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The gradual accumulation and inadequate renewal of senescent cells over time
drive organismal aging. Senescent cells undergo altered gene expression and
release inflammatory mediators collectively termed the senescence-associated
secretory phenotype (SASP), which significantly contributes to a spectrum of
age-related disorders, including cancer. In the context of carcinogenesis, the
SASP produced by senescent cells has been implicated in the promotion of
epithelial cancers, including oral squamous cell carcinoma (OSCC), the most
common form of oral cancer. Senescent cells within the tumor
microenvironment release factors that amplify the growth and invasiveness of
neighboring cancer cells. Senotherapeutics, including senolytics and
senomorphics, emerge as promising modalities to target senescent cells and
their associated inflammatory factors, thereby opening novel avenues for
augmenting the efficacy of cancer treatments. Here, we review the general
aspects of cellular senescence, focusing on the relation between senescence-
related inflammation with cancer development. We also analyze the available
evidence linking cellular senescence with OSCC, highlighting possible clinical
applications.
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1. Introduction

The relation between organism aging and the development of different diseases (age-

related diseases) is not new and is well accepted. Organism aging happens due to the

accumulation and lack of renewal of aged cells across time (1). Cell aging or cellular

senescence is a cellular state in which the growth capabilities of cells are irreversible lost

in response to different stressors (2). An important feature of senescent cells is that they

change their gene expression profile and develop an inflammatory secretome known as

the senescence-associated secretory phenotype (SASP) (3, 4). The accumulation of

senescent cells therefore can be detrimental, as the inflammatory factors secreted as part

of the SASP can act on neighbor cells either predisposing, triggering or promoting the

development of different diseases (5–7).

Many age-related diseases are influenced by the accumulation of senescent cells.

This led to the development of new types of drugs, known as senotherapeutics.
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Senotherapeutics are drugs aimed to specifically target and

eliminate senescent cells (senolytics) or to decrease the

abundancy of inflammatory factors present in the SASP

(senomorphics) (8). Although this field is relatively new, there

are already human clinical trials reporting some of these drugs to

be beneficial for the treatment of idiopathic pulmonary fibrosis

(9) and many more are currently being held (https://clinicaltrials.

gov/search?cond=cancer&intr=navitoclax).

There is robust evidence supporting stromal senescent cells as

promoter of epithelial cancers of different origins. Recent studies

have also suggested senescent cells to play a role in oral cancer

squamous cell carcinoma (OSCC) development (10), progression

(11) and therapy resistance (12). This could have an impact on

the way we currently treat oral-precancerous lesions and OSCC.

Here, we review the general aspects of cellular senescence,

focusing on the relation between senescence-related inflammation

with cancer development. We also analyze the available evidence

linking cellular senescence with OSCC, highlighting possible

clinical applications.
2. Cellular senescence

Senescence can be induced by different stimuli, including

replicative stress, oxidative stress, oncogene signaling and DNA

damage (13). Independent of the inductor, senescent cells acquire

morphological alterations that differentiate them from non-

senescent cells. There are 5 hallmarks of cellular senescence

representing structural, epigenetic and signaling alterations: (i)

chromatin reorganization, (ii) cell cycle arrest, (iii) metabolic

adaptation, (iv) modifications of the lysosomal compartment and

v) development of a secretory phenotype (SASP) (14, 15). There

is no universal marker to identify senescent cells. The most used

markers are the activity of senescent-associated β-galactosidase

(SA-β-GAL), the expression of LaminB1, p16 and p21, the

identification of senescence-associated heterochromatin foci

(SAHFs) and the accumulation of DNA damage response (DDR)

proteins, such as phosphorylated (γ) H2A. However, many others

have been reported including the lack of expression of ki67 and

the increased secretion of IL-6 and IL-8 SASP factors (15). None

of the aforementioned features can be used by themselves to

identify senescent cells, and a combination of two to four of

these markers should be used (16).

Depending on the context, senescence can result in both

beneficial and detrimental effects. In young individuals’

senescence contributes to tumor suppression and wound healing,

primary by stopping the cell cycle and by secreting specific

factors as part of the SASP (17–20). However, in older

individuals or upon consistent and chronic damage, senescent

cells accumulate in tissues. This contributes to tissue dysfunction,

chronic inflammation, and age-related disorders, including

cardiovascular diseases, fibrosis, diabetes, neurological disorders,

and paradoxically cancer (21–23). These negatives effects are also

attributed to the SASP. Due to these antagonistic effects,

senescence is considered a double-edge sword in health and

disease (24).
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3. Cellular senescence as epithelial
cancer promoter

Whether a senescent cell that has irreversible exited the cell

cycle can re-enter and become malignant is still under study

(25, 26). Reversing senescence is not a common feature and is

not the mechanism by which cellular senescence is considered to

have pro-tumorigenic effects. The pro-tumorigenic effects of

senescence are explained by the SASP. Neighbor non-cancerous

senescent cells (or cancerous cells induced to senesce because of

radiation or chemotherapy) secrete soluble factors that can be

used by pre-malignant or malignant cells for their advantage,

which is changing the current understanding of cancer biology.

In fact, senescent cells have been recently proposed as an

emerging hallmark of cancer with enabling/promoting

capabilities (27).
3.1. The SASP: regulation and composition

Different experimental models have suggested that the

composition of the SASP varies between cell types and the

senescence inducer (28). Nevertheless, a recent report which

compared the SASP after inducing senescence under two

different modalities in 13 different cancer cell types found the

expression of the SASP to be more influenced by the cell type

rather than the senescence inductor (4). Although the

composition of SASP is widely heterogenous and more than 50

different soluble factors might be overexpressed (3), there is

substantial overlap among SASPs, with specific proteins being

almost invariably, including IL-1α, IL-6, IL-8, MMP-1, MMP-3,

MMP-10 (29).

Virtually every cell that senesce will develop a SASP, although

there are reports from animal studies in which under specific

conditions cell senesced without developing a secretory

phenotype (19). Diverse signaling pathways are associated to

induce and maintain the SASP, including: phosphoinositide-3-

kinase (PI3K) (30), mammalian target of rapamycin (mTOR)

(31–33), p38MAPK (34), STAT3 (35), GATA4 (36), cGAS/

STING (37–39), IL-1 signaling pathway (40) and Rho-kinase

(41). These pathways have one thing in common, to activate

NF-kB and/or CEBPβ transcription factors as downstream

effectors (42).
3.2. Senescence and carcinomas

Classically, the accumulation of genetic and epigenetic changes

in target cells has been considered as the primary cause of

carcinoma development (43). However, that simplistic view has

changed, based on the finding that pre-cancerous epithelial

lesions with “cancer-associate mutations” may never progress

into cancer (44) with substantial evidence suggesting that the

final trigger for developing the malignant phenotype could be a

micro-environmental change (45, 46). The current knowledge
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supports the idea that solid tumors, such as carcinomas, are not

just clonally evolved epithelial cells that have accumulated a

critical number of cancer-predisposing mutations, but rather

dysfunctional tissues where the mesenchymal component

(stroma) plays an important role in the tumor pathogenesis (27),

being even responsible for the acquisition of therapeutic

resistance (47–50). The stromal component consists of a variety

of cells, including fibroblasts, pericytes, endothelial cells, adipose

cells, but as fibroblast are the most common stromal component

within tissues, most of the studies focus on them (51). There is

evidence sustaining senescent fibroblasts to facilitate

tumorigenesis of epithelial cancers by generating a tumor

permissive microenvironment, promoting the growth of

malignant cells of breast (3), skin (52, 53), prostate (54), colon

(30), gastric (55) and oral cancers (10). In addition to fibroblasts,

other stromal cells (including pericytes, adipocytes, lymphocytes,

among others) have also been implicated in the generation of a

tumor permissive microenvironment (56, 57).

The mechanisms underlying these pro-tumorigenic effects are

not entirely known. As the organism ages, the fibroblast renewal

rate decreases (58). Senescence of immune cells also reduces the

clearance of other senescent cells (59). Therefore, senescent cells

accumulate in tissues, resulting in an aged tumor

microenvironment (TME) with abundancy of SASP factors (1). It

is hypothesized then, that this would generate a switch towards a

more immunosuppressive immune infiltrate (60, 61), establishing

chronic inflammation, generating a microenvironment prone for

cancer formation and progression. The factors that accumulate in

an aged TME include proteins able to remodelate the

extracellular matrix (ECM), such as MMPs, plasminogen

activator inhibitors (PAI1 and PAI2), tissue-type plasminogen

activator (tPA) and the secretion of pro-inflammatory molecules

and growth factors, such as CXCL1, CXCL8, CXCL2, IL-6, IL-1α

and colony stimulating factors (CSFs) (62).

The TME is not the only source of senescent cells. Tumor cells

themselves can be induced to senesce by chemotherapeutic drugs

(23) or by radiation therapy (63), which is known as therapy

induced senescence (TIS). TIS does not only affect cancerous

cells, but also stromal cells, and is considered an off-target effect

of cancer therapy (64). In theory, TIS of cancerous cells should

be a desirable outcome of cancer treatment because even when

the treatment is not able to eliminate all malignant cells, the

remaining living cells are not able to proliferate. Nevertheless,

cancerous TIS cells remain metabolically active and together with

other stromal TIS cells are a source of chronic inflammation

through the SASP, facilitating drug resistance (65), tumor relapse

(66) and distant metastasis (67).
4. Senescence in epithelial
premalignancies

In human premalignancies, cellular senescence of the epithelial

compartment is considered a tumor suppressor mechanism, as the

acquisition of an indefinite replicative lifespan (one of the most

important hallmarks of cancerous cells) depends on bypassing
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senescence via inactivation of p16INK4A and p53 (44, 68), the

main pathways responsible for senescence induction and

maintenance (13). There is evidence that senescent cells

accumulate in vivo in human premalignancies, such as colonic

adenomas (69), cervical intraepithelial neoplasia (70), Bowen’s

disease (71), ductal carcinoma in situ (72), actinic keratosis (73)

and oral potentially malignant disorder (OPMD) (74–76).

OPMD encompass a heterogenous group of disorders

characterized by an increased risk for developing cancer (77).

The global prevalence of OPMD has been estimated in 4.47%.

Oral leukoplakia (OL) and oral submucous fibrosis (OSMF) are

the most common disorders (78), with a malignant

transformation rate of 9.5% and 5.2% respectively (79).

A recent study that analyzed 50 OL samples with and without

dysplasia found p16 positive keratinocytes in all 50 lesions, which

were not related to HPV infection (76). Similarly, another study

analyzed senescent markers in 86 OL with different degrees of

dysplasia and found that both γH2AX and p53 proteins increase

progressively according to the severity of dysplasia (75). There

are also reports that senescent cells and DNA damage

accumulate in higher numbers in many human premalignancies

compared to their corresponding malignancies (80–83). In OL

with dysplasia, senescent markers cyclin D1, maspin, Rb, and

p16INK4A have been found at higher levels compared to OSCC

(74). All these data suggest that the epithelial senescence

program prevents malignant transformation, which needs to be

dismantled prior to cancer development.

Although senescence of the epithelial compartment has shown

to be tumor suppressor, this does not mean that senescent

epithelial cells are of no harm. In an OL with dysplasia, most,

but not all dysplastic cells will senesce due to DNA damage

response (DDR) due to oncogenic stress (oncogene induced

senescence). But some cells will escape senescence and will

become immortal, as has been shown in keratinocytes isolated

from oral dysplasias (44). The acquisition of an immortal

phenotype depends on p16 mutation or methylation, mutations

or inactivation of p53 and reactivation of telomerase (44, 84). On

the other side, dysplastic senescent keratinocytes will develop a

SASP characterized by high levels of IL-6, IL-8 and IL-1α

(cytokines with known oncogenic potential) (3, 85, 86) and other

inflammatory and growth factors (87). These soluble factors can

also induce paracrine senescence of surrounding normal

keratinocytes, fibroblasts and other stromal cells (40), increasing

the abundancy of SASP factors in the microenvironment. Thus,

the “initiated” dysplastic keratinocytes that escaped senescence

(immortal) will be exposed to an inflammatory pro tumorigenic

microenvironment that can promote cancer development (46, 85)

(Figure 1A). In fact, it has been recently shown that senescent

mortal premalignant oral keratinocytes upregulate the expression

of extracellular prostaglandins E1 and E2 (ePGE1 and 2), and

that ePGE2, in conjunction with other SASP cytokines, are able

to induce proliferation of immortal premalignant oral

keratinocytes (88). If maintained over time, this could promote

malignant transformation.

While in the epithelial compartment senescence is mainly

considered a tumor suppressor mechanism (although as mentioned
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FIGURE 1

Senescent cells can create an environment for tumor promotion, by facilitating proliferation and the acquisition of a malignant phenotype of dysplastic
cells (pre-malignant) through the secretion of different inflammatory factors as part of the SASP, a hallmark of senescent cells (A). Proposal of how the
inhibition of different components of the SASP by senomorphics (e.g., IL-1 pathway) at the dysplasia state could decrease the SASP of senescent cells
(both epithelial and stromal). This would potentially reduce the inflammatory component of the TME, reducing the chances of malignant
transformation of already dysplastic cells (B). Red arrows mean inhibition.
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above it could also act a tumor promoter), senescence of surrounding

stromal cells, such as fibroblasts, is considered tumor promoting (68).

In skin, senescent fibroblasts can promote carcinogenesis of

keratinocytes via factors present in the SASP (53). For example,

pre-malignant breast epithelial cells can become invasive and suffer

epithelial-to-mesenchymal transition (EMT) after stimulation by

SASP factors from surrounding senescent fibroblasts via a

paracrine mechanism dependent of IL-6 and IL-8 (3).

Pre-malignant non-tumorigenic human embryonic kidney cells, in

the presence of SASP factors from senescent fibroblast, can also

become tumorigenic with stem-like properties (89). Senescent

prostatic fibroblasts are able to induce proliferation of prostate

epithelial cells through a paracrine mechanism including

hepatocyte growth factor (HGF), fibroblast growth factor 7 (FGF7)

and amphiregulin (AREG) (54). GDF15, an essential factor from

the SASP from senescent colonic fibroblasts, can promote

malignant features (increased proliferation, migration, and

invasion) in colon adenoma cell lines (30).
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Whilst there is substantial evidence supporting a cancer

promoting role of senescent fibroblast in different

premalignancies, there is scarce information about their role in

OPMD, being most studies performed in OSMF, in which

cellular senescence has been proposed to have an essential role in

the malignant transformation (90). OSMF is a progressive

fibrotic disease caused by the chewing of areca nut characterized

by a gradual reduction in the jaw opening (91) and an increased

risk for oral cancer development (92). In the initial phases,

reactive oxygen species (ROS) induce senescence of epithelial

stem cells leading to epithelial atrophy (90, 93). This is followed

by senescence of endothelial cells and fibroblasts (90), which

reduces tissue vascularity generating hypoxia and fibrosis.

Alkaloids and flavonoids from areca nut also stimulate fibroblasts

to produce more collagen. This leads to more collagen deposition

affecting deeper tissues as the disease progresses (46). As fibrosis

increases, the epithelium atrophies due to senescence, and

senescent fibroblasts accumulate in the stroma (90), which
frontiersin.org
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precedes the development of epithelial dysplasia (51). For the

malignant transformation to happen, the dysplastic senescent

epithelial cells must escape senescence, likely due to upregulation

of LOLXL2 ad mucin 4 (94, 95). This will result in immortal

dysplastic epithelial cells exposed to upregulated SASP factors

secreted by senescent fibroblast, such as IL-1, IL-6, IL-8 and

GRO-α/CXCL-1, which will increase ROS production, generating

DSB, favoring cancer development (96).
5. Senescence and OSCC

In OSCC, most of the epithelial cancerous cells have escape

senescence to become malignant through TP53 and p16INKA4

mutations, although a subset of cancerous cells has been reported

to retain functional Tp53 or p16INKA4 (97, 98). Nevertheless,

those mortal cancerous cells are expected to acquire further

mutations to reach immortality or will disappear due to natural

selection. Therefore, senescence of malignant keratinocytes is not

naturally expected in OSCCs or should not have a significant

effect in tumor behavior (unless the tumor is irradiated or

treated with chemotherapeutic drugs). But as mentioned earlier,

senescence of stromal components of the tumor can have

deleterious effects. The most studied stromal cells in OSCCs are

cancer-associated fibroblasts (CAF).

CAF are a poorly characterized heterogenous cell population

with different subtypes, including activated myofibroblastic CAF

(myCAF) and senescent fibroblasts (99, 100). There is substantial

evidence that the accumulation of myCAF is associated with a

poor prognosis in OSCC (83, 101), as myCAF support OSCC

progression, tumor growth and invasion (99). Senescent oral

fibroblasts have also been reported to have pro-tumorigenic

effects in OSCC (10, 11, 100). They share an overlapping gene

expression profile with myCAF (100), suggesting that these CAF

phenotypes are closely related. Senescent fibroblasts are found in

the stroma of OSCC in different quantities (74, 100) and have

been reported to be in higher numbers than in normal oral

mucosa and dysplastic oral lesions (10). Interestingly, the

injection of small number of senescent cells into mice caused

persistent physical dysfunction with shorter health and life span,

indicating that the number of senescent cells is not important

(102). Furthermore, the injection of senescent cells spread the

senescence to host tissues (102), probably in a paracrine manner

through components of the SASP (40, 103).

The accumulation of senescent fibroblast in OSCC is an early

event unlikely to be due to replicative exhaustion, as some same

age patients with OSCC have shown no senescent fibroblasts

(10). Additionally, senescent fibroblasts also accumulate in

OPMD in younger patients by a telomere-independent

mechanism (93). Hassona et al. (2013) suggest that in OSCC,

fibroblast senescence is caused by oxidative DNA damage. This

would be induced by ROS produced by oral keratinocytes and

fibroblasts from genetically unstable OSCC (developed from

premalignancies with loss of TP53 and P16INK4A), but not

genetically stable OSCC (developed from premalignancies with

functional p53), in a TGF-β dependent manner (10). This is
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supported by the fact that keratinocytes from genetically unstable

OSCC produce higher amounts of ROS and are deficient in

antioxidant defenses, suggesting that p53 functionality is

important in the regulation of ROS production (10). Recently, it

has been also proposed that impairment of the autophagy

process might be also responsible for the development of the

senescent and myofibroblastic phenotypes in CAF (104).

Regardless the mechanism underlying the induction of

fibroblast senescence, the SASP from senescent oral fibroblast has

been shown to have pro-tumorigenic effects on malignant oral

keratinocytes (10, 11, 68, 100). SASP factors MMP-2 (11), ROS,

TGF-β (10), PGE2 and the miR-335/COX-2/PTEN axis (105)

have been shown to induce dis-cohesion, EMT, migration and

invasion of oral malignant keratinocytes (10, 11, 68, 100, 105). A

recent paper also showed that both, early senescence and NF-kB-

dependent SASP cytokines secreted by senescent OSCC cells

induced to senesce by radiotherapy, are critical for

radioresistance in OSCC in vivo (12).
6. Discussion

Cellular aging is a relatively new research field that has

developed during the last two decades and has gained increasing

interest due to its relationship with organism aging and age-

related disorders. Although initially cellular senescence was

considered only as a potent anti-tumor mechanism, nowadays is

also recognized as a potent tumor promoter. Consistent with this

idea, senescent cells have been recently considered as an

emerging hallmark of cancer with enabling characteristics (27)

despite their well-known anti-tumorigenic functions.

Senescent cells might not only influence cancer behavior but

also affect tolerance to cancer treatment, as the expression of a

senescence marker in circulating T-cells before chemotherapy

was associated with increased risk of chemotherapy-induced

fatigue in humans. In addition, in vivo models in mice showed

that eliminating TIS cells reduced short-and long-term effects of

chemotherapeutic drugs, including cardiac dysfunction, physical

activity, strength, bone marrow suppression and cancer

recurrence (23).

This interest has led to the development of new drugs or to the

finding of new uses for old drugs to specifically eliminate senescent

cells or to target their SASP (senolytics and senomorphics

respectively). This field, also known as senotherapeutics, has also

emerged as new complimentary treatment alternative for some

cancers.

Senolytic drugs consist usually of small molecule agents that

target specifically anti-apoptotic pathways that are overexpressed

in senescent cells as a pro-survival mechanism, but not in

proliferating nor quiescent cells (13). There are different drugs

targeting different components of the antiapoptotic pathways

including: Navitoclax and ABT-737, both targeting the BCL-2

pathway (106, 107), Dasatinib, a tyrosine kinase inhibitor (108),

AT-406, a regulator of anti-apoptotic proteins c-IAP2 and XIAP

(109). These drugs have eliminated senescent cells in in vitro and

in in vivo models improving clinical outcomes. For example,
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Navitoclax, has shown to eliminate ovarian and breast cancer TIS

cells after PARP inhibitor therapy (110) and to induce tumor

regression and improve therapeutic outcomes following

conventional chemotherapy in mouse models (111). It has also

shown to improve radiation-induced salivary gland hypofunction

in irradiated mice by eliminating salivary gland senescent stem

cells (112). Dasatinib, in combination with quercetin, reduces the

population of senescent cells in mice attenuating adipose tissue

inflammation, improving systemic metabolic function (108). The

same combination of drugs has also been tested in clinical trials

for the treatment of pulmonary fibrosis improving patient’s

physical function (9).

Senomorphics or SASP inhibitors are drugs aimed to decrease

the pro-tumorigenic inflammatory component of the SASP, with

the advantage of conserving pro-immunogenic functions of

senescent cells, such as immunosurveillance. The main

disadvantage of senomorphics over senolytics is that, as these

drugs do not eliminate senescent cells, they might require long-

term administration as their effect vanishes upon discontinuation

(21). NF-κB is probably the most important signaling pathway

mediating the inflammatory components of the SASP. Thus,

most studies have explored the use of drugs targeting this

transcription pathway or NF-κB-mediated cytokines, including

metformin (113, 114), aventhramice C (115), Anakinra (IL-1

inhibitor) (116), Canakinumab (anti-IL-1β antibody) (117) or

Simvastatin (IL-6 and IL-8 inhibitor) (118). Furthermore, the use

of agents targeting other pathways such as Rho-kinase (Y27632)

(41, 119), cGAS-STING (RU.521 (85), mTOR (Rapamycin)

(31, 33), among many others, have also been assessed.

Inflammation seems to be of importance in OSCC

development and progression (120). In solid tumors, the

presence of senescent cells is one of the most important sources

of inflammation. Therefore, targeting senescent cells to reduce

inflammation seems a promising approach to find new treatment

alternatives to improve treatment success. The increased

expression of NF-κB signaling pathway (121, 122) and NF-κB-

mediated cytokines (120), such as IL-1 in OPMD and OSCC, are

reported to have impact in clinical outcomes (120, 123). IL-1 is

considered a master regulator of the SASP and for the spread of

paracrine senescence (40), and there is evidence from in vivo

animal studies that IL-1 induces malignant transformation of

oral precursor lesions and OSCC aggressiveness (124). Therefore,

targeting senescent cells to reduce the overexpression of IL-1

with senolytics or senomorphics, in addition to surgical or
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chemotherapeutic treatment, could represent a novel treatment

alternative for OPMDS and OSCC (Figure 1B). Although there

are different clinical trials testing senolytics as single agents or in

combination with other chemotherapeutic drugs for the

treatment of different cancers, including lymphomas, melanoma,

leukemia, lung, ovarian and prostate cancers (source:

clinicaltrials.gov), more in vitro and in vivo animal studies are

needed to support the use of senotherapeutics for OSCC treatment.
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