola, and Tannerella forsythia (61).
Microbiome of children with oral
cancer

A developing concept in the field of cancer biology suggests

that the microbiome serves as a significant environmental factor

that influences the process of oncogenesis. There is a growing

body of evidence indicating a connection between alterations in

the human microbiome and specific types of cancer (62–65).

Specific oral taxa, such as Porphyromonas gingivalis and

Fusobacterium nucleatum, possess carcinogenic characteristics,

including the inhibition of apoptosis, stimulation of cellular

proliferation, initiation of chronic inflammation, facilitation of

cellular invasion, and the generation of carcinogenic substances

(66). Both of the aforementioned taxa have the capacity to

release endotoxins, specifically lipopolysaccharides, which, in

turn, can trigger the production of cytokines associated with
Frontiers in Oral Health 04
inflammation, which is a primary factor in bacteria-induced

inflammation and serves as a contributing factor to the process

of carcinogenesis as well (67–69). A novel study investigated the

oral microbiome of children diagnosed with solid tumors,

analyzing diversity, composition, and gene profiles using saliva

samples. Children with tumors exhibited a reduction in oral

microbiome diversity compared to the healthy controls, with

genera such as Veillonellaceae, Firmicutes unclassified,

Coriobacteriia, Atopobiaceae, Negativicutes significantly enriched

among them. This study suggests that oral microbiome could

function as a non-invasive diagnostic tool for patients with

pediatric solid tumors (70).

Each year, a significant number of newly diagnosed cancer

cases are reported, with oral cancers exhibiting a particularly

high prevalence among them, specifically oral squamous cell

carcinoma (OSCC) (71). While OSCC is very rare in children,

studies primarily focused on the adult population have shown

variations in the microbiome between a healthy oral cavity and

OSCC. Although the specific pathogenic bacteria or bacterial

spectrum linked to OSCC has not been determined (72), elevated

concentrations of Peptostreptococcus spp., Fusobacterium spp.,

Prevotella melaninogenica, Porphyromonas spp., Veillonella

parvula, Haemophilus spp., Rothia spp., and Streptococcus spp.

have been identified in samples of OSCC (73–77).
Oral microbiota and systemic diseases

The theory suggesting a connection between oral microbiome

and systemic diseases revolves around the potential consequences

of bacteremia, which denotes the presence of bacteria in the

bloodstream, dental procedures as well as routine practices such

as eating, chewing, or brushing can trigger bacteremia (78).

Usually the immune system promptly manages and eliminates

microorganisms from the systemic circulation, however, in

specific cases, particularly in individuals with compromised

immune systems, oral organisms may persist without elimination,

colonizing certain distant sites and increasing the likelihood of

systemic disease development (79). It was also found that certain

systemic bacteria can reside in specific oral locations, such

as: Hemophilus influenzae, Pseudomonas aeruginosa, and

Trophyrema whipplei have been identified in the gingival sulcus

(79). Conversely, oral bacteria such as Porphyromonas gingivalis,

Treponema denticola, and Campylobacter rectus have also

been detected in systemic sites, including atheroma plaques,

valvular vegetations, joint cavities, and the pancreas (79).

Moreover, it is not just bacteria that can enter the bloodstream;

their bacterial byproducts and endotoxins can also be discharged

into the systemic circulation. This has the potential to initiate

inflammatory reactions in particular locations, thereby

heightening the risk of developing systemic diseases (80).

On the other hand, systemic diseases can significantly influence

the composition and dynamics of the oral microbiota, this

is attributed to the high level of inflammation associated

with these conditions affects the oral microbiota, leading to

significant alterations (81).
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Many studies have been conducted to examine the oral

microbiome of children with systemic diseases. Francavilla et al.

studied the salivary microbiome and metabolome in 13 children

with celiac disease (CD) following gluten-free diets (T-CD) and

their healthy counterparts (HC). The findings indicate an

association between celiac disease and dysbiosis in the oral

microbiota, potentially influencing the oral metabolome. Those with

T-CD exhibited a less diverse salivary microbiome, with increased

abundance of Rothia spp., Porphyromonas endodontalis, Gemella

spp., Prevotella nanceiensis, S. sanguinis, and Lachnospiraceae spp.

compared to their healthy counterparts. Furthermore, children with

T-CD showed a reduced abundance of Actinomyces species,

Atopobium species, and Corynebacterium durum (82). This is

attributed to the fact that patients with CD typically exhibit lower

levels of amylase and secretory IgA and IgM in their saliva (83, 84).

Additionally, their saliva tends to have reduced buffering capacity,

lower salivary flow rates, and lower concentrations of calcium, as

well as decreased calcium/ phosphate ratios (85, 86).

Recent studies have revealed a link between neuropsychiatric

disorders (NPD), such as autism spectrum disorder (ASD) and

the gut microbiota, which can interact with and impact the brain

via the Gut-Brain Axis (GBA). Similarly, there is an emerging

concept of oral-microbiota-brain axis (OMBA). Research on the

oral microbiome and its relationship with the brain indicates that

microbes in the mouth may also play a role in influencing NPD

outcomes (87). Oral microbiota can enter the brain through the

cardiovascular system, where they are believed to directly

contribute to the disruption of essential neurological functions

and the deterioration of brain tissue due to the buildup of

virulent byproducts (88). P. gingivalis is known to enter the

bloodstream and reach the brain, where it establishes colonies

and secretes neurotoxic proteases known as gingipains. These

gingipains play a role in disrupting the processing of the

transmembrane protein Amyloid Precursor Protein (APP), which

is crucial for maintaining synaptic stability, as well as for

promoting neuronal growth and protection (88).

Hicks et al. studied the oral microbiome alterations in children

with ASD, they detected alterations in the salivary microbiome

among children in the age range of 2–6 years, categorized into

three developmental profiles: autism spectrum disorder (ASD;

n = 180), nonautistic developmental delay (DD; n = 60), and

typically developing (TD; n = 106) children (89). In the

comparison of taxa between children with ASD and TD children,

there was an increased abundance of two species in ASD

children: Limnohabitans sp. 63ED37-2 and Planctomycetales (89).

The findings of the study suggest that disturbances in the gut

microbiome observed in ASD may also extend to the

oropharynx. Subsequently, the regular evaluation of children’s

oral microbiome could potentially be developed as a non-invasive

and sensitive tool for diagnosing ASD and monitoring its

progression (89).

Several studies have confirmed a relationship between diabetes

mellitus (DM) and periodontitis in adults, as DM induces changes

in connective tissue metabolism, leading to a decreased ability to

resolve inflammation and undergo remodeling, which, in turn,

exacerbates periodontal damage (90). However, studies in
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analyzed the salivary microbiome of 37 children aged 5–15 years

diagnosed with type 1 DM, in children with type 1 DM,

Streptococcus genus was found to be more prevalent. In addition,

22 taxa at the genus level and 33 taxa at the species level were

absent in the control group, whereas the control group showed 6

taxa at the genus level and 9 taxa at the species level that were

not present in the diabetes group (91). A cross-sectional study

conducted in the same year evaluated the composition and

abundance of bacterial microbiota in the oral swabs of children

aged 10–18 years diagnosed with type 1 DM (well controlled and

poorly controlled), compared with those of healthy children. The

group of children with well controlled DM exhibited a notably

elevated count of bacteria belonging to the Streptococcus genus

compared to healthy children. The presence of Streptococcus

mitis was notably higher in the group of children diagnosed with

type 1 DM compared to their healthy counterparts, which is

considered one of the primary colonizers of the pellicle (92). A

recent study assessed the relationship between the composition of

oral bacteria in saliva samples, oral hygiene practices, and

glycemic control in a group of children with a mean age of 12.6

years diagnosed with type 1 DM. A high abundance of bacteria

related to dental caries and periodontal disease, specifically,

Actinomyces spp., Aggregatibacter actinomycetemcomitans,

Prevotella intermedia, and Lactobacillus spp. were identified in all

subjects. S. mutans was detected in approximately half of the

samples, particularly among patients exhibiting poor glycemic

control. Positive oral hygiene behaviors, such as regular

toothbrush replacement and professional dental cleanings, were

inversely correlated with the concurrent presence of Tannerella

forsythia, Treponema denticola, and Porphyromonas gingivalis

bacteria associated with periodontal disease (93). In children with

DM, the formation of advanced glycation end products (AGEs),

which occurs through a non-enzymatic reaction between sugars

and proteins, lipids, or nucleic acids, is accelerated as a result of

chronic hyperglycemia (91). AGEs disrupt the normal function

of nearly all body organs including the oral cavity by triggering

apoptosis, inflammation, protein dysfunction, mitochondrial

impairment, and oxidative stress (94). It was also found that the

periodontal pathogen Tannerella forsythia produces

methylglyoxal (a precursor of AGEs) in gingival tissues, this

finding suggests bidirectional relationship between periodontal

disease and poor glycemic control (95).
Microbiome of children with cleft lip
and palate

Cleft lip and/or palate (CLP) is one of the conditions that has a

significant influence on the composition of the oral microbiome. It

is the most prevalent congenital craniofacial defect impacting the

structure and function of the oral cavity and causing alterations

in facial features (96–99). Children born with CLP may

experience significant functional challenges related to routine

activities such as sucking, swallowing, chewing, speaking,

breathing, and social integration. Consequently, they necessitate
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extensive and prolonged rehabilitation starting from infancy and

extending throughout adulthood (100–102).

A systematic review by Świtała et al. examined the current

scientific literature on the oral microbiome in children with CLP,

the review encompassed twelve studies investigating the

microbiological status of individuals with CLP in comparison to

non-cleft individuals (103). The overall findings revealed a higher

incidence of caries in children with CLP compared to those

without, associated with higher levels of S. mutans and/or

Lactobacillus spp. (102, 104–111). Most of the studies suggested

that this is attributed to various factors affecting the oral hygiene

of those children, including, and not limited to: anxiety related

to tooth brushing in the cleft area, lack of motivation, existence

of malocclusion and structural irregularities, anomalies in tooth
TABLE 2 Summary of findings from studies on the oral microbiome of childr

Author, year Age group (in
years)

Healthy oral
cavity

D’Agostino et al. (9) 1–2 Proteobacteria, Fusobac
Capnocytophaga, Neisse
Enterobacteriaceae.

>2–15 Firmicutes, Proteobacte
Neisseria, Rothya, and

Raksakmanut et al.
(22)

1 Prevotella nanceiensis,

Kahharova et al. (23) 1–4 Streptococcus and Gem

Dental caries Agnello et al. (31) <6 Veillonella HOT 780, P
mutans.

Richards et al. (32) 2–7 S. mutans, Scardovia w

Dashper et al. (33) 2 months–4 S. mutans, S. sobrinus,

Hurley et al. (34) <5 Firmicutes, Bacteroidete
and Scardovia spp.

Zheng et al. (35) 3–6 S. mutans, Lactobacillu

Ortiz et al. (36) 2–12 Neisseria flavescens, Ro
Veillonella parvula, and

de Jesus et al. (37) <6 Veillonella dispar, S. m

Gussy et al. (38) 1 months–6 S. mutans, Streptococcu
IK040

Qudeimat et al. (39) 7–9 Leptotrichia shahii, Pre

Dinis et al. (40) 4–14 S. mutans, Veillonella d

Xu et al. (41) 3–6 Streptococcus spp., Neis

MIH Hernández et al. (42) 6–12 Catonella, Fusobacteriu

Periodontal
disease

Tonetti and
Mombelli (54)

5–11 A. actinomycetemcomit
Campylobacter rectus.

Asikainen et al. (55) 10 A. actinomycetemcomi

Dibart et al. (56) 7 Prevotella intermedia, S
actinomycetemcomitans

Kammaet al. (57) 11 Porphyromonas gingiva
Actinobacillus actinomy

Sixou et al. (60) 4 Actinobacillus actinomy

Piwat et al. (61) 12–18 Campylobacter species,
Treponema denticola, a

Oral cancer Cui et al. (70) 1–7 Veillonellaceae, unclassi

CD Francavilla et al. (82) 8.6–11.4 Rothia, Porphyromonas

ASD Hicks et al. (89) 2–6 Limnohabitans sp. 63ED

DM Moskovitz et al. (91) 5–15 Streptococcus spp.

Pachoński et al. (92) 10–18 S. mitis

Carelli et al. (93) 10.4–14.8 Actinomyces spp., Aggr
mutans.

CLP Świtała et al. (103) 3–21 S. mutans and Lactoba

MIH, Molar-incisor hypomineralization; CD, celiac disease; ASD, autism spectrum disorder; DM
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count, shape, and position, and prolonged presence of

orthodontic appliances (103). The results of the studies presented

in this review are shown in a summary table (Table 2).
Ethical considerations in pediatric oral
microbiome research

When addressing ethical considerations in pediatric oral

microbiome research, several factors must be considered: First,

informed consent and assent, which is typically obtained from

parents or legal guardians, as children are generally not legally

capable of providing full consent. However, ethical standards

recommend also seeking assent from the child, depending on
en in health and disease.

Main microbiota

terium, Actynobacteria, Bacteroidetes, Firmicutes, Synergistetes, Tenericutes,
ria, Sreptococcus, Kingella, Leptotrichia. Burkholderia, and Strenotrophomas and

ria, Actinobacillus, Bacteroidetes, Fusobacterium, Streptococcus, Prevotella, Veillonella,
Haemophilus.

Leptotrichia sp. HMT 215, Prevotella melaninogenica, and Campylobacter concisus

ella

orphyromonas HOT 284, Streptococcus gordonii, Streptococcus sanguinis, and S.

iggsiae, Parascardovia denticolens, and Lactobacillus salivarius.

V. parvula, Leptotrichia shahii, Scardovia wiggsiae and Leptotrichia IK040.

s, Neisseria, Prevotella, Proteobacteria, Porphyromonas, S. mutans, Bifidobacterium

s fermentum, Neisseria sica, and Veilonella dispar.

thia aeria, Haemophilus pittmaniae, Lactococcus lactis, Selenomonas, Actinobaculum,
Alloprevotella.

utans, and Neisseria.

s sobrinus, Veillonella parvula, Leptotrichia shahi, Scardovia wiggsiae and Leptotrichia

votella melaninogenica, Veillonella dispar, Leptotrichia HOT 498, and S. mutans.

ispar, Streptococcus spp., and Prevotella spp.

seria, Leptotrichia, Lautropia and Haemophilus.

m, Campylobacter, Tannerella, Centipeda, Streptobacillus, and Alloprevotella.

ans, Capnocytophaga sp., Eikenella corrodens, Prevotella intermedia, and

tans

elenomonas noxia, Fusobacterium nucleatum, and Actinobacillus

lis, Prevotella intermedia, Capnocytophaga sputigena, Capnocytophaga ochracea, and
cetemcomitans.

cetemcomitans, and Porphyromonas gingivalis.

Prevotella intermedia, and Fusobacterium nucleatum, Porphyromonas gingivalis,
nd Tannerella forsythia.

fied Firmicutes, Coriobacteriia, Atopobiaceae, and Negativicutes.

endodontalis, Gemellaceae, Prevotella nanceiensis, S. sanguinis, and Lachnospiraceae.

37-2 and Planctomycetales.

egatibacter actinomycetemcomitans, Prevotella intermedia, Lactobacillus spp. and S.

cilli

, diabetes mellitus; CLP, cleft lip and/or palate.
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their age and cognitive development. This approach involves

explaining the research in a way that is understandable for the

child, ensuring they comprehend the study, and respecting their

decision to participate or decline (112, 113). Second, sample

collection, which is usually non-invasive (e.g., saliva, swabs) and

cause minimal discomfort. Researchers should also ensure the

child’s understanding and comfort with the procedures. Any

invasive methods must be justified by clear benefits outweighing

the risks and discomfort (113). Third, privacy and data

protection, which is a key concern, particularly when managing

genetic or sensitive health data. Adherence to data protection

laws, such as the General Data Protection Regulation (GDPR) in

Europe and the Health Insurance Portability and Accountability

Act (HIPAA) in the U.S., is essential. Researchers must ensure

that personal data is anonymized and securely stored to protect

children’s privacy during and after the research (113).
Conclusion

After years of investigation, researchers have progressively

unveiled a novel understanding of the microbiome’s involvement

in both health and disease. It is now established that there is a

bidirectional relationship between the host and its microbiome,

as the microbiome can influence nearly every aspect of the host,

and disturbances in its balance are linked to a broad spectrum of

diseases, certain conditions can prompt alterations in the

microbiome, consequently impacting oral health. Advanced

research technologies facilitate the close examination of how the

microbiome contributes to human health and participates in the

development of diseases. However, the predominant focus of

microbiome studies has been on the bacterial component, leaving

the roles of fungi, viruses, and other microbes uncertain.

Moreover, although dysbiosis of the microbiome is frequently

observed in disease states, establishing the causative role of the

microbiota remains an ongoing challenge. Consequently,

numerous questions persist in this field, awaiting further

exploration and clarification.

The future application of the oral microbiome for enhancing

human health will rely on additional validation of microbial

biomarkers specific to diseases. These markers need to be

integrated into diagnostic and preventive programs that are not

only sensitive and specific but also provide rapid results and
Frontiers in Oral Health 07
are cost-effective for widespread implementation. When

combined with human genomics, proteomics, transcriptomics,

metabolomics, and utilization of artificial intelligence, the oral

microbiome of children has the potential to play a central role in

the advancement of precision medicine, facilitating the

development of personalized preventive dental programs in

the future.
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