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The intriguing strategies of
Tannerella forsythia’s host
interaction
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1Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität
für Bodenkultur Wien, Vienna, Austria, 2Competence Center for Periodontal Research, University Clinic
of Dentistry, Medical University of Vienna, Vienna, Austria
Tannerella forsythia, a member of the “red complex” bacteria implicated in severe
periodontitis, employs various survival strategies and virulence factors to interact
with the host. It thrives as a late colonizer in the oral biofilm, relying on its
unique adaptation mechanisms for persistence. Essential to its survival are the
type 9 protein secretion system and O-glycosylation of proteins, crucial for host
interaction and immune evasion. Virulence factors of T. forsythia, including
sialidase and proteases, facilitate its pathogenicity by degrading host
glycoproteins and proteins, respectively. Moreover, cell surface glycoproteins
like the S-layer and BspA modulate host responses and bacterial adherence,
influencing colonization and tissue invasion. Outer membrane vesicles and
lipopolysaccharides further induce inflammatory responses, contributing to
periodontal tissue destruction. Interactions with specific host cell types,
including epithelial cells, polymorphonuclear leukocytes macrophages, and
mesenchymal stromal cells, highlight the multifaceted nature of T. forsythia’s
pathogenicity. Notably, it can invade epithelial cells and impair PMN function,
promoting dysregulated inflammation and bacterial survival. Comparative studies
with periodontitis-associated Porphyromonas gingivalis reveal differences in
protease activity and immune modulation, suggesting distinct roles in disease
progression. T. forsythia’s potential to influence oral antimicrobial defense
through protease-mediated degradation and interactions with other bacteria
underscores its significance in periodontal disease pathogenesis. However,
understanding T. forsythia’s precise role in host-microbiome interactions and its
classification as a keystone pathogen requires further investigation. Challenges
in translating research data stem from the complexity of the oral microbiome
and biofilm dynamics, necessitating comprehensive studies to elucidate its
clinical relevance and therapeutic implications in periodontitis management.
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1 Introduction

Periodontitis is a highly prevalent inflammatory disease affecting the tooth-supporting

tissues, impacting more than half of the adult population worldwide. Despite decades of

intensive research, the precise etiological factors driving the initiation and progression

of this disease remain elusive (1, 2). There is a consensus that periodontitis is triggered

by a polymicrobial oral biofilm, with tissue destruction resulting from the host immune

response to this biofilm. At the close of the last century, seminal work by Socransky

and colleagues identified the “red complex,” comprising Porphyromonas gingivalis,
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Treponema denticola, and Tannerella forsythia, as associated with

severe forms of periodontitis (2). Initially, these three Gram-

negative anaerobes were considered as causative agents, but with

the advent of sequencing technologies in oral microbiome

research, it is now recognized that the etiology of periodontitis is

far more complex (3). The progression of periodontitis is

characterized by a shift from a symbiotic to a dysbiotic host-

microbiome interaction in the oral cavity, driven by various risk

factors and marked by an increase in bacterial biomass and

alterations in the abundance of specific species (4–6). Notably, the

relative abundance of red-complex bacteria significantly rises in

subgingival plaque during periodontitis (7). While periodontitis is

considered a polymicrobial infection with no sole pathogen, P.

gingivalis is believed to play a distinctive role due to its ability to

manipulate the host response, thereby tipping the balance from

health to disease (5, 8). P. gingivalis has been extensively studied

among periodontitis-associated bacteria, but research on other

potential pathogens, particularly T. forsythia (Figure 1), remains

limited. In this perspective paper, we describe important virulence

factors of T. forsythia and explore the bacterium’s potential to

modulate the host response.
2 Survival strategies of Tannerella
forsythia

T. forsythia and P. gingivalis are key members of the oral

biofilm consortium, thriving as late colonizers (2). These bacteria

are affiliated with the Bacteroidetes phylum and share several
FIGURE 1

(A) Transmission electron microscopy of a freeze-etched and platinum carbo
the entire cell surface. (B) Scanning electron microscopy image of rod-shap
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commonalities in cellular infrastructure, which are vital for their

adaptation to the oral habitat and interaction with the host. This

includes, e.g., the utilization of a type 9 protein secretion system

(T9SS), a characteristic feature of Bacteroidetes members, for the

export of specific virulence factors possessing a C-terminal

structural targeting domain across the outer membrane (9–11).

Additionally, they both have the capability to extensively

O-glycosylate numerous proteins with a species-specific glycan

(12–14). Deletion of the T9SS signal peptidase PorU in

T. forsythia led to T9SS shutdown and reduced production of

pro-inflammatory mediators by macrophages and gingival

fibroblasts upon infection with the ΔporU deletion mutant

compared to the T. forsythia parent strain (10).

O-glycosylation of cell surface proteins has been demonstrated

to facilitate the persistence of T. forsythia in the host (15), likely

through molecular mimicry of host sialic acid via the display of

bacterial nonulosonic acids (16). However, complete immune

evasion is not a viable strategy for either T. forsythia or

P. gingivalis, as both rely on inflammation to obtain nutrients

from tissue breakdown products (5).

In contrast to P. gingivalis, T. forsythia relies on other members

of the biofilm consortium for survival due to its auxotrophy for the

essential bacterial cell wall sugar N-acetylmuramic acid (MurNAc)

(17). Consequently, the bacterium can only survive in the oral

habitat by scavenging this compound from cell wall turnover

products or decay of cohabiting bacteria (18), making it unique

among oral bacteria. Notably, due to the absence of the MurAB

enzymes involved in MurNAc biosynthesis, T. forsythia is

resistant to the antibiotic fosfomycin (19).
n-shadowed T. forsythia cell showing the square S-layer lattice covering
ed T. forsythia cells grown on a hydroxyapatite disc.
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3 Virulence factors of T. forsythia

3.1 Enzymes

3.1.1 Sialidase
The surfaces of vertebrate cells are decorated with a dense array

of sialoglycoproteins (20). The red-complex bacteria express

sialidases to cleave terminal sialic acid from host glycoproteins,

such as mucins, which can be used as a carbon source and/or

modify host cell surfaces to enhance attachment (21). T. forsythia

harbours a dedicated sialic acid utilization and scavenging (nan)

operon (22), encoding a sialidase-NanH-which has been shown

to play a crucial role in bacterial colonization by exposing sialic

acid-hidden epitopes on epithelial cells (23). Furthermore,

attachment and survival of T. forsythia during epithelial KB cell

infection were found to be diminished in a mutant lacking the

sialic acid transporter NanT (24). Notably, a NanS sialic acid-

esterase from T. forsythia collaborates with a P. gingivalis

sialidase to optimize P. gingivalis’ acquisition of sialic acid, even

from diacetylated sialic acid-containing substrates (25). This

underscores the interdependencies among the red-complex

bacteria for their interaction capability with the host.

3.1.2 Proteases
Various proteases have been implicated in T. forsythia’s

pathogenicity, including, e.g., PrtH proteases which are associated

with attachment loss (26), a trypsin-like cysteine protease

exhibiting both arginine- and citrulline-specific activities (27), and

secretory KLIKK proteases capable of targeting diverse protein

substrates such as collagen, gelatine, elastin and casein (28). It is

noteworthy that transcripts of KLIKK proteases were detected in

almost all gingival crevicular fluid samples where T. forsythia was

present. Specifically, miropin of T. forsythia deactivates a broad

range of host proteases, including neutrophil elastases and

cathepsin G (28), while karylisin inhibits complement activation at

various stages (29). Additionally, mirolysin and karylisin have

been shown to degrade and inactivate human cathelicidin (30, 31).

These findings support the notion that these enzymes contribute

to T. forsythia’s pathogenicity through distinct mechanisms.
3.2 Cell surface proteins

3.2.1 2D-crystalline cell surface (S-) layer and
glycosylation

T. forsythia cells are covered by a 2D-crystalline array formed by

the self-assembly of the S-layer proteins TfsA and TfsB, which are

multiply modified by a nonasaccharide within the phylum-wide,

three-amino acid O-glycosylation motif D(S/T)(A/I/l/M/T/V/S/C/

G/F/N/E/Q/D/P) (12, 32, 33). The S-layer plays a crucial role

in host interaction, as demonstrated by various studies utilizing a

T. forsythia S-layer ΔtfsAB deletion mutant. Infection with

the mutant led to an earlier onset of pro-inflammatory mediator

production in macrophages and human gingival fibroblasts

compared to the parent strain (34) and induced the production of

monocyte chemoattractant protein and granulocyte-macrophage
Frontiers in Oral Health 03
colony-stimulating factor by human oral epithelial cells (35).

Furthermore, the T. forsythia S-layer deficient mutant exhibited

significantly reduced adherence to human gingival epithelial cells (36).

Moreover, O-glycosylation of the S-layer proteins was found to

modulate the interaction between T. forsythia and the host.

Specifically, only the native nonasaccharide ensured the bacterium’s

persistence in the host, whereas mutants with truncated S-layer

glycosylation, lacking the nonulosonic acid (37) (e.g., in a ΔwecC

deletion mutant lacking a trisaccharide branch), elicited a robust

Th17 response and reduced periodontal bone loss in mice compared

to the T. forsythia wild-type bacterium (15). Immune priming with

the Th17-biasing strain triggered a productive neutrophil response,

effectively mitigating P. gingivalis persistence and associated alveolar

bone loss in mice (38). Notably, initial evidence suggests that the

glycosylated S-layer of T. forsythia is recognized by macrophage-

inducible C-type lectin receptors (39), primarily expressed in

myeloid cells, such as macrophages and neutrophils.

Regarding T. forsythia’s biofilm lifestyle, using a subgingival,

multispecies biofilm model, a selective role for the glycosylated

S-layer was identified in positioning this bacterium within the

biofilm, its co-localization with P. gingivalis, and the prevalence

of Campylobacter rectus (40).

Thus, not only the presence of an S-layer but also its specific

glycosylation pattern influences the host response to T. forsythia.

3.2.2 Cell surface antigen BspA
T. forsythia’s glycosylated cell surface antigen BspA triggers

cytokine production in macrophages and dendritic cells via

CD14 and TLR2-dependent mechanisms (41, 42); TLR2

activation is mediated through the sequence motif GC(S/T)

GLXSIT (43). Animal studies have underscored the pivotal role

of BspA in the cellular response to T. forsythia; mice infected by

gavage with BspA-deficient T. forsythia displayed significantly

reduced alveolar bone loss compared to those infected with the

parent strain (43). Bone loss in infected mice was found to be

linked to the activation of a Th2 response and notably decreased

in animals lacking TLR2, highlighting a potential involvement of

BspA in this process (42). Remarkably, the prevalence of the

T. forsythia BspA genotype is markedly elevated in patients with

chronic and aggressive periodontitis, suggesting a direct

contribution of BspA to periodontal disease (44). Additionally,

T. forsythia and BspA induce foam cell formation in THP-1

macrophages and promote the progression of atherosclerotic

lesions in ApoE(−/−) mice (45), indicating a potential impact of

this virulence factor on systemic health.
3.3 Outer membrane vesicles

Outer membrane vesicles (OMVs) from T. forsythia induce the

production of TNF-α and IL-8 in U937 macrophages, and IL-6, IL-8,

and MCP-1 in human periodontal ligament mesenchymal stromal

cells (hPDL-MSCs) in a concentration-dependent manner (46).

The response of host cells to T. forsythia OMVs is comparable to

or even stronger than that elicited by the whole bacterium (46)

and is mediated through TLR2 activation (47). Monocytes and
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differentiated macrophages may phagocytose T. forsythia’s OMVs,

leading to the activation of a pro-inflammatory response (48).

Interestingly, several cargo proteins within OMVs are virulence

factors which are predictably O-glycosylated (46), supporting a

potential link between glycosylation and virulence of T. forsythia.
3.4 Rough-type lipopolysaccharide

T. forsythia produces a rough-type lipopolysaccharide (LPS),

which induces an inflammatory response in macrophages in a

concentration-dependent manner (49, 50). Additionally, another

study revealed that T. forsythia LPS stimulates cytokine production

in whole blood from periodontitis patients. This response was

further increased upon co-stimulation with P. gingivalis LPS or

T. denticola LPS, resulting in notably elevated levels of IL-1β and

TNF-α (51); this may contribute to the immunodestructive host

response characteristic of periodontitis.
4 Cell-specific responses to Tannerella
forsythia

4.1 Epithelial cells

The oral epithelium serves a crucial role in the protecting

underlying structures against bacterial invasion, functioning as both

a mechanical and immune barrier (52). T. forsythia has the ability to

invade oral epithelial cells, a process facilitated by, e.g., the activation

of phosphatidylinositol 3-kinase by the BspA protein (53, 54).

Surface-associated and secreted BspA protein induces the

production of IL-8 by these cells through a TLR2 dependent

mechanism (55). Moreover, T. forsythia can attach to and invade the

oral squamous cell carcinoma cell line H357, likely mediated by

NanH sialidase (22). Evidence of T. forsythia’s invasion of buccal

epithelium has been demonstrated in an in vivo study (56).

Interestingly, the bacterium has been found to have no effect on

apoptosis in oral epithelial OKF6/hTERT-2 cells, in contrast to P.

gingivalis and oral commensal Streptococcus gordonii and

Streptococcus sanguinis (57). In the human oral keratinocyte cell line

HOK-16B, T. forsythia induces the production of IL-24 mediated by

reactive oxygen species (ROS) (58), as well as the activation of IL-1α

production through nucleotide-binding oligomerization domain-like

receptor protein 10 (59). Additionally, in human oral keratinocytes,

T. forsythia stimulates the production of IL-1Rα, IL-8, and vascular

endothelial growth factor (VEGF) (35). While T. forsythia slightly

inhibited epithelial cell migration as measured in a scratch assay,

this inhibition was markedly lower compared to that induced by P.

gingivalis and Prevotella nigrescens (60).
4.2 Polymorphonuclear leukocytes

Polymorphonuclear leukocytes (PMNs), integral to the innate

immune system, play a crucial role in eliminating invading

pathogens through diverse mechanisms such as phagocytosis, ROS
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production, and neutrophil extracellular trap (NET) formation

(61). PMNs represent the predominant immune cell type in the

gingival crevice, and their continuous transmigration into the

sulcus is essential for maintaining oral health (62). The ability to

deactivate neutrophil function is considered a key strategy

employed by periodontal pathogens to promote dysregulated

inflammation (63, 64). Despite its importance, the specific

interaction between T. forsythia and PMNs remains poorly

investigated. A study demonstrated that PMNs can phagocytose

non-opsonized T. forsythia, leading to ROS production (65).

Additionally, T. forsythia has been shown to adhere to and invade

dental follicle mesenchymal stem cells, resulting in diminished

PMN chemotaxis, phagocytic activity, and NET formation induced

by these cells (66). Such alterations in PMN function may

contribute to enhanced survival of oral pathogens.
4.3 Macrophages

Macrophages, as phagocytic tissue-resident cells of the innate

immune system, are ubiquitous in almost all tissues and undertake

various functions, including phagocytosis, pathogen presentation,

clearance of cellular debris, and regulation of tissue homeostasis

(67–69). T. forsythia, along with its OMVs and LPS, elicits the

production of diverse pro-inflammatory mediators, notably IL-1β,

TNF-α, IL-6, and IL-8, in human U937 macrophages (10, 34, 46,

50, 70).

Inmurinemacrophages,T. forsythia prompts the dose-dependent

production of IL-6, MCP-1, and IL-23 (71). Furthermore, the co-

infection of murine macrophages with P. gingivalis and T. forsythia

synergistically enhances the production of IL-6, albeit not of other

cytokines (71). One study has documented T. forsythia’s capability

to induce macrophage apoptosis through the activation of caspase-1,

concomitant with the release of danger signals, particularly

fibronectin and heat-shock protein 60 (72).
4.4 Mesenchymal stromal cells

Mesenchymal stromal cells (MSCs) are widely distributed

throughout dental tissues (73). These cells express pattern-recognition

receptors and can be activated by various bacterial components (74).

Similar to other MSCs, they possess immunomodulatory properties

and can influence the activity of various cells. Therefore, dental MSCs

are crucial for maintaining tissue homeostasis and play a significant

role in the progression of periodontitis (75, 76). Several studies have

demonstrated that T. forsythia induces the gene and protein

expression of IL-6, IL-8, and MCP-1 in MSCs derived from the

gingiva and periodontal ligament (10, 34, 70). A similar effect has

been observed with T. forsythia LPS and OMVs (46, 50).
5 Discussion and perspectives

The current understanding of T. forsythia’s pathogenicity

mechanisms and host-interaction does not conclusively establish
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its capability to manipulate the host immune system and classify it

as a keystone pathogen, similar to P. gingivalis, which is known to

significantly influence host-microbiome interactions even when

present at low abundance (8, 77). Various virulence factors of P.

gingivalis are known to subvert the immune system. For instance,

gingipain proteases inhibit local IL-8 accumulation, causing

“local chemokine paralysis” that inhibits PMN migration and

consequently reduces bacterial killing, contributing to bacterial

overgrowth (78, 79). Gingipain proteases also impair T-cell

function and tissue colonization through adhesion to epithelial

cells (80). Additionally, P. gingivalis affects the host immune

response by manipulating complement and TLR2 signaling (81).

Further research into T. forsythia’s virulence factors and their

mode of action is necessary to understand if and how this

bacterium can manipulate the host immune system.

Our recent studies have shown contrasting effects of P. gingivalis

and T. forsythia wild-type bacteria on gene expression and

corresponding content of various pro-inflammatory mediators in

human macrophages and gingival and periodontal-ligament

derived MSCs. While infection with T. forsythia induced both

gene expression and protein content, infection with P. gingivalis

resulted in increased gene expression but low levels of cytokines

(10, 82). This observation suggests that P. gingivalis proteases have

a greater ability to degrade host proteins than T. forsythia

enzymes. Animal studies further support this, demonstrating

that unlike P. gingivalis, subcutaneous infection of mice

with T. forsythia does not inhibit neutrophil migration to the

infected site (83).
FIGURE 2

Scheme of Tannerella forsythia’s host interaction strategies, illustrating the m
measurable effects in diverse host cells. Created with Biorender.
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T. forsythia may potentially affect oral antimicrobial defense

through its proteases. Miropin, for instance, degrades neutrophil

elastases and cathepsin G, impairing antibacterial neutrophil

function (84). Moreover, T. forsythia, along with other red-

complex bacteria, degrades cathelicidin, an essential antimicrobial

peptide in the oral cavity (85). Additionally, T. forsythia inhibits

complement activation at several stages through the

metalloproteinase karylisin (29). Interestingly, a clinical study has

shown a negative correlation between the prevalence and levels

of T. forsythia in subgingival plaque and PMN activities such as

phagocytosis and superoxide anion production (86).

There are indications that T. forsythia may alter the host

response to other bacteria. Recent studies suggest that

T. forsythia may scavenge NOD-2 ligands secreted by

F. nucleatum, resulting in diminished activation of oral epithelial

cells (87). T. forsythia also inhibits the invasion of P. gingivalis

into oral epithelial cells (88) and synergistically augments

alveolar bone loss with F. nucleatum in an experimental

periodontitis model in mice (89). However, periodontitis models

in mice primarily use ligature and infection with P. gingivalis,

with limited studies using T. forsythia.

Translating available research data on T. forsythia’s interaction

with the host immune system is challenging. Most knowledge is

based on in-vitro and sometimes mice studies using a model of

mono-infection with T. forsythia, while the subgingival plaque

contains numerous microorganisms, and host responses involve

an orchestrated response of various cell types that is difficult to

mimic in the laboratory.
ost investigated means of survival and known virulence factors leading to
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Moreover, it’s widely acknowledged that bacterial virulence is

heavily influenced by ecological conditions and can be

significantly altered within biofilms. For instance, the growth and

virulence of various strains of P. gingivalis are contingent upon

factors such as temperature, pH, and iron availability (90–92).

While ecological conditions in the subgingival pocket may drive

the selection of specific T. forsythia strains, data in this regard

are limited.

Recent research has uncovered differences in the activation

of the chemokine protein IP-10 by THP-1 macrophages

between laboratory-adapted T. forsythia ATCC 43037 and

clinical isolates (93). Notably, one clinical isolate elicited a

notably higher response than T. forsythia ATCC 43037 (93).

Additionally, another study highlighted a substantial increase

in the prevalence of T. forsythia bspA and prtH genotypes in

periodontitis patients compared to healthy individuals.

While the underlying reason for this observation remains

unclear, it is conceivable that factors such as increased

GCF flow and alterations in its composition in periodontitis

might drive the selection of specific T. forsythia strains

or influence the gene expression and virulence of this

bacterium (94).

In summary, T. forsythia expresses several unique virulence

factors that affect host defense and immune response

(Figure 2). However, it remains unclear if T. forsythia has the

potential to manipulate the host response, influence host-

microbiome interactions, and promote a dysbiotic state. New

studies focusing on the modification of oral biofilm by

T. forsythia, the activity of T. forsythia proteases, and their

clinical relevance, as well as their effects on the microbial

community-host interaction, are necessary.
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