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The polymicrobial pathogenicity
of Porphyromonas gingivalis
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Accumulating microbiome data and mechanistic studies in vitro and in vivo have
refined our understanding of the oral microbiota as a functionally integrated
polymicrobial community. Emergent properties of these communities are
driven to a large extent by interspecies communication which can be based
on physical association, secreted small molecules or nutritional exchange.
Porphyromonas gingivalis is a consensus periodontal pathogen; however,
virulence is only expressed in the context of a polymicrobial community.
Multivalent fimbriae mediate attachment to other oral species which can
initiate a distinct transcriptional program in both constituents of the binding
pair. P. gingivalis also responds to small molecules and nutritional cues
produced by partner organisms. Physiological interdependence forms the
basis of complex networks of cooperating organisms which begin to resemble
an organismal entity exhibiting a spectrum of pathogenic potential.

KEYWORDS

periodontal, community, interspecies communication, biofilm, nutritional integration

Introduction

Appreciation of the oral microbiome as polymicrobial harkens back to the foundation

of microbiology and the meticulous observations of van Leeuwenhoek. As the new

discipline of microbiology developed, however, emphasis became focused on the

classical microbial diseases of the time, most of which had a single species etiology. The

spectacular success of Koch’s postulates which related the presence of a single

exogenous organism to a single disease further entrenched the notion of individual

species as etiological entities. These prevailing concepts influenced the early studies into

the etiology of periodontal diseases. While it was recognized that disease was associated

with an increased diversity of endogenous subgingival species, the overall goal of

research was often to fulfill Koch’s postulates, either in the classical form or as modified

to accommodate endogenous pathogens, for periodontal microorganisms (1). This

approach had some limited success with the induction of disease in non-human

primates infected with P. gingivalis (2), albeit at a high inoculation dose unlikely to be

representative of human disease. Adoption of models with extreme parameters has

recently been termed, with only a hint of hyperbole, “Koch’s curse” (3). Nonetheless,

there was general agreement in the field that P. gingivalis along with a limited number

of other species, functioned as periodontal pathogens (4). The introduction of the

concept that complexes of organisms (color-coded depending on association with health

or disease) tended to co-occur in the periodontal microbiome (5) was a significant step

toward the notion of a polymicrobial etiology, particularly when integrated in a

framework whereby environmental factors drive the selection and enrichment of

endogenous pathogens (6). In germ-free animal models of disease, however,
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P. gingivalis remained obstinately non-pathogenic as a single

species infection (7), and the idea of a polymicrobial community

as the fundamental etiological unit thus took hold (8). Within

this community organisms can have specialized roles, and

P. gingivalis has emerged as a keystone pathogen which elevates

overall community pathogenicity, or nososymbiocity (9), while

receiving support from other community constituents which can

be categorized as accessory pathogens (10). The interactions

among P. gingivalis and other organisms that control

nososymbiocity can thus define health or disease in the oral

cavity to a large extent (11), and the nature of these interactions

is the focus of this perspective. It is important to note, however,

that periodontal tissue destruction is effectuated mainly by a

dysregulated and uncontrolled inflammatory response to bacterial

colonizers, a topic not addressed here but comprehensively

reviewed elsewhere (12–15).
Physical interactions

A requisite early step in the development of polymicrobial

communities is inter-species adherence. Oral bacteria express a

number of adhesins with specificity for genetically distinct

organisms, indicating that adaptation to a polymicrobial

environment has been evolutionarily selected. Study of inter-

species adherence was based, for several decades, on the ability of

partner organisms to clump or coaggregate in suspension, and

this approach revealed complex networks of co-adherence

(16, 17). In these assays, however, P. gingivalis displayed a very

limited range of binding partners, predominantly fusobacteria.

Such data contributed to the idea that Fusobacterium nucleatum

was a bridging organism, linking so-called “late” colonizers such

as P. gingivalis with “early” colonizers including streptococci and

actinomyces (18). The development of more sensitive assays,

involving adherence of P. gingivalis to substrates of partner

species on a solid support, demonstrated that P. gingivalis can in

fact adhere to a number of other organisms including

streptococci, actinomyces, veillonellae, and treponemes (19–23).

Importantly, image analyses of ex-vivo biofilm samples did not

substantiate a major role for F. nucleatum as a physical bridging

organism (24), and its role may relate more to metabolic

integration (discussed below). Further, more recent evidence

indicates that colonization of the tooth surface may not follow a

rigid temporal progression of early, middle and late arrivals, but

rather polymicrobial aggregates are preformed in saliva prior to

surface attachment (25).

P. gingivalis deploys two, at least, types of fimbriae, comprising

the structural subunit proteins FimA (major fimbriae) or Mfa1

(minor fimbriae), which account for most of the interspecies

adherence activity (26). While both fimbriae also possess an

accessory protein complex, the structural proteins themselves

possess adhesin domains (26). FimA binds to glyceraldehyde

3-phosphate dehydrogenase (GAPDH) on streptococcal cell

surfaces, as well as to the surface of Actinomyces oris (19, 27). In

the case of GAPDH, a C-terminal domain of FimA binds to amino

acid residues 166–183 of GAPDH (28, 29). Mfa1 also mediates
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attachment to streptococci, and a cleft spanning the central to

C-terminal region of Mfa1 interacts with the SspA/B major surface

proteins, with specificity being defined by the amino acid sequence

of a protruding BAR domain at the C-terminus (30–32).

While close physical association between organisms facilitates

small molecule or nutrition interactions, there is evidence that

bacterial cells can sense and respond to the binding event itself.

Outer membranes can sense stressors including mechanical

changes resulting from adhesion (33). In E. coli for example, a

surface lipoprotein can sense surface adhesion and activates two-

component systems, which initiate an adhesion-dependent

pattern of gene expression (34–36). Although the mechanisms

have not been defined, a number of studies have shown that

washed non-growing cells of P. gingivalis exhibit dramatic

differential expression of mRNA and proteins when physically

associated with other species. Contact with T. denticola

upregulates the expression of P. gingivalis adhesins and proteases

(37), and the organisms are synergistically pathogenic in murine

models of periodontal disease (38). Time-coursed RNA-Seq

showed that genes encoding a number of potential virulence

determinants in P. gingivalis had higher expression in the

presence of S. gordonii, including adhesins, the type IX secretion

(T9SS) apparatus, and tetratricopeptide repeat (TPR) motif

proteins. In contrast, genes encoding conjugation systems and

many of the stress responses showed reduced expression (39).

Expression of fimA is also increased, and stress-associated genes

decreased, by Streptococcus oralis (40), and genes encoding T9SS

components are upregulated in communities with Candida

albicans (41). Proteomic analyses also show that partner species

such as S. gordonii and F. nucleatum provide metabolic support

to P. gingivalis in heterotypic communities (42–44), as is

discussed further below. Collectively, this body of work is

consistent with the notion of P. gingivalis virulence emerging as

part of an evolutionary adaptation to a polymicrobial environment.
Small molecule and chemical effectors

Many bacterial species utilize Autoinducer (AI)-2, an indirect

product of the LuxS enzyme, to coordinate behavior, particularly

in the context of homo- or hetero- typic biofilm communities

(45, 46). P. gingivalis possesses LuxS and produces AI-2 without

which heterotypic community formation with S. gordonii does

not occur (47). Expression of luxS is transcriptionally

upregulated in communities with S. oralis (40), and AI-2 may

participate in a positive feedback loop controlling expression of

the Mfa1 fimbrial adhesin (48). The precise role of AI-2/LuxS is

difficult to discern, however, as P. gingivalis lacks a recognized

receptor for detection of extracellular AI-2. S-adenosyl

methionine, a precursor of AI-2, is a product of the one carbon

metabolism (OCM) pathway, and this may provide a link with

pathogenicity, as discussed further below. Additionally, growth

and virulence of P. gingivalis require a non-AI endogenous

diffusible small molecule. However, P. gingivalis can overcome

this requirement by utilizing a soluble molecule provided by

V. parvula (49).
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Many species of oral streptococci produce the reactive oxygen

species (ROS) hydrogen peroxide which can damage both DNA

and proteins, and as such is toxic to other organisms (50).

P. gingivalis is a fairly aerotolerant anaerobe and can mount a

vigorous protective oxidative stress response (51, 52), which is

particularly effective in the context of a community with other

aerotolerant organisms such as Filifactor alocis, F. nucleatum and

Aggregatibacter actinomycetemcomitans (53–55). However, as a

reducing environment is required for gingipain activity, in

order to maintain the cysteine in the catalytic domain, oxidation

by hydrogen peroxide can impair gingipain function in the

absence of an effect on bacterial viability (56). Perhaps

unsurprisingly, the toxic action of hydrogen peroxide is scale

dependent, with toxicity being lost at longer distances between

organisms (57, 58). Indeed, at longer distances peroxide may

enhance P. gingivalis pathogenicity through the oxidation of

oxyhemoglobin (oxyHb) to methemoglobin (metHb), an early

step in heme acquisition (59).
Nutritional interactions

The importance of interspecies exchange of nutrients in the

metabolism of P. gingivalis has been recognized for some time.

For example, P. gingivalis produces isobutyric acid which

stimulates growth of T. denticola, and reciprocally T. denticola

produces succinic acid which enhances growth of P. gingivalis

(60). More recent investigations have uncovered a web of

nutritional connections which drive the interdependence of

community constituents and are intimately involved in both

enhancing and suppressing virulence.

One carbon metabolism (OCM)
OCM is an integral part of cellular intermediary metabolism,

producing a number of one-carbon unit intermediates (formyl,

methylene, methenyl, methyl) which are required for the

synthesis of various amino acids and other biomolecules such

as purines, thymidylate, folate and redox regulators (61, 62).

Flux through the OCM cycle requires amino acid substrates as

well as para-amino benzoic acid (pABA) which can be acquired

from the extracellular milieu or produced de novo from

chorismate by aminodeoxychorismate synthase (PabB) and 4-

amino-4-deoxychorismate lyase (PabC) as part of the shikimate

pathway (63). Exogenous pABA, which diffuses freely in and

out of bacterial cells, can be salvaged by P. gingivalis, and oral

streptococci such as S. gordonii produce exogenous pABA,

which in the absence of cell-cell contact suppresses P. gingivalis

pathogenicity. Indeed, dramatically, dual species communities of

P. gingivalis and a pabC mutant of S. gordonii are significantly

more pathogenic than a combination with the S. gordonii

parental strain or P. gingivalis alone (64). The mechanisms of

action of pABA remains to be fully determined; however, as an

analogue of amino-benzoic acid, pABA is a competitive

inhibitor of low molecular weight tyrosine phosphatases (LMW-

PTPs) and consequently impacts tyrosine phosphorylation/

dephosphorylation dependent signaling (65). In P. gingivalis, Ltp1
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is a LMW-PTP and its cognate kinase, Ptk1, controls processing

and secretion of gingipain proteases (66, 67), which in addition to

their role as cardinal virulence factors also generate substrate

amino acids for OCM flux (Figure 1). Tyrosine phosphorylation

may thus serve as a metabolic couple linking OCM flux with

substrate availability which in turn impacts virulence potential.

Moreover, tyrosine phosphorylation based signaling in P. gingivalis

may integrate and coordinate input from a number of organisms

as Ptk1 is required for in vivo fitness with F. nucleatum (68).

Further, synergistic interactions between P. gingivalis and other

species may also involve OCM-based responses in P. gingivalis,

as several genes in the OCM pathway are transcriptionally

regulated when P. gingivalis is grown in T. denticola conditioned

medium (69).

Regulation of biofilm life-cycle
Metabolic integration of oral organisms also impacts

community lifestyle. S. gordonii possesses an arginine deiminase

system (ADS), which catalyzes the conversion of arginine to

ammonia and CO2, along with the production of ATP. The

ADS comprises three core enzymes: ArcA, ArcB (catabolic

ornithine carbamoyltransferase), and ArcC (carbamate kinase)

(70). S. gordonii also harbors a gene encoding the arginine-

ornithine antiporter (ArcD), which is commonly located in the

same locus with the arcABC genes. ArcD, a transmembrane

protein, mediates the uptake of arginine and the concomitant

export of ornithine in an ATP-independent manner, thus

providing a substrate for the ADS pathway. Exported ornithine

induces physiological and morphological alterations of

planktonic F. nucleatum cells and the development of

heterotypic biofilms with S. gordonii. Thus, S. gordonii ArcD

modulates not only alkali and energy production, but also

interspecies interactions with F. nucleatum, initiating a middle-

stage of periodontopathic biofilm formation by metabolic cross-

feeding (71).

Conversely, when cocultured with S. gordonii, F. nucleatum

increases amino acid availability to enhance the production of

butyrate and putrescine, a polyamine produced by ornithine

decarboxylation. Coculture with Veillonella parvula also

increases lysine availability, promoting cadaverine production

by F. nucleatum. Interestingly, both putrescine and cadaverine

can enhance P. gingivalis biofilm formation, and further,

putrescine also stimulates biofilm dispersal (Figure 2) (71). A

corollary to this is that the species composition and ratio of

early colonizers within multi-species biofilms affect the

polyamine profile produced by F. nucleatum, and the behavior

of the subsequently colonizing periodontal pathogens. Analyses

of clinical specimens has confirmed not only the co-occurrence

of P. gingivalis with genetic modules responsible for putrescine

production by S. gordonii and F. nucleatum in plaque samples,

but also distinct salivary metabolome profiles characterized by

elevated levels of cadaverine in severe periodontitis patients and

putrescine in the middle stages of periodontitis (72, 73).

Furthermore, ornithine emerged as the salivary metabolite most

notably associated with the periodontal inflamed surface area,

as indicated by its high variable importance in projection (VIP)
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FIGURE 1

Influence of pABA (para-amino benzoic acid) on the pathogenic potential of P. gingivalis. pABA, an essential precursor for the one carbon metabolism
(OCM) pathway, can be scavenged from partner organisms or synthesized endogenously from chorismate by the PabBC enzymes. pABA can inhibit
the tyrosine phosphatase Ltp1 and thus disrupt activation state of the tyrosine kinase Ptk1 and tyrosine phosphorylation dependent signaling. Ptk1
phosphorylation of gingipains is required for optimal processing and secretion and when this is impeded the availability of amino acid substrates
for OCM is diminished. Thus, the Ltp1-Ptk1 axis may function as a feedback mechanism to ensure balanced OCM flux. As gingipains are required
for the provision of amino acid substrates for OCM and are major virulence factors, pABA levels regulate pathogenic potential.
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value, which underscores its significance in constructing

predictive models for periodontal disease (74). Several other

metabolomic studies employing saliva or gingival crevicular

fluid as clinical specimens support these findings, with

polyamines and their derivatives being identified as biomarkers

for gingivitis, periodontitis or dysbiotic alteration of the

periodontal microbiome (75–80).
Ornithine and mercaptan production
The major oral odor compound methyl mercaptan (CH3SH)

is strongly associated with both halitosis and periodontitis.

CH3SH production stems from metabolism of polymicrobial

communities in periodontal pockets and on the tongue dorsum.

Using a large-volume anaerobic non-contact coculture system,

F. nucleatum was found to be a potent producer of CH3SH,

with synthesis stimulated by metabolic interactions with S.

gordonii (80). Analysis of extracellular amino acids using an S.

gordonii ArcD mutant demonstrated that ornithine excreted

from S. gordonii is a key contributor to increased CH3SH

production by F. nucleatum (80). Furthermore, a metabolic

tracing analysis with 13C, 15N-methionine, as well as gene

expression analysis, revealed that ornithine secreted by S.

gordonii increased the demand for methionine through

accelerated polyamine synthesis by F. nucleatum, leading to

elevated methionine pathway activity and CH3SH production.

Acetylated polyamines were also detected in F. nucleatum cells,
Frontiers in Oral Health 04
although their presence was dependent on the levels of

putrescine and spermidine, suggesting that, in excess, putrescine

and spermidine may cause polyamine acetylation which will

help maintain constant intracellular levels (80). Acetylation of

polyamines by diamine N-acetyltransferase in F. nucleatum

requires acetyl-CoA. In silico analysis of the acetyl-CoA (m + 1)

biosynthetic pathway from 13C/15N-labeled L-methionine (m +

6) revealed only one pathway for incorporating a 13C into

acetyl-CoA and no pathway for a 15N. Notably, F. nucleatum

cannot complete this pathway alone; it requires the enzymatic

reaction of glycine hydroxymethyltransferase in the one

carbon pool, which is encoded by S. gordonii (80). It is also

likely that elevated polyamine-synthesis in the context of

coexistence with S. gordonii increases the demand for

methionine, following enhancement of methionine metabolism

and CH3SH generation.
Discussion

While P. gingivalis is commonly and correctly considered a

pathogen in periodontal disease, it has become increasingly

apparent that, unlike classic infections of single microbial

etiology, periodontitis is not caused by a single organism but

rather by polymicrobial communities of endogenous microbes

acting in concert. Within these communities, organisms can
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FIGURE 2

Schematic depiction of themetabolic interaction between Fusobacterium nucleatum and Streptococcus gordonii, highlighting the impact of putrescine, a
metabolic byproduct synthesized during this interaction, on the life cycle ofPorphyromonas gingivalis biofilms andCH3SHmethylmercaptan production in
F. nucleatum. This diagram illustrates the pathway beginning with the uptake of L-arginine by S. gordonii, followed by the extracellular release of ornithine,
which is subsequentlymetabolized by F. nucleatum into polyamines such as putrescine and spermidine. Putrescine released by F. nucleatum influences the
biofilm dynamics of P. gingivalis. Furthermore, spermidine biosynthesis from putrescine in F. nucleatum is accompanied by an enhanced uptake of
extracellular methionine, leading to a notable increase in CH3SH production. Detected metabolites are shown in bold, with dashed arrows for excretion
and bold arrows for confirmed upregulation of bacterial metabolism. Met, l-methionine; SAM, S-adenosyl-l-methionine; SAH, S-adenosyl-l-
homocysteine; SRH, S-ribosyl-l-homocysteine; Hcy, l-homocysteine; dcSAM, S-adenosylmethioninamine; MTA, 5’-methylthioadenosine; Arg,
l-arginine; Agm, agmatine; Orn; l-ornithine; Cit, citrulline; Glu, glutamate; ArSuc, arginosuccinate; Pi, inorganic phosphate; CP, carbamoyl phosphate;
Put, putrescine; Spd, spermidine; MTR, 5-methylthio-d-ribose; MTR-1P, S-methyl-5-thio-d-ribose 1-phosphate; MTRu-1P, S-methyl-5-thio-d-ribulose
1-phosphate; MTXu-5P, 1-(methylthio)xylulose 5-phosphate; CH3SH, methyl mercaptan; MTOB, 4-methylthio-2-oxobutanoic acid.
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have specialized roles, and although P. gingivalis can be seen as

a driver of pathogenicity it is only in the context of a synergistic

polymicrobial environment. Mapping of interspecies

interactions spatially, temporally, and in molecular detail has

revealed the basis of the emergent overall functions that

promote or destabilize periodontal tissue homeostasis. This

information provides the basis for new opportunities for

intervention, not to eliminate P. gingivalis, which is likely a

futile endeavor, but rather to restrain pathogenic potential

through community engineering.
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