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Crosstalk between cancer stem
cells and the tumor
microenvironment drives
progression of premalignant
oral epithelium
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Cancer stem cells (CSC) are a subpopulation of cancer cells that exhibit
properties of self-renewal and differentiation and have been implicated in
metastasis and treatment failures. There is mounting evidence that carcinogen-
initiated mucosal epithelial stem cells acquire the CSC phenotype following
exposure to environmental or infectious mutagens and are responsible for
promoting the malignant transformation of premalignant (dysplastic)
epithelium. CSC further contribute to the progression of dysplasia by activating
signaling pathways through crosstalk with various cell populations in the tumor
microenvironment. Two cell types, tumor-associated macrophages (TAM) and
vascular endothelial cells (EC) nurture CSC development, support CSC
stemness, and contribute to tumor progression. Despite mounting evidence
implicating CSC in the initiation and progression of dysplastic oral epithelium
to squamous cell carcinoma (SCC), the molecular mechanisms underlying
these synergistic biological processes remain unclear. This review will examine
the mechanisms that underlie the transformation of normal epithelial stem
cells into CSC and the mechanistic link between CSC, TAM, and EC in the
growth and the malignant conversation of dysplastic oral epithelium.
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Introduction

Oral SCC is one of the most common malignancies worldwide (1). While there has

been a modest decrease in the incidence of this disease, particularly in high-income

countries, it continues to be a burden in developing countries. Additionally, in the

last decade, there has been an increase in the percentage of young patients developing

oropharyngeal SCC due to human papillomavirus (HPV) infection (2–5). The main

risk factors for oral cancer are smoking, alcohol consumption, and DNA viruses (e.g.,

HPV). Unfortunately, efforts to limit the incidence of oral cancer have been met with

limited success. A more effective strategy would be identifying the incipient precursor

lesions, oral epithelial dysplasia (OED), at risk for malignant transformation (6–8).
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While it is well known that dysplasia often precedes the

development of oral SCC, the mechanism underlying the

progression of epithelial dysplasias to SCC remains uncertain

(6–8) CSC and the tumor microenvironment play a critical role in

tumor progression. This review will highlight three cell

populations that are key to tumor progression: cancer stem cells,

vascular endothelium, and macrophages. The mechanism

underlying the conversion of epithelial stem cells to cancer stem

cells and their role in initiating crosstalk between these cell

populations in driving OED to SCC will be the focus of this review.
What defines a premalignant lesion/
condition

The term “premalignant” or “precancerous” is best defined

as a lesion or condition that is at increased risk of developing

into an SCC (9, 10). There is considerable uncertainty when

assessing the malignant potential of premalignant lesions (6).

Not all clinical lesions with microscopic alterations associated

with premalignancy will progress to SCC (11–13). Some of

these lesions will rapidly progress to SCC or have a prolonged

latency before progressing to SCC. Still, others may

completely regress (6, 8, 11, 13). In addition, premalignant

lesions may evolve from benign lesions that exhibit none of

the recognized stages of malignant progression (8, 14).

Current clinical and histopathologic criteria used to assess the

risk of progression of premalignant lesions to SCC are often

unable to reliably predict malignant potential (6, 11). In

addition, the histologic criteria for evaluating premalignant

lesions often vary from examiner to examiner (15–19).
Disorders associated with increased
risk of progression to squamous cell
carcinoma

Localized lesions and systemic conditions most commonly

associated with an increased risk for progressing to SCC

include leukoplakia (white patch), erythroplakia (red patch),

proliferative verrucous leukoplakia, lichen planus, oral

submucous fibrosis, chronic hyperplastic candidiasis, actinic

cheilitis, reverse smoking, betel nut chewing, discoid lupus

erythematosus, and the inherited disorders dyskeratosis

congenita and Fanconi anemia (6, 19). From a clinical

perspective, lesions of most concern often present as

leukoplakia with or without a red component. Although these

disorders have an increased statistical risk of malignant

progression, it is difficult to predict the clinical outcome for

any individual lesion. In addition, despite the relative ease of

monitoring oral precancerous lesions, there are still no reliable

biomarkers that distinguish lesions that will progress to cancer

from those that will not.
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Leukoplakia: the precancerous
sentinel lesion

Oral leukoplakia is the most common precancerous lesion.

It presents as a white patch on the surface of the oral mucosa

(8, 20–22). There is some variability in the risk of progression

depending on its location in the oral cavity, regional

geographic differences, and risk factors (tobacco smoking vs.

tobacco chewing). Additionally, what is considered precancer

(visual or histopathologic) varies from examiner to examiner

(16). The frequency of malignant transformation of oral

precancerous lesions varies with the quality and type of

outcome assessed, the type of clinical studies conducted

(prospective vs. retrospective), and length of follow-up (12).

Also, there is considerable variation in the rate and frequency

of progression of oral leukoplakia to invasive oral SCC (8, 16,

20–23). Our current understanding of the mechanism

underlying malignant progression of OED remains limited.

Several studies have investigated potential predictive markers

of progression. The most common of these has been p53,

proliferation markers Ki67 and PCNA, and a limited number

of other molecular biomarkers, including cell cycle proteins,

loss of heterozygosity (LOH), a range of cell surface and

stromal proteins, and aberrant signaling pathways (24). To

date, no single or combination of biomarkers has fulfilled the

promise of predicting the onset of SCC at its earliest stages.

Despite these limitations, important new information about

the role of CSC and the tumor microenvironment in cancer

initiation and progression has shed some light on the

mechanism underlying the progression of precancerous lesions.
Precancerous oral epithelium
evolves from carcinogen-initiated
cancer stem cells

It is generally agreed that adult stem cells are the targets of

carcinogenic agents (25, 26). There are four stages to the

carcinogenic process. These include initiation, promotion,

malignant transformation, and progression (27, 28). For cancer to

develop, stem cells must first be exposed to an “initiating agent.”

Initiation occurs following exposure to a chemical or physical

carcinogen or an infectious agent. Initiation induces a reversable

epigenetic modification of DNA or an irreversible molecular

lesion that makes the initiated cell susceptible to the growth-

promoting effect of a promoting agent (25, 26, 29, 30). Clinical

and laboratory studies suggest that carcinogenesis is a process

that requires multiple exposure to promoting agents (25, 31–33).

Normal stem cells become immortalized, presumably due to a

mutational event involving either a protooncogene or tumor

suppressor gene (34–37). Once a cell is initiated, the affected cell

may persist for many months or years before the second

“promoting” event takes effect (38, 39).
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Studies in humans and animals have provided compelling

evidence that the initiated cells are de facto preneoplastic.

Lesions described as leukoplakia that microscopically exhibit

severe dysplasia or carcinoma in situ have taken an

irreversible step toward malignant transformation (38–40).

Next the initiated cell undergoes clonal expansion, during

which additional changes allow it to express the malignant

phenotype (25). This process, operationally, is irreversible.

Several animal models have supported this concept (27, 28,

32, 39). This process is followed by transforming initiated

stem cells into cancer stem cells, setting the stage for other

mutational events that lead to cellular transformation and

tumor progression. If malignant transformation is to occur

the initiation and promotion events must occur in a specific

sequence. This four-stage model of carcinogenesis has

endured for over fifty years (27, 39).

Once a stem cell is initiated, it is susceptible to the effects of

promoting agents that relieve cells from growth constraints and

expand their numbers, escaping cell death leading to an

accumulation of abnormal cells (25, 41). Skin papillomas,

enzyme-altered liver foci, breast nodules, colon polyps, and

dysplastic oral leukoplakia harbor initiated cells that have

undergone clonal expansion following exposure to a

promoting agent (28, 38). Promoting agents are, for the most

part, not mutagenic. Therefore, they do not induce the

formation of malignant tumors. Instead, they increase the

frequency of genetic and epigenetic mutations that position

the abnormal cells to undergo malignant conversion.

Promoting agents include hormones such as estrogen, the

drug diethylstilbestrol, and various chemicals such as per- and

polyfluoroalkyl substances (PFAS). Initiation and promotion

must occur in sequence. When the initiation and promotion

processes are reversed, i.e., when cell are first exposed to a

promoting agent followed by an initiation event, cells will not

undergo malignant transformation (38, 40). Animal models of

skin and liver cancer have shown that initiated cells must be

exposed to promoting agents repeatedly before malignant

transformation results (25, 42).

Malignant conversion is when precancerous cells express the

malignant phenotype. This process requires the accumulation of

mutations. Malignant transformation occurs after repeated

exposure to a promoter. The frequency of exposure needed to

cause malignant conversion varies from tissue to tissue, but the

malignant phenotype is eventually expressed. Tumor promotion

contributes to the process of carcinogenesis by expanding a

population of initiated cells at increased risk for malignant

conversion. The relatively low probability of malignant

transformation can be increased substantially by repeated

exposure of precancerous cells to DNA-damaging agents. This

process is mediated through activation protooncogenes and

inactivation of tumor suppressor genes (34–36, 43, 44).

Once dysplastic cells have undergone malignant conversion,

they enter the progression phase where they acquire more
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aggressive characteristics over time. A prominent feature of

the malignant phenotype is increased genomic instability and

unregulated growth. Further genetic and epigenetic changes

occur during this process, including activating additional

protooncogenes and the functional loss of tumor suppressor

genes. These genetic alterations confer a growth advantage

upon cells and increase their capacity for invasion and

metastasis. The determining factor is the accumulation of

these mutations, not the order or the stage of tumor

development (25). Figure 1 depicts the relationship between

the process of carcinogenesis with the progression of

premalignant leukoplakia to SCC.
Cancer stem cells sustain tumor
growth and progression

Cancer stem cells (CSC) comprise a small subpopulation of

cancer cells with the unique capacity to sustain tumor growth

and drive tumor progression. CSC are primarily responsible for

the failure of conventional and precision therapies (45–48). The

properties of stemness, self-renewal, multipotency, and

differentiating into heterogeneous cancer cell types define the

CSC that make up the tumor mass (49–51). CSC are

phenotypically and functionally heterogeneous. The phenotypic

diversity gives rise to increased numbers of tumor-initiating

cells (52–54). CSC have been identified in most human

cancers, including breast, brain, and oral and head and neck

SCC (55–58). CSC often reside at the advancing front of

invasive SCC, where they are surrounded by their non-stem

cell progeny and a variety of host cells that confer a survival

advantage on CSC (47, 59, 60). The majority of CSC reside

within a 100-mm radius of the perivascular niche (61). The

perivascular niche serves as a biological nursery that helps CSC

maintain their stem cell phenotype (59, 61). The perivascular

niche provides the soil for CSC self-renewal and maintenance,

stimulating essential signaling pathways in CSC and leading to

the secretion of factors that promote angiogenesis and long-

term growth of CSC (47, 62). The essential nature of the

perivascular niche was demonstrated by Krishnamurthy et al.

who showed that selective ablation of microvessels that

comprise the perivascular niche resulted in the reduction in the

population of CSC (61).

Recent studies have revealed the indispensable role of the

IL-6 signaling in facilitating the acquisition of cancer stem cell

functions in coordination with NF-kB-dependent

inflammatory signals derived from tumor cells and host cells

(63–65). IL-6 is a pro-inflammatory cytokine that activates

JAK/STAT3 pathway (66–68). IL-6 levels have been shown to

correlate with tumor progression in a number of cancer types

including oral and head and neck cancer (69–71). In addition,

IL-6 is a predictive marker for recurrence rate and overall

survival of head and neck SCC patients (72, 73). Studies have
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https://doi.org/10.3389/froh.2022.1095842
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/


FIGURE 1

Key genetic and molecular events during the progression of premalignant oral epithelium to oral squamous cell carcinoma are depicted in this
multistep model of histologic progression. The histological sequence of events seen in the progression of premalignant epithelium is initiated in
the basal cell layer following exposure of stem cells to carcinogens. This results in irreversible damage and or epigenetic modification of DNA
resulting in the emergence of a population of cancer stem cells. The subsequent exposure to promoting agents contribute to the clonal
expansion of initiated cancer stem cells. With the continued exposure to promoting agents, a subset of initiated stem cells undergoes malignant
conversion (i.e., carcinoma in situ). Over time cancer stem cells and bulk tumor cells acquire additional mutations many which involve loss or
inactivation of tumor suppressor genes (TP53, PTEN, LOH) and overexpression of molecular mediators (Il-6, IL-8, VEGFR, PDGF). The
bidirectional exchange of information between cancer and host cells contribute to acquisition of more aggressive phenotypes by the invading
cancer cells (100X magnification, inset, white boarder, 400X).
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shown that tumor cells acquire metastatic potential through IL-

6/STAT3 pathway(74). IL-6 is secreted by many different cells,

including T and B cells, monocytes and macrophages,

endothelial cells, fibroblasts, and CSC (47, 61). Endothelial

cells secrete high levels of IL-6 and expression of IL-6R or its

co-receptor gp130 at the invasive tumor front is strongly

correlated with poor patient survival (47, 61). Furthermore,

endothelial cell-secreted IL-6 induces epithelial mesenchymal

transition and enhances migration in head and neck CSC

(61). Collectively, these results demonstrate that endothelial

cell-secreted IL-6 induces a migratory phenotype in head and

neck CSC. It has been suggested that therapeutic blockage of

the IL-6 pathway might prevent and/or delay progression of

oral and head and neck SCC (47).

Several surface markers, such as CD47, CD44, CD133, and

Musashi-1, a stem cell marker fond in several tissues including

oral squamous epithelium, are expressed by head and neck and

oral CSC along with cytoplasmic enzymes such as aldehyde

dehydrogenase (ALDH) (45, 47, 61, 75, 76). CSC, together

with host cells are responsible for driving tumor progression.

CSC are also responsible for local recurrence, metastatic

spread, and therapeutic failures (77, 78). Studies have
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demonstrated that initiated CSC are present in dysplastic oral

epithelium (79, 80). Progression of oral cavity cancer appears

to be associated with the increased presence of CSC (79, 80).

CD44 is a well- studied markers of CSC in oral cancer (81,

82). It has been shown that the presence of CD44 positive

cells in patients is strongly correlated with the progression of

premalignant lesions to a more aggressive stage of

development (severe dysplasia and carcinoma in situ). This is

further evidence in support of the idea that CSC play a role

in the progression of dysplasia to invasive SCC (80).
Cancer stem cells, vascular
endothelium, and tumor-associated
macrophages: an ill-fated
relationship that amplifies tumor
progression

CSC exist within a complex microenvironment.

Bidirectional communication between CSC and host cells

plays an essential role in augmenting the tumor-promoting

functions of CSC. Recent studies suggest that bidirectional
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communication between vascular endothelial cells,

macrophages, and CSC is central in orchestrating tumor

progression (83, 84).

Vascular endothelial cells and macrophages extend the tumor

promoting effect of CSC in several ways (83–85). In addition to

their role in establishing a stem cell niche, endothelial cells

provide essential nutrients to a rapidly growing population of

tumor cells through their ability to amplify the blood supply to

tumors on demand(86–89). Neovascular endothelial cells and

CSC have a coregulatory function(85, 90). Several differentially

expressed genes in endothelial cells that are usually quiescent

are upregulated during angiogenesis (86, 91). These include,

among others, growth factors and growth factor receptors,

matrix metalloproteinases, inhibitors of angiogenesis, and

NF-kB-regulated signaling pathways (85). In addition,

endothelial cells produced cytokines, including HGF, PDGF,

PIGF, and IL-6, that stimulate the self-renewal and enhances

the survival of CSC (92, 93).

Besides their role in self-renewal CSC from a variety of

tumors have been directly implicated in activating the

angiogenic switch (85, 86, 91). For example, CSC from gliomas

and ovarian cancer produce elevated levels of proangiogenic

mediators (85, 90). Tissue samples from patients with

glioblastoma multiforme as well as CSC isolated from these

tumors revealed high levels of the angiogenic mediators VEGF,

VEGFR1 and VEGFR2 and the hypoxia-inducing agents

HIF1α, HIF2α. Many of these proangiogenic mediators ae also

produced by cells within the tumor microenvironment that

communicate with CSC to promote angiogenesis (93).

It is well established that tumor angiogenesis plays a central

role in tumor progression. In many cancers, tumor-associated

endothelial cells have a higher proliferative rate as compared to

the established microvasculature where endothelial cells are

normally quiescent (94). It is well documented that the

increased microvascular density (MVD) that accompanies

tumor development has shown prognostic value in a variety of

cancers and is an established indicator of tumor progression

(80, 95, 96). A study comparing low risk (mild dysplasia) to

high risk (moderate and severe) mucosal lesions showed a

statistically significant correlation with MVD expression. Also

increasing numbers of CD44+ CSC and CD31+ endothelial cells

was positively correlated with increased MVD and high-risk

dysplasias progressing to SCC (80, 97). These results further

support the notion that CSC and tumor-associated endothelial

cells have biologically synergistic roles in tumor progression.

Furthermore, epithelial dysplasias that undergo malignant

transformation are positively associated with CSC enrichment.

This observation further confirms the role of vascular niche,

endothelial cells, and CSC in tumor progression (80).

Tumor-associated macrophages (TAM) are a heterogeneous

population of cells. In addition to phagocytic and antigen-

presenting functions, they play an essential role in

inflammation, resolving infections, and tissue repair. In
Frontiers in Oral Health 05
contrast, macrophages are also responsible for tissue damage,

chronic inflammatory diseases, autoimmune disorders, and

tumor growth and progression (98, 99). This array of

divergent functions is due in part to their ability to undergo

polarization into two phenotypically distinct subpopulations

designated as M1 and M2 macrophages (98–100). M1

macrophages produce an array of proinflammatory cytokines

and reactive oxygen molecules that promote Th1-mediated

tumoricidal responses. The M1 polarization in macrophages is

mainly regulated by distinct transcriptional networks

consisting the Notch, NF-κB, TGF-β, Wnt/β-catenin, and

MAPK (101–105). On the other hand, M2 macrophages are

considered anti-inflammatory, are involved in tissue

remodeling and immune tolerance, and have protumor

functions that facilitate tumor progression. Transcriptional

control in M2 is mediated through STAT1 and STAT2

activation in response to type-1 α and β interferons (106).

Additionally, STAT isoforms, including STAT3 and STAT6,

modulate M2 polarization (104, 107–114).

The process of tumor progression is frequently associated

with a phenotypic switch from M1 to M2 in tumor-associated

macrophages (115). The polarization of macrophages is a

labile process where the proportion of M1 and M2 TAM with

tumors will vary depending on the functional status of tumor

microenvironments (116, 117). Through distinct sets of

autocrine and paracrine signaling molecules, transcription

factors, and epigenetic modifiers, tumor cells can further

differentiate TAM into subsets of tumor-promoting

macrophages capable of altering the genetic and phenotypic

profiles of tumor cells (118, 119).

Macrophages and endothelial cells influence the CSC

functions through a series of reciprocal interactions between

CSC, endothelial cells, and TAM (101). Neovascular

endothelial cells and M1/M2 TAM produce mediators that

enable CSC to maintain their stem cell phenotype while

maintaining TAM proangiogenic and protumor functions

(120). Cytokines produced by endothelial cells and TAM

stimulate the self-renewal and survival of adjacent CSC (121,

122). The proximity of vascular niche endothelial cells to CSC

provides the nurturing environment necessary to maintain the

CSC phenotype and enable CSC self-renewal and long-term

survival. Together, the complementary networks created by

cancer stem cells, endothelial cells, and TAM contribute to

tumor proliferation, growth, invasion, metastatic activity, and

treatment failures. Figure 2 shows the reciprocal relationships

between CSC, endothelial cells, and TAM and the mediators

responsible for the protumor effects that define this relationship.
Discussion

The tumor microenvironment is defined by the distribution

of various stromal cells and their sequential and mutually
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FIGURE 2

Reciprocal exchange of cytokine mediators between cancer stem cells (CSC), endothelial cells (EC), and macrophages (M1 and M2). CSC located in
the basal layer of dysplastic epithelium produce, among others, the angiogenic mediators VEGF and IL-8. EC in turn produce IL-6 which plays an
important role in maintaining the CSC stemness. EC also play a role in transitioning proinflammatory M1 macrophages to protumor M2
macrophages via production of IL-6, colony stimulating factor 1 (CSF-1), TGF-β1, macrophage inhibitory cytokine 1 (MIC-1). Lastly, M2
macrophages promote angiogenesis via production of VEGF and IL-8 and help maintain CSC stemness through IL-8 production.
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beneficial cellular interactions. Recent studies of CSC and the

tumor microenvironment have revealed novel insights into the

complex mechanisms that drive tumor progression and

underlie treatment failures. For example, the bidirectional flow

of growth factors and cytokines between CSC and host cells

(EC, and TAM) promotes TAM protumor functions, sustains

angiogenesis, maintains the CSC phenotype, thereby

facilitating tumor growth and progression (123). CSC, like

their normal stem cell counterparts, are phenotypically and

functionally diverse. Studies of various human tumors have

shown that phenotypically diverse subsets of CSC are present

within tumors. However, their relationship with one another

and their role in tumor development and progressions remain

unclear. Changes in the tumor microenvironment, such as the

degree of hypoxia, the composition of the inflammatory

infiltrate, and their cytokine mediators, undoubtedly play a

crucial role in determining the types of CSC cells that

populate a tumor.

It is well established that cancer evolves from a series of

random mutational events that lead to a complex series of
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aberrant cellular, genetic, and molecular processes. The

ability of cancer cells to adapt to changes in their

environment provides them with a selective growth and

survival advantage. By co-opting the regenerative properties

of the host, cancer cells can utilize the bidirectional flow of

information between cancer cells and host cells to their

advantage. It is this unique ability of cancer cells to thrive

in an otherwise hostile host environment that characterizes

the dynamic cancer ecosystem (124–127). Continued

exploration of the mechanisms that underlie the physiologic

reprogramming of CSC and the signals involved in

orchestrating CSC diversity will be necessary to design

therapeutic strategies that target CSC and its progeny at the

incipient stages of tumor development.
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