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Rodent models have been commonly employed in oral microbiota research to
investigate the relationship between bacteria and oral disease. Nevertheless, to
apply the knowledge acquired from studies conducted on rodents to a human
context, it is crucial to consider the significant spatial and temporal parallels and
differences between the oral microbiota of mice and humans. Initially, we
outline the comparative physiology and microbiology of the oral cavity of
rodents and humans. Additionally, we highlight the strong correlation between
the oral microbiome of rodents and genetic makeup, which is influenced by
factors including vendor, husbandry practices, and environmental conditions. All
of these factors potentially impact the replicability of studies on rodent
microbiota and the resulting conclusions. Next, we direct our attention toward
the diversity in the microbiome within mice models of disease and highlight the
diversity that may potentially affect the characteristics of diseases and, in turn,
alter the ability to replicate research findings and apply them to real-world
situations. Furthermore, we explore the practicality of oral microbial models for
complex oral microbial diseases in future investigations by examining the
concept of gnotobiotic and germ-free mouse models. Finally, we stress the
importance of investigating suitable techniques for characterizing and managing
genetically modified organisms. Future research should consider these aspects
to improve oral microbiome research’s translational potential.
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1 Introduction

The use of mice and rats as a model has been crucial in understanding the causes,

development, and potential treatments for several human diseases. Obtaining consistent

results from the model was challenging for a long time due to the presence of

inconsistencies in nutrition, infection, age of animals, housing, and several other factors.

Although numerous research cited in the literature have provided new insights into several
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human diseases, it is common for them to be deficient in sufficient

information, limiting their translational value. While many studies

mentioned in the literature are clear, it is also not uncommon for

them to lack enough information to make judgment easier (1).

The microbiome is the collective genetic material of all the

microorganisms that inhabitate on and inside human body,

including bacteria, protozoans, fungi and viruses. Under

unfavorable conditions, few microbes have been shown to

become pathogenic and may result in dental caries, periodontitis,

abscesses, endocarditis, and various oral potentially malignant

disorders/invasive neoplasms. Microorganisms of any type may

result in or trigger the pathogenic process; while some are

established conditions, the role of others is questionable. For

instance, candida (or candidiasis) had always been considered

carcinogenic (2), but their definitive role has now been deemed

contentious to the latest World Health Organization updates of

head and neck tumors in 2022 (3). Previous studies have

repeatedly indicated a spatial role of the oral microbiome in the

tumorigenesis of oral cancer (4). The role of periodontal diseases

has been positively correlated with an increased risk of oral

potentially malignant disorders (OPMDs) (5) and oral squamous

cell carcinoma (OSCC) (6), which led the research to hypothesize

that the inflammatory microbiome of periodontitis may also

play a plausible role in development and progression of oral

cancer. The need for an ideal animal model is thus deemed

necessary for the duplication of these diseases and for basic,

translational research. Rodent models have been used to study

oral microbiomes and diseases associated with microbial

dysbiosis. The chief advantages of the application of rodents for

experimental procedures include ease of breeding and handling,

comparatively lower maintenance cost, availability, and an

adequately sized oral cavity for easy inoculation (and sample

collection). Although rodents and humans share numerous

morphological, histological, and physiologic characteristics, there

are significant disparities in oral microbiome. Therefore, it is not

unexpected that there are substantial variations in the

composition of the gut microbiota, both in terms of the types

of microorganisms present and their relative abundance.

Research has demonstrated significant variations in microbial

composition among different breeds of mice (7). Given these

findings, it is natural to question using mouse models for

extrapolating the oral microbiome to humans. One of the

possible explanations is that there is currently no superior

option. Here, we review the physiology and oral microbiology of

the rodents in detail. Further, we focus on the mice models

tried and tested for research involving oral microbiome and

highlight the recent advancements in science that could be

utilized to improve the oral microbiome’s translational potential

in vivo research.
2 Physiology of the oral cavity of mice
and rats

The anatomical morphology, physiology, and histological

characteristics of the oral cavity of rodents, one of the most
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typical animal models, resembles the human rima oris (8).

Rodents (order Rodentia), the largest mammalian group with

extreme diversification, comprises 40% of all the mammal

species of kingdom Animalia and are subclassified into three

major suborders based on the anatomical variations and

functional differences in masseter muscles (8, 9). All the rat-

like/mice-like rodents are categorized as Myomorpha. The

other two suborders are Caviomorpha/Hystrichomorpha and

Sciuromorpha (9).

In contrast to human dentition (2/2I, 1/1C, 2/2PM, 3/3M), who

have well-formed crowns and roots of all teeth (32 permanent), all

rodents species have elodont aradicular incisors, lack the canines

and bears a long space between incisors and ‘cheek-teeth’-

premolars and molars (9). It should be noted that the rats and

golden hamsters also lack the premolars, yielding a dental

formula as 1/1I, 0/0 C, 0/0 P and 3/3M (total 16 teeth).

However, odontogenesis is akin to human tooth development

involving the same types of cells, making these a perfect

model for analyzing odontogenic lesions. Figure 1 shows

photomicrographs of developing rat tooth germs and adjacent

oral structures where we can find close resemblances with human

tooth germs.

Further, the differences lie in the jaws, arrangement of the

masseter, and zygomatic arch (10, 11). In contrast to humans,

where the jaw movements are restricted to complex arrangement

and synchronization of muscles at temporomandibular joints

(TMJ), the few species of rats show unossified cartilaginous tissue

at mandibular symphysis area, allows specific movements

between the mandibular bones. The symphysis in human

mandibles is fused with no movements. Three distinct layers

have been identified viz. superficial masseter, deep masseter and

zygomatico mandibularis (9), contrariwise, only two sets of fibres

are seen in human, the superficial and deep. The similar

angulation fibers and function of these strong muscles of

mastication allow easy recapitulation of temporomandibular joint

movement and disorders in animal models.

Pertaining lining epithelium in rats, which serves as the prime

oral structure for analysis of oral microbiota and carcinogenesis,

shows many similarities with the oral mucosa of the human

mouth. Externally delineated by lips, labial skin which is

orthokeratinized stratified squamous cell type contains abundant

hair, adnexa, and numerous vibrissae, structures lacking in

human (Figure 2). Further, unlike us, a cleft is noted between

upper incisors; thus, the labial frenulum is not noted. The lingual

frenum is also not seen in rats (12). The similar stratification of

the epithelia is noted; however, the entire oral cavity is variably

ortho-keratinized. The human oral cavity demonstrates the

transition from keratinized labial mucosa to non-keratinization in

the buccal and floor of mouth region to para- to ortho-

keratinization on attached gingival or palatal mucosa. The tongue

is specialized with thousands of taste buds; in contrast, the

majority of taste buds are seen on the soft palate in rats, with

missing uvula (8). However whether similar physiology,

odontogenesis, and palatogenesis between human and rodent oral

cavity have an influence on the oral microbial colonisation is

not known.
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FIGURE 1

Photomicrographs of H&E stained sections showing coronal section of rodent face demonstrating developing tooth germs, maxillary sinus and nasal
septum (a), developing molar (b), fetal epithelium. salivary gland tissue, bone and skeletal muscles (c) and oral epithelium (d) (Picture courtesy Dr
Suganya Panneer Selvam, Oral Biologist, Saveetha Dental College and Hospitals).
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3 Oral microbiome of rodents

The bacteria flora of the oral cavity of humans is dominated by

the phyla Fusobacteria, Actinobacteria, Firmicutes, Bacteroidetes,

Proteobacteria, and Spirochaetes, accounting for approximately 96%

of the species detected (13). The normal human flora begins to

develop postpartum; an infant is first exposed to microorganisms

during birth (13). While the human gastrointestinal tract

contributes a significant number of microbiota, the human oral

cavity contains as high as 700 different species (13). The bulk of

microbes in the oral cavity of rodents were reported to be attributed

to the phyla Firmicutes and Proteobacteria, with most of them

belonging to the class Gammaproteobacteria (14). The oral

microbial communities in humans are more intricate than those in

mice, with less than 50% of the oral microbiota in human samples

comprising the top ten bacterial species/phylotypes in mice (15). A

study revealed that only 27 types of mouth bacteria were common

to both mice and humans (15). The earliest communities seen in

the murine oral mucosa are similar to those found on the murine

skin, indicating that the transmission of these communities likely

occurs from the mother’s skin during feeding (14). Staphylococcus
Frontiers in Oral Health 03
sp., Streptococcus sp., Lactobacillus sp., Enterobacteriaceae sp., and

Enterococcus sp. were shown to constitute the main species in

the rodents (16).
4 Factors that influence oral
microbiome composition of
experimental rodents

4.1 Genetics of the mouse

In murine oral microbiome research, understanding the genetic

background of various mouse strains is crucial for ensuring result

accuracy and credibility. Studies indicate significant differences in

the diversity and richness of the oral microbiomes among mouse

strains, such as C57BL/6 or BALB/c (17, 18). These differences

significantly affect research into the interactions between microbiota

and host health, also challenging model selection and study design.

Specifically, the notable differences in types and quantities of

oral microbiota across mouse strains are crucial for autoimmune

disease research. This underscores the importance of selecting the
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FIGURE 2

Photomicrographs of H&E stained sections showing labial
orthokeratinized stratified squamous epithelium and numerous
dermal adnexal structures (a) and developing hair follicles
[vibrissae, (b)].
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appropriate mouse strain for a deeper insight into the microbiome’s

role in specific disease models. Furthermore, research that identifies

a direct link between specific genetic markers and the mouse oral

microbiome composition enhances our understanding of

microbiota-host interactions and offers a scientific basis for

selecting suitable mouse models (19, 20). Researchers discovered

that, despite identical genetic manipulations, different mouse strains

show significant differences in oral microbiome composition when

replicating the same pathological changes (21, 22). Further, it has

been identified to have a more significant impact than the animal’s

gender in microbiome studies (23). Prior research has also

demonstrated that mice obtained from various suppliers possess

unique microbial communities in their oral, stomach, and fecal

regions (24).These findings highlight the importance of accounting

for the genetic background of mice in microbiome studies.
4.2 Diet

Research consistently shows that dietary changes significantly

impact mice’s oral microbiome composition and diversity.
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Specifically, high-fat and sugar diets increase certain pathogenic

bacteria in the oral cavity, whereas fiber-rich diets enhance

microbial diversity, benefiting oral health (25). Studies using

mouse models reveal that dietary changes affect the microbiome’s

composition and are closely linked to oral health status (26). For

example, certain dietary habits can promote dental caries and

periodontal disease development, closely associated with diet-

induced changes in the oral microbiome. Adjusting mice’s

dietary composition allows researchers to explore the

relationships between specific microbial communities and various

physiological and pathological states. This approach improves

our understanding of microbes’ impact on oral and overall health

and how dietary interventions can enhance health. Diet

significantly impacts mouse models’ oral microbiome

composition; adjusting it is crucial for exploring the relationships

between the oral microbiome and health states.
4.3 Housing during experiments

Laboratory environmental conditions, namely temperature,

humidity, and housing density, significantly affect the oral

microbiome composition in mice (27–29). These environmental

factors can directly impact the oral microbiome’s stability and

indirectly alter microbial community balances by affecting mice’s

physiological states, immune responses, and dietary preferences

(30). Extrinsic factors in the environment, such as the shedding

of skin or dust particles from caretakers and scientists who

handle the mice, as well as the pH of the water, water treatment

and the type of food given, play a crucial role in shaping the

microbial colonization in laboratory mice (24, 31, 32). The oral

microbiome, in general, is crucial for various physiological and

pathological processes and demonstrates high plasticity to

environmental changes, highlighting its quick adaptability to

surrounding shifts (33). Although existing literature highlights

the significant impact of environmental conditions on mice’s

microbiome, further research is required to elucidate the specific

mechanisms and effects on physiological and health statuses.
4.4 Stress during experiments

Physiological and psychological stress are key factors affecting

the composition of the gut microbiome in mice, potentially

exerting effects through changes in immune response

mechanisms. Under stress conditions, mice exhibit significant

changes in the structure of their microbial communities,

including oral mucosa, which could further impact their health

and susceptibility to diseases (34, 35). Studies have shown that

stress affects the diversity and abundance of microbes, possibly

by modulating the activity of the immune system, thereby

altering the balance of the microbial community (34, 36, 37).

Stress hormone cortisol has been directly implicated in

modulating the gene expression profiles of the oral microbiome

(38). This underscores the importance of stress management in

experimental design, especially in research exploring the
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relationship between oral microbiota and host health. Therefore,

managing and measuring stress factors should be central to

scientific research design to ensure the accuracy and

comparability of results. Methodological considerations, including

the assessment of stress levels, are critical for interpreting results

and ensuring their reproducibility and generalizability.
4.5 Other related factors

Research shows that a mouse’s immune system status, whether

immunodeficient or hyperimmune, significantly influences its oral

microbiome composition. Immunodeficient mice tend to harbor

more pathogenic microbes in their oral cavity, whereas

hyperimmune mice may suppress some beneficial microbes (39,

40). The use of antibiotics and other medications significantly

impacts mice’s oral microbiome. Specifically, antibiotics often

reduce microbial diversity and lead to the emergence of

antibiotic-resistant strains (41).
5 Currently used strains in oral
microbiome research

In contemporary oral microbiome research, in vivo research

employs several rodent strains to unravel the complex host-

microbe interactions in infectious oral diseases. The choice of

specific strains is guided by the unique characteristics of each

strain, which offer unique advantages for specific aspects of these

diseases, allowing researchers to examine genetic susceptibility,

immune responses, and microbial dynamics.
5.1 Caries and apical periodontitis

Previously, Wistar, Sprague-Dawley, and Osborn strains were

the most frequently used rat strains in caries research (42). Hsiao

et al. used two rat models such as pathogen-free Sprague–Dawley

(SD) rats as the Nutritional Microbial Bacterial Model and

Sprague–Dawley adult rats as Pulp Disease Induction Models to

observe the progress of dental caries and pulp disease (43). Some

of the rodent models in caries microbiome research include NFS/

N mice strain to determine the caries susceptibility (41),

Sprague–Dawley rats for caries induction (42), and BALB/cA and

C3H/HeN mice strains for the caries microorganism sensitivity

(44). C57BL/6 mice was used to evaluate microorganism

mediated pulpitis-induction (18, 44–45). Germ-free adult male

C57BL/6 J mice was used recently disparity in metabolic activity

and lactic acid generation between monozygotic twins with

contrasting caries experiences and their oral microbiome (46).

For investigations on microbe-induced apical periodontitis, the

most commonly used models include C 57B/L6 mice and

(BALB/c) mice (47–49). A recent study utilized apoE−/− mice to

establish a P. gingivalis-induced chronic apical periodontitis

(CAP) model to understand the association of CAP with gut

microbiota as well as atherosclerosis by 16S rRNA sequencing
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and microbial metabolomics (50). Wistar rats were also used to

study the effect of F. nucleatum-induced apical periodontitis on

gut microbiota (51).
5.2 Periodontitis

By introducing multiple bacterial species into the model,

researchers can mimic the intricate interactions and synergistic

effects among different pathogens, the role of host immune

responses in shaping the periodontal microbiota and disease

progression, the interplay between the host immune system and

the oral microbiome in driving periodontal tissue destruction,

and assessing the efficacy of treatments in a more realistic disease

context, thus providing insights into disease pathogenesis that

may be missed in monomicrobial models. In this context, the

periodontal inoculation model has been successfully used to

evaluate mechanisms of periodontal inflammation, pathogenic

differences between different periodontal bacteria, and alveolar

bone loss (52, 53). C57BL/6, C57BL/6 J (WT, -TLR2(KO), -TLR4

(KO), -TLR2,&4KO) mice, CD1 Swiss mice, C57BL/6 J female

mice are some of the strains, and their knockouts that have been

used in experimental periodontitis with microbes (54). Klausen

has reviewed the studies on periodontitis in rat models and

concluded that germ-free Sprague–Dawley(SD) rats were the

most commonly used rodent strains, followed by Lewis specific

pathogen free (LEW-SPF) and Rowett SPF (ROW-SPF) (55).

Major histocompatibility complex (MHC), cytokine, and adhesin

molecule knockout mouse strains have also been used to evaluate

the role of these mediators in P. gingivalis-mediated periodontal

tissue destruction (56). The Baker mouse model, chemically

induced mouse model, and murine incisor abscess model have

been used to study the interaction of monomicrobial infections

in apical periodontitis (57). In contrast, the murine back abscess

model is used to study the host response to the polymicrobial

mixed infection, including P.gingivalis, A.actinomycetecommitans,

and F nucleatum (57). Owing to the genetic variances among the

strains affecting the mutation of the immune components or in

their adaptive immunity, these strains are differentially

susceptible to experimental periodontal diseases, and several

strains are quite resistant. BALB/c, AKR/J, DBA/2J and C3H/

HeN mice are more susceptible than C57BL6 A/J 129/J, SJL/J

and C3H/HeJ (58, 59). Recently, a research group successfully

generated a chronic periodontitis model in mice by oral infection

of the P. gingivalis P4 strain, which co-aggregated with a

dominant mouse oral commensal bacterium (60). A recent study

experiments on humans and mice model demonstrated that

TH17 cells are necessary for the breakdown of periodontal tissue

(40). The murine ligature-induced periodontitis (LIP) model is

frequently employed to study the dysbiosis of the indigenous oral

microbiome, which has coevolved with the murine host

microbiome in periodontitis (61, 62). Arce et al. compared the

microbial profiles from 16S rDNA gene sequencing datasets from

nine different murine LIP models on C57/BL6 mice and

demonstrated that though there were similar enrichment of

certain microbes across different studies, the organization of the
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microbial community was influenced by the induction of

periodontitis and the specific study being conducted (61). They

also illustrated the technical factors that influence the results of

oral microbiome research in the periodontitis models, ranging

from sample collection to bioinformatic pipeline, which has been

emphasized previously (63).
5.3 Oral cancer

Oneof the earlier studies to demonstrate the role of oralmicrobes,

precisely two periodontal pathogens in oral tumor progression,

utilized male BALB/c mice models (64). Germ-free Swiss Webster

male mice under gnotobiotic conditions were used to compare the

tumourigenesis between OSCC-associated microbiomes after 4-

nitroquinoline-1-oxide (4-NQO) induction (65). A recent study

explored the impact of the microbiome and its metabolic pathways

on regulating oral carcinogenesis using C57BL/6 mice and

identified an increase in the biosynthesis of polyamines in saliva

with oral cancer (66). Another study utilised BALB/c mice to

explore the microbiome of OSCC in mice with experimental

induced periodontitis where they identified Porphyromonas to

be the most abundant genus (67). However, the impact of the

variation in oral microbiome between the strains has not been

taken into consideration in any of these studies. Given the

significant differences between mice strains, Gnotobiotic or germ-

free mice, Specific Pathogen-Free (SPF) Mice, Immunodeficient

Mouse Models such as nonobese diabetic/severe combined

immunodeficiency (NOD–SCID) or NOD SCID gamma (NSG)

mice, Transgenic or Knockout Mice could be valuable for

introducing specific microbial communities to study their effects

on oral cancer development. Apart from rats and mice, male

Golden Syrian hamsters (3–4 weeks) were also utilized to study

the impact of smokeless tobacco on the oral microbiota and

oral carcinogenesis (68).

Themurine oral cavity is also ideal for the candidamodel and thus

may serve perfectly for experimentation for clarification of the

controversial role of candidal infection in OPMDs and OSCC.

Various researchers have induced Candidiasis in germ-free mice

(69, 70). In hyposalivation rat models (salivary glands were

removed), it was demonstrated that disease progression was noted

with more ALS transcripts (cell surface glycoprotein associated with

adhesion) (69). Also, similar expression was noted in HIV-positive

patients and experimental candidiasis in rats (70).
6 Gnotobiotic and germ-free rodents
in oral microbiome research

In recent years, gnotobiotic animal models have emerged as a

crucial tool for investigating intricate interactions between hosts

and their microbiota. Gnotobiotic animal models consist of

germ-free animals, devoid of any foreign organisms, and animals

colonized with one or more specific microbes (71, 72). Germ-free

mice are selectively bred in isolators that exclude entirely any

contact with microorganisms, with the specific purpose of
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ensuring their complete absence of detectable bacteria, viruses,

and eukaryotic germs (73). Germ-free rodents have no

microorganisms living in or on them, allowing researchers to

precisely control an animal’s oral microbiome through the direct

inoculation of bacteria of interest, which facilitates the

exploration of intricate host-microbe interactions within the oral

cavity. These models offer valuable insights into the complexities

of the oral microbial ecosystem and aid in the development of

targeted therapeutic strategies for maintaining oral health. The

idea of germ-free mouse colonies was first proposed by Louis

Pasteur in 1885 and later established in the 1940s (74). Germ-

free mice are used to investigate the complete absence of

microorganisms or to create gnotobiotic animals that are only

colonized by identified germs. Nevertheless, the production and

upkeep of these mice necessitate specialized facilities, and the

expenses, effort, and expertise needed to maintain them can

render these models unattainable for several researchers (75). To

ensure the absence of germs in mice, it is necessary to regularly

check for contamination using various methods such as culture,

microscopy, serology, gross morphology, and sequencing-based

detection approaches (76). They also utilize PCR (both 16S and

pathogen-specific), microscopy, and culturing techniques to test

for bacteria. In addition, any distinct mouse strain to be

examined in germ-free circumstances must be regenerated in

these facilities, which restricts the number of diverse genotypes

that may be feasibly studied (77). In addition, the upkeep of

mice in isolators may render it unfeasible or arduous to carry

out specific investigations, such as behavioral assessments or

pathogen introductions. However, it is essential to differentiate

this term from specified pathogen-free (SPF), as SPF animals are

devoid of specific pathogens. Still, their internal microbiota is

intricate and not clearly characterized (78). Gnotobiotic mouse

models contribute significantly to our understanding of the oral

microbiome’s role in health and disease, enabling the

investigation of dysbiosis, immune responses, and microbial

contributions to conditions such as dental caries, periodontal

diseases, and oral cancer.
7 Humanization strategies in germ-free
mice for oral microbiome

Humanization strategies for oral microbiome research in germ-

free mice involve introducing human oral microbial communities

into mice raised in a germ-free environment. The resemblance of

the transplanted oral microbiome in mice to that of the donor,

i.e., the human microbiome, is dependent upon several factors

like diet, socioeconomic background, ethnicity, exercise regime,

etc. Differences in the donor and recipient anatomy and

genetic, environmental, and immunological backgrounds are the

key factors affecting this similarity. Human microbiome

transplantation allows the oral samples from human donors

to be transplanted into germ-free mice. Fecal Microbiota

Transplantation (FMT), although primarily associated with the

gut microbiome, has also been adapted for oral microbiome

research (79). Human oral microbial communities extracted from
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fecal samples are introduced into germ-free mice. He et al. have

transplanted the microbiome of periodontitis patients into the

mouse periodontium and observed a significant increase in

osteoclasts, TNF-α, and IL-1β in the latter (80). Human

periodontitis microbiome has also been introduced in mouse

by using subgingival plaque of periodontitis patients (81).

However, several host factors could have a significant effect on

microbial colonization (82). Another significant advantage would

be the immunological response elicited by these humanized oral

bacteria communities. Immunodeficient mice may be studied, but

they will once more be unable to mimic the reaction that oral

microbiological communities will have in a human setting.

Despite limitations and challenges, humanized mice models hold

promise in elucidating the pathogenesis and immunotherapeutic

strategies in periodontitis. There have been notable findings from

studies using humanized models. A. actinomycetemcomitans-

specific IgG antibody responses, significant increment in the

RANKL expression and alveolar bone resorption, as well as

decreased OPG expression, was observed in the Aa-hu-PBL-

NOD/SCID model (83). These models also shed light on the

role of suppressor of cytokine signaling (SOCS) molecules in

A. actinomycetemcomitans-induced osteoclastogenesis. By using a

P. gingivalis infected HLA-DR1 humanized C57BL/6 mice model,

the development of rheumatoid arthritis and its impact on bone

density and systemic cytokine production were also analyzed

(84). Recently, a team of researchers developed a human oral

microbiota-associated (HOMA) mouse model by transplanting

human saliva into germ-free mice and 85% of the genus-level

taxa were identified to be similar to the donor (16).
8 Conclusion

Although the comparative physiology of rodents and humans

emphasizes the significance of rodents as a model to study oral

pathologies, the literature unequivocally demonstrates that

genetics plays a significant role in oral microbiome variability

among rodents. Diet and living conditions are also significant

variables that must be considered, particularly when replicating

human microbial diseases and comparing the findings of oral

microbiome studies. Future research should prioritize replicating

microbial studies with different rodent strains to demonstrate

strong and reliable results regardless of diet, genotype, or

environmental factors on the composition of the oral
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microbiome. Exploring germ-free mice and then enhancing

humanization strategies would be a way forward. Given the

significant differences between the human oral microbiota and

that of mice, it is essential to conduct thorough robustness

checks before extrapolating the results to humans.
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