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Background: While oral mirobial dysbiosis due to tobacco smoking has been
studied thoroughly, there is limited data on the effect of waterpipe smoking on
the oral microbiome. This study aims to compare the salivary microbiome
between waterpipe smokers and non-smokers.
Materials and methods: Unstimulated saliva samples were collected from 60
participants, 30 smokers and 30 non-smokers in Kuala Lumpur and Klang Valley,
Malaysia. DNA extraction was performed using the Qiagen DNA mini kit, and the
16S rRNA bacterial gene was amplified and sequenced using the Illumina MiSeq
platform. Sequencing reads were processed using DADA2, and the alpha and
beta diversity of the bacterial community was assessed. Significantly
differentiated taxa were identified using LEfSe analysis, while differentially
expressed pathways were identified using MaAsLin2.
Results: A significant compositional change (beta diversity) was detected between
the two groups (PERMANOVA P < 0.05). Specifically, the levels of phylum
Firmicutes and genus Streptococcus were elevated in smokers, whereas phylum
Proteobacteria and genus Haemophilus were depleted compared to non-
smokers. At the species level, Streptococcus oralis, Streptococcus salivarius, and
Streptococcus gingivalis were enriched in smokers. We observed significant
differences in the abundance of thirty-seven microbial metabolic pathways
between waterpipe smokers and non-smokers. The microbial pathways enriched
in smokers were those implicated in polymer degradation and amino acid
metabolism.
Conclusion: The taxonomic and metabolic profile of the salivary microbiome in
waterpipe smokers compared to healthy controls exhibited a paradigm shift,
thus, implying an alteration in the homeostatic balance of the oral cavity posing
unique challenges for oral health.

KEYWORDS

tobacco, waterpipe smoking, salivary microbiome, oral microbiota, 16S rRNA gene

1. Introduction

The human oral cavity harbors a diverse microbial community comprising over 700

species of bacteria or phylotypes that play a commensal role in protecting oral and

systemic health (1). These species have been identified by cultivation or advancing

culture-independent molecular approaches (2). Some of these bacteria attach to the

mouth’s soft and hard tissue surfaces, forming biofilms in a structurally organized matrix

and inducing inflammatory immune responses in the host with changes in their growth

rates or compositions (3). The salivary microbiota comprises bacteria shed from oral

surfaces, particularly the dorsal surface of the tongue, and changes in the salivary
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microbial community can be vital in diagnosing and monitoring

oral and systemic diseases (1, 4).

The core microbial composition within the oral cavity is

similar. Still, the type of species may differ depending on genetic

susceptibility, diet, antibiotic usage, hormonal factors, tobacco

and alcohol exposure, and recurrent pathogenic infections of the

host (5). Any disturbance to their equilibrium results in oral

dysbiosis, altering oral and systemic health through several

pathophysiological processes linked to disease. Dysbiosis has

been implicated in oral cavity diseases such as gingivitis,

periodontitis, and oral cancer (6, 7).

Amidst different types of tobacco, including chewing tobacco,

e-cigarettes, and waterpipe, the association between the oral

microbiome and cigarette smoking has gained increasing

attention due to the significant addictive constituents of cigarette

smoke, which modifies the host’s immune responses (8).

Smoking leads to the loss of beneficial oral species and

alterations in the pathogens by interacting with numerous host

cells and extracellular matrix components. It ultimately leads to

the risk of disease development (9). This alteration either

increases the density of the bacterial pathogens or decreases the

prevalence of other bacteria (10). Waterpipes, known as shisha,

hookah, argileh, or hubble bubble, depending on the region, is a

popular form of smoking and have gained enormous popularity

worldwide (11). Influenced by cultural traditions in the Middle

East and parts of Asia, it has historically been used primarily by

males. A typical waterpipe device contains the head, body, and

bowl. The head includes the coal where the tobacco, commonly

called Maassel, is heated to produce the smoke. The body

consists of a stem connecting the head to a water-filled bowl. A

hose lets the smoker draw out and inhale the smoke (11).

Flavored tobacco comprises shredded tobacco leaves, glycerol,

and other additives (10).

Current evidence suggests that the smoke from waterpipes

contains toxic constituents and is associated with adverse health

effects. The smoke has a similar toxicant profile as cigarettes but

of a different magnitude. According to the CDC, an hour of

waterpipe smoking is equivalent to smoke inhalation from 200

regular cigarettes or 90,000 ml of smoke (12). A recent study

found that species like Acinetobacter and Moraxella in the

subgingival fluid were only present in waterpipe users compared

to non-smokers. In addition, it was also reported that

C. Albicans, P. gingivalis, and P. intermedia were also higher in

smokers (13).

Massively parallel sequencing technologies have helped reveal

the complex nature of the oral microbial community.

Understanding the healthy oral microbiome enables an

exploration of the functional and metabolic alterations in disease

(14). The impact of waterpipe smoking on the salivary

microbiota is currently understudied. The main objective of this

study is to identify the microbial composition, i.e., bacterial

phylogeny and taxonomy in the saliva of waterpipe smokers

relative to non-smokers using the sequencing of the conserved

16S rRNA gene (14). Its presence in all bacteria permits the

identification of bacteria and differentiating between closely

related species. It is the most commonly used genetic marker and
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is considered the gold standard for microbial community

profiling (15).
2. Materials and methods

2.1. Study design and recruitment of
participants

This study was approved by the International Medical

University Joint Research Committee under project number

BMScI-2021(01). This study was performed according to the

Declaration of Helsinki guidelines in medical research involving

human subjects (16), and informed consent was obtained from

all the volunteers before sample collection. The study population

comprised 60 healthy participants, 30 water pipe smokers, and

30 non-smokers. The study subjects were age- and gender-

matched. The inclusion criteria were as follows: Males aged 18–

40 years, current waterpipe smokers, did not engage in other

forms of smoking, are not on any medications currently or in

the past 3 months and were willing to provide informed consent.

Subjects were excluded if they had any current active infections,

acute illnesses, or the presence of any self-reported gum diseases.

Study subjects were recruited from Kuala Lumpur and Klang

Valley, Malaysia.
2.2. Sample collection

Subjects were given a 50 ml Falcon tube to spit 1 ml of saliva

without rinsing or washing out their mouth prior. For waterpipe

smokers, saliva was collected while the subjects were smoking a

waterpipe. The subjects were asked to secure the caps tightly, and

the samples were transported on ice and immediately frozen at

-80°C. The samples were brought to the International Medical

University, Malaysia, for DNA extraction and stored at -80°C.
2.3. Sample processing and 16s rRNA gene
sequencing

Qiagen DNA mini kit (Qiagen, Gemrnay) was used to extract

DNA from the salivary samples. 500 μl of the saliva was mixed with

1 ml phosphate buffered saline (PBS) and centrifuge for 1,000 rpm

at 4,000 g. The supernatant was discarded, and the saliva was

reconstituted in 180 ul PBS. 20 μl of proteinase K was added into

the microcentrifuge tube. 200 μl of reconstituted saliva sample

was added along with 200 μl of Buffer AL. The tube was then

mixed by pulse-vortexing for 15 s and incubated at 56°C for 15–

20 min. After spinning down the tubes, 200 μl of ethanol was

added to the sample, mixed by pulse-vortexing, and spun down

for 15 s. The samples were then transferred and centrifuged at

6,000 × g (8,000 rpm) for 1 min 500 μl of buffer AW1 was added

and centrifuged at 6,000 × g (8,000 rpm) for 1 min. After

discarding the filtrate, 500 μl of buffer AW2 was added and

centrifuged at 20,000 × g (14,000 rpm) for 3 min. The filtrate was
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discarded and centrifuged for 1 min. 200 μl of buffer AE was added

and was incubated at room temperature (15–25°C) for 1 min and

then centrifuged at 6,000 × g (8,000 rpm) for 1 min. The samples

were stored at -20°C until further use.

DNA concentration and sample purity (A260/A280) were

tested using a Tecan microplate reader (Tecan, Switzerland).

Sample integrity was assessed using agarose gel electrophoresis.

The bacterial DNA was amplified using standard PCR primers

targeting the 16S rRNA gene (17). The primer sequence used is

as follows; Forward primer TCGTCGGCAGCGTCAGATGTGTAT

AAGAGACAGCCTACGGGNGGCWGCAG, Reverse primer—

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTAC

HVGG GTATCTAATCC. After quantification by real-time PCR,

equimolar amounts of qualified libraries were sequenced on the

Illumina Miseq system (Illumina, San Diego) using the PE300

reagent kit (MGI, Japan) using a 2 × bp PE read configuration.
2.4. Bioinformatics and statistical analysis

DADA2 was used to perform quality filtering, contig merging

and chimera removal (18). Briefly, the standard quality parameters

were used: maxN = 0, maxEE = c(2,2), truncQ = 2, rm.phix =

TRUE. The final dataset consisted of 2,908,518 sequences.

Metacyc pathway abundance was estimated using Phylogenetic

Investigation of Communities by Reconstruction of Unobserved

States (PICRUSt2) (19).

The data was then converted into an abundance table and

exported into the Phyloseq R program for further analysis. The

alpha diversity was inferred based on the Shannon Diversity

Index, Simpson Diversity Index, and Pielou’s Evenness Index.

The Shannon index is sensitive to species richness, whilst

Simpson and Pielou’s evenness indices are more sensitive to

species evenness (20). Mann Whitney U test was performed to

test if there was a significant difference between the smokers and

the non-smokers by comparing the medians of the two groups.

The Beta diversity was inferred using Aitchinson’s Distance-

based Principal Component Analysis (PCA) and Permutational

multivariate analysis of variance (PERMANOVA). Both alpha

and beta diversity were calculated using the Microbiome R

package (21). Separately, PERMANOVA was performed using the

Vegan R package (22).

Significantly differentiated taxa were identified using Linear

Discriminant Analysis Effect Size (LEfSe) analysis, while

differentially expressed pathways were identified using MaAsLin2

(23, 24).
3. Results

3.1. Study population and samples

A total of 80 samples were collected from both smokers and

non-smokers. However, 20 samples were removed due to low

DNA concentration (<20 ng/µl) and quality. The final samples

comprised 30 waterpipe smokers (mean age 31.1 ± 5.4) and 30
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controls (mean age 21.5 ± 1.7). All samples yielded an A260/

A280 ratio of 1.81–2.11. All samples were sequenced at a

sequencing depth of > 100,000 reads (ranging 10,1060 to 264,760

reads). An average of 48,475 reads was retained after quality

filtering and chimera removal.
3.2. Richness and diversity of the salivary
microbiome

No significant difference in Shannon diversity index, Simpson

diversity index, and ‘Pielou’s evenness index between smokers and

non-smokers was detected (P > 0.05; Figure 1), with and without

adjustment of age and gender.
3.3. Differences in the relative abundance of
oral bacteria in waterpipe smokers
compared to non-smokers

Non-smokers had a higher relative abundance of

Proteobacteria. In comparison, waterpipe smokers had increased

phyla Firmicutes and a minor increase in Bacteroidota. However,

Fusobacteria remained in similar abundance in both smokers and

non-smokers. The most abundant phyla in both groups are

shown in Supplementary Figure S1A.

Genera Streptococcus is predominant along with Prevotella and

Veillonella in the saliva samples of smokers. In addition,

Porphyromonas showed a minor increase, and Lautropia similarly

showed a minor depletion in smokers relative to non-smokers,

though not statistically significant. In the non-smoker group,

Haemophilus and Lautropia were abundant compared to

smokers. Fusobacterium and Alloprevotella remained of similar

abundance in both groups. Overall, it is evident that

Streptococcus was the most prevalent genus in smokers, with a

significant depletion of Haemophilus comparatively. The ten

most abundant genera shared by both groups are presented in

Supplementary Figure S1B.
3.4. Waterpipe smoking was associated with
changes in the oral microbial taxa

A significant difference in beta diversity was detected

(PERMANOVA P = 0.001), and the sample distribution is

illustrated in Figure 2. To further explore the significantly

different bacteria among the groups, a LEfSe analysis was

performed to differentiate between smokers and non-smokers. It

is observed that 16 differentially abundant taxa between smokers

and non-smokers reached significance with a log LDA score > 3.0

in the total population (Figure 3). At various taxa levels, P.

firmicutes (phyla), G. streptococcus (genus), F. streptococcaceae

(family), O. lactobacillus (order), C. bacilli (class) were

significantly enriched in waterpipe smokers. The most enriched

species in waterpipe smokers include S. oralis, S. salivarius, and

S. gingivalis. P. proteobacteria (phyla), C. gammaproteobacteria
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FIGURE 1

Shannon diversity index, simpson diversity index, and ‘Pielou’s evenness index between smokers and non-smokers. No significant difference in Shannon
diversity index, Simpson diversity index, and ‘Pielou’s evenness index between smokers and non-smokers was detected (P > 0.05).
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(class), G. Haemophilus (genus), F. pasteurellaceae (family),

O. enterobacterales (order) were significantly enriched in the

control group, specifically S. parvula and S. parainfluenzae

(species). The differences (beta diversity) among the smokers and

healthy controls microbial communities were statistically

significant (p = 0.01).
3.4. Waterpipe smoking was associated with
changes in oral microbial metabolism

Using the MetaCyc pathway abundances, we observed

significant differences in the abundances of thirty-seven different

microbial metabolic pathways between waterpipe smokers and

non-smokers. Among them, all were identified to be significantly

higher in the waterpipe smokers group except for three pathways

(Phoslipsyn pathway, fasyn long pathway, tetrapyrrole

biosynthesis I pathway). The eight major pathways which showed

the maximum differences between both groups are shown in

Figure 4. Detailed information for all the pathways are provided

in the Supplementary Material.
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4. Discussion

The oral cavity is a highly complex ecological system with a

dynamic relationship between the host and the oral microbiome

(5). The functions of the microbial communities are a major

determining factor of homeostasis that could potentially lead to

dysbiosis (1). Tobacco smoke exposure is known to induce

physiological and anatomical changes in the oral cavity,

consequently altering the composition of the bacterial biofilms

and the structure of the oral microbiome (1). However, there is

still a paucity of information regarding the oral health effects of

other forms of smoking. Waterpipe smoking has been around

since the 15th century and is a popularly used form of tobacco

smoking worldwide. However, little is known about the effects

on the oral ecosystem and microbiome. To the best of our

knowledge, this study provides some of the earliest experimental

evidence of waterpipe smoking on the salivary microbiome and,

thus, the rationale to further explore the potential mechanisms

that underlie this shift.

We detected a significant taxonomic difference between the

smokers and non-smokers and a lack of difference in microbial
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FIGURE 2

Sample distribution and beta-diversity. A significant difference in beta diversity was detected (PERMANOVA P= 0.001).
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richness (alpha diversity). Our observation is perhaps unsurprising,

as waterpipe smoking is known to be a definitive risk factor for oral

infections and diseases. A few cigarette smoking studies reported a

lack of difference in alpha diversity; this difference could be

attributed to the type of tobacco used, sample size, and

geographical heterogeneity (25–27). Our result showed that a

significantly higher abundance of Firmicutes and Streptococcus is

a feature of the waterpipe smoker, consistent with existing

literature on cigarette smoking (26–28). These results were also

consistent with a study performed with supragingival plaque

samples of waterpipe smokers, where Al-Marzooq et al. found

that phyla Firmicutes was the most abundant and abundance of

Proteobacteria and Actinobacteria were significantly higher in

waterpipe smokers. It was also found that Bacteroidota were

significantly more common in non-smokers (28). However, in

our study, though Firmicutes was the most abundant phylum,

Proteobacteria was depleted, and Bacteroidota showed a minor

increase in abundance in waterpipe smokers. In another study

conducted in the UAE, genera Porphyromonas, Veillonella, and

Prevotella were significantly less abundant in sub-gingival

samples of waterpipe smokers; in contrast, we found a minor

increase in the relative abundance of these species in our
Frontiers in Oral Health 05
waterpipe smoker group (29). Valles et al. claim that a relative

abundance of phyla Cyanobacteria and SR1 was depleted in

waterpipe smokers, whereas we found that Proteobacteria,

Haemophilus, and Lautropia were depleted in smokers (10). This

variation in results could potentially be due to the differences in

sample type between these studies (30). For instance, our sample

being salivary, may reflect the bacteria shed from the total oral

cavity. In contrast, supra and subgingival plaque sampling would

be a deeper representation of the gingival microbiome, which

could be significantly affected by the periodontal status of the

individual (31). Hence, these results highlight that it wouldn’t be

rational to assume the impacts of waterpipe smoking is similar

across all microenvironments, and it may vary according to the

individual niches (1, 32).

Few oral microbes falling into these differentially abundant

phyla are known to be a common cause of human respiratory

diseases and infections (13). Microbiota settling down in the oral

micro-ecosystem is the primary source of the lung microbiome

and has been linked with the development of respiratory

diseases. For instance, Firmicutes and Proteobacteria were found

in the respiratory microbiota of tuberculosis patients (33).

Lactobacillales belonging to phylum Firmicutes, abundant in
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FIGURE 3

Differentially abundant taxa between smokers and non-smokers by lEfSe analyisis. 16 differentially abundant taxa between smokers and non-smokers
reached significance with a log LDA score > 3.0 in the total population.

FIGURE 4

Differentially abundant metabolic pathways between smokers and non-smokers by MaAsLin2.
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smokers, are one of the known risk factors for pleuro-pulmonary

infections (34). In addition, Streptococci and anaerobes Prevotella

and Veillonella have been associated with pneumonia infections,
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while tracheal aspirate specimens in chronic obstructive

pulmonary disease patients show an abundance of P. gingivalis

(35). Relative to lung cancer specifically, a greater abundance of
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Bacilli class and Lactobacillales order in saliva was associated with

an increased risk (36).

Notably, most of the bacteria that showed increase in waterpipe

smokers were facultative anaerobes, with aerobes showing a

decline. This could be related to the deprivation of oral oxygen

due to waterpipe smoking. Waterpipe smoking may create a

depletion of an oxygen environment in the mouth and would

reflect on the oxygen availability of microbes in the oral cavity,

leading to alteration of the oral microbial ecology. It is

established that decreased local oxygen tension caused by

cigarette smoking promotes periodontal pathogens, leading to the

subsequent development of periodontitis (37). Further, S. oralis

enriched in our smokers’ group is known to be a plaque-forming

bacterium and can form a cohesive interaction with periodontal-

pathogenic bacteria P. gingivalis due to Glyceraldehyde-3-

Phosphate Dehydrogenase of S. oralis and thus can act as a

bridge for colonization (38). S. oralis has been known to

occasionally cause opportunistic infections such as bacteremia

and bacterial endocarditis by cytotoxicity and enhancing the

tissue-damaging effects of streptococcal H2O2. S. oralis and H2O2

damage the lysosomes by reducing the acidic environment,

which is linked with the death process of macrophages; hence, it

is implicated as an agent causing alteration in host immune

responses (39). S. salivarius, also predominant in our smokers

group, is known to cause nosocomial or iatrogenic central

nervous system infections. S. salivarius has been detected in

almost 60% of bacterial meningitis cases. Several reports describe

S. salivarius to complicate upper respiratory tract infections,

endocarditis, and neurosurgical procedures (40).

Another significant finding is the depletion of phylum

Proteobacteria in the waterpipe smoker group, which is a

consistent characteristic finding in periodontitis as well (41).

Further, levels of Proteobacteria in the oral microbiome have

been associated with insulin resistance and inflammation (42). A

lower abundance of Haemophilus, as seen in our smoker

population, has also been reported in smoker patients with

rheumatoid arthritis and also in patients with oral lichen planus

compared to healthy controls (43, 44). Though Haemophilus has

been implicated in chronic inflammatory disease like chronic

obstructive pulmonary disorder (COPD), it has a paradoxical

impact on the gut microbiome as increased levels of

Haemophilus enhances gut symbiosis and hence has a shown to

have a protective effect against CRC (45). This paradoxical effect

has been linked to NLRP3 inflammasome (45), and thus it is

plausible that lower levels of Haemophilus could have

unfavourable effects on oral microbiome. Furthermore, species

that are part of the normal healthy flora, such as Lautropia, were

also similarly found to be lower in cigarette smokers with

moderate or severe periodontitis than those without disease (29).

The oral cavity is the first contact with smoke and may play an

essential role in degrading toxic compounds. A key observation

from published literature is that there is enriched degradation of

polycyclic aromatic hydrocarbons and other constituents in the

oral microbiome of cigarette smokers (46). We also observed that

several microbial pathways related to the degradation of

compounds were enriched in our cohort of waterpipe smokers.
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Waterpipe smoking generates several polycyclic aromatic

hydrocarbons, carbon monoxide, and a high fraction of tiny

particles that may adversely affect human health upon

inhalation (47). Hence, an increase in these pathways is

relatable. Furthermore, we also found an increase in

polyamine synthesis pathways in our waterpipe smokers.

Polyamines and their metabolites are often regarded as cancer

biomarkers, and multiple malignancies have been linked to

polyamine imbalance (48). For instance, cell proliferation and

death in breast cancer are significantly influenced by

polyamine metabolism. Additionally, there is proof that

polyamines aid in the interactions of transcription factors with

their particular response elements, including nuclear factor-kB,

c MYC, and other receptors (48–50). Another vital pathway

significantly upregulated in waterpipe smokers is the

peptidoglycan biosynthesis pathway. Peptidoglycans are critical

structural components for bacteria that are indispensable for

virulence (51, 52). Our results only offer a snapshot of oral

microbial metabolome alteration in waterpipe users. Further

work is required to explore the detailed mechanism of this

dysbiosis and its mechanistic implication in oral health and

disease.

Our study has a few limitations. Certain confounding factors

that may affect oral microbiome, including diet, alcohol

consumption, oral hygiene, and systemic diseases, could not be

controlled in this study due to technical hitches of field study

design. Further, the oral health status of participants was self-

reported and hence may not reflect the actual periodontal

health status. However, as study participants were younger, it

was generally not expected to significantly impact the results.

Further, our samples were not subgingival or supragingival

plaque, which could have a direct impact on periodontal

disease; our samples being saliva, is composed of shedded

microbiome from all oral surfaces. Due to the majority of

younger participants, our findings are not generalizable to the

older population since the microbiome varies with age. In

addition, 16s rRNA sequencing provides phylogenetic

information to identify the isolate down to the genus level and,

in some cases, up to the species level. However, 16s rRNA

sequencing remains the most accepted and popular method for

studying the microbiome (51). Alternatively, further studies

using metagenomic sequencing techniques would capture higher

levels of diversity as its high sensitivity allows the delivery of

knowledge on the taxonomic composition and the functional

genes in a sample. Mainly it would detect more phyla and low

abundance genera compared to 16 s rRNA sequencing (51).

Despite the limitations mentioned above, our study still

describes the impact of waterpipe on the oral microbiome to a

great extent. Due to our research’s cross-sectional nature, it is

impossible to directly assess the temporal link between

smoking-related exposures and oral microbial outcomes.

However, seems doubtful that modification of the oral

microbiome precedes smoking, as smoking is a behaviour and

the oral microbiome is an observed state. Nevertheless, a

longitudinal study would allow us to observe waterpipe-related

tobacco exposure changes.
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5. Conclusions

This study provides preliminary evidence on the effect of

waterpipe smoking on the composition and metabolic alterations

of salivary microbiota. Understanding the possible effects of

waterpipe on the oral microbiota and, ultimately human health is

crucial as more teenagers and young people start using waterpipe

and chronically expose their oral cavity and airways to waterpipe

smoke. Despite having a small sample size, this study identified

that waterpipe use results in dysbiosis of the oral commensal

microbial communities with notable differences in composition

and metabolic functions. Further studies with larger samples

need to be explored to validate these findings.
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