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Tissue, cellular, and molecular
level determinants for eye lens
stiffness and elasticity
Catherine Cheng*

School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
The eye lens is a transparent, ellipsoid tissue in the anterior chamber that is

required for the fine focusing of light onto the retina to transmit a clear image.

The focusing function of the lens is tied to tissue transparency, refractive index,

and biomechanical properties. The stiffness and elasticity or resilience of the

human lens allows for shape changes during accommodation to focus light from

objects near and far. It has long been hypothesized that changes in lens

biomechanical properties with age lead to the loss of accommodative ability

and the need for reading glasses with age. However, the cellular and molecular

mechanisms that influence lens biomechanical properties and/or change with

age remain unclear. Studies of lens stiffness and resilience in mouse models with

genetic defects or at advanced age inform us of the cytoskeletal, structural, and

morphometric parameters that are important for biomechanical stability. In this

review, we will explore whether: 1) tissue level changes, including the capsule,

lens volume, and nucleus volume, 2) cellular level alterations, including cell

packing, suture organization, and complex membrane interdigitations, and 3)

molecular scale modifications, including the F-actin and intermediate filament

networks, protein modifications, lipids in the cell membrane, and hydrostatic

pressure, influence overall lens biomechanical properties.
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Introduction

The function of the eye lens to fine-focus light onto the retina depends on tissue

transparency, high refractive index, and biomechanical integrity and resilience. In humans,

the lens changes shape during a process called accommodation to focus light coming from

different distances to transmit a clear image. Accommodation depends on the

biomechanical properties of the lens, ciliary muscles, and zonular fibers. Previous work

has studied several factors that may be involved in the age-related loss of accommodative

amplitude, including ciliary muscle weakening, zonular fiber changes in elasticity, and

increased lens stiffness. Studies have shown no age-related loss of zonular fiber elasticity (1,

2), and while there are age-related changes in the ciliary muscles and its connection to the
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peripheral tissues of the eye (1, 3, 4), the major contributing factor

for presbyopia appears to be lens biomechanical properties (5). Age-

related changes in lens stiffness and elasticity have been linked to

the loss of accommodative amplitude leading to presbyopia and the

need for reading glasses (6–17). There are many theories regarding

how lens stiffness increases with age, but the cellular and molecular

mechanisms that drive these biomechanical changes are just

beginning to be understood.

The lens is surrounded by a thin collagenous basement

membrane, known as the capsule, and is composed of two cell

types, epithelial and fiber cells (Figure 1A). A monolayer of lens

epithelial cells covers the anterior hemisphere of the tissue, and most

of the lens consists of a large mass of fiber cells (18). Anterior

quiescent epithelial cells are cuboidal in shape and cobblestone in

cross section. These cells do not normally proliferate and are thought

to helpmaintain the adjacent lens fiber cells. Epithelial cells at the lens

equator in the germinative zone proliferate, migrate, and differentiate

into fiber cells. The lifelong growth of the lens depends on the

continuous and concentric addition of new fiber cell shells (19, 20).

The oldest cells of the lens are in the inner portions of the tissue, and

no cells are shed from the lens due to the lens capsule. Newly formed

fiber cells elongate toward the anterior pole with their apical tips

crawling along the apical surface of anterior epithelial cells while their

basal tips migrate toward the posterior pole along the posterior lens

capsule. When elongating fiber cell tips reach the anterior or posterior

pole, the tips detach from the anterior epithelial cells or posterior

capsule and contact fiber cell tips that extend from opposing sides of

the tissue to form the suture (21–23). The suture solves the geometric

problem that the fiber cells tips can never narrow enough to fully

reach the point of the anterior and posterior poles (20). Fiber cells are

long and skinny cells that are hexagonal in cross section with complex

interdigitations forming a 3-dimensional zipper along the cell length

(18, 24–27). The patterning of the interdigitations changes during

fiber cell maturation and are hypothesized to affect lens

biomechanical properties (28, 29). Fiber cells are supported by F-

actin and specialized beaded intermediate filament networks,

composed of CP49 and filensin (30–32). As fiber cells continue to

mature, the cells undergo a process to remove all cellular organelles

(18, 33) and are compacted toward the center of the tissue, also

known as the lens nucleus, into a region of increased stiffness (6, 14,

18, 24, 34–36).

Many methods have been used to determine stiffness and

elasticity in human lenses (6, 10, 12–15, 37–40) and animal lenses

(34, 41–55). Although animal lenses do not accommodate like

human lenses, animal lenses increase in stiffness with age in a

similar manner (34, 35, 41, 43–45, 52–54). In addition, mouse

models offer the ability to study age-related changes in a relatively

shortened period of time with the average lifespan of laboratory

mice being 26-29 months (56, 57). Genetic models of knockout,

knock-in, and transgenic mice allow the dissection of pathways

required for lens homeostasis and biomechanics. It should be noted

that murine lenses are nearly spherical in shape compared to

human lenses that are ellipsoid in shape, and rodent lenses have

much stiffer lens nuclei compared to primate lenses. Structurally,

human and mouse lens fibers share similar morphologies,

interdigitations, and patterning, but human lenses have more
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complex sutures (21, 58). While studies of mouse models can

offer insights into lens tissue mechanical properties, murine lenses

do not accommodate like human lenses.

In this review, we will discuss the various factors that have been

hypothesized to affect lens biomechanics and highlight data from

human and animal studies that reveal tissue, cellular, and molecular

scale changes that influence lens stiffness and resilience or

elasticity (Figure 1B).
Tissue organization and integrity

Lens capsule

The capsule surrounding the lens is mainly composed of

collagen IV, laminin, and perlecan (59–71), and this basement

membrane prevents the shedding of lens cells during development

and aging (18). The capsule shapes the lens during accommodation

(72). With age, the human lens capsule increases in thickness,

stiffens, becoming more brittle (12, 73–77). Additionally,

measurements of biomechanical properties of decapsulated

human and animal lenses show that removal of the lens capsule

causes changes in lens shape (46), a decrease in stiffness (40, 50, 73),

and altered viscoelastic properties (46). Based on lens capsule and

whole lens stretching studies, in samples from older humans and

primates, the stiffness of the lens capsule alone does not determine

overall tissue stiffness and, most likely, does not contribute to

presbyopia (78). In mouse lenses, the capsule increases in

thickness up to 4 months of age, and the continued age-related

increase in lens stiffness is not linked to capsule thickness (35).

Measurements of human lens stiffness with a spinning method

showed larger post-spinning equatorial diameters in decapsulated

lenses than intact lenses (40), suggesting that the lens capsule plays a

role in resilience of the lens to recover its shape after deformation.

From these data, while the lens capsule is important for overall

tissue biomechanics and shape, this basement membrane is unlikely

to be the major factor in the age-related stiffening of the lens.
Lens volume, nucleus volume, and
nucleus stiffness

It has been theorized that increased lens volume, nucleus

volume, or nucleus stiffness with age lead to an overall increase in

human lens stiffness with age, leading to presbyopia (6, 47, 79–81).

In isolated fiber cells from the cortex or nucleus of sheep lenses,

atomic force microscopy (AFM) showed that nuclear fibers were

stiffer than cortical fibers (55). Our data in aging mice showed that

the lens volume increases with age until the volume plateaus at 18

months of age (35). Lens stiffness in aged mice continues to increase

up to 30 months of age, and thus, lens volume increases are unlikely

to affect lens stiffness in old mice (35). In aged mice, the volume of

the lens nucleus increases with age, and there is a large jump in lens

nucleus volume between 24 months and 30 months of age without a

similarly large jump in lens stiffness at 30 months of age (35).

Genetic knockout or knockdown mouse models can lead to
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FIGURE 1

Diagrams of the structure of the lens and factors that influence lens biomechanical properties. (A) The cartoon of the lens shows a longitudinal
plane. The lens is surrounded by a basement membrane called the capsule (tan). The lens is suspended in the anterior chamber of the eye by
zonular fibers (gray lines) extending from the ciliary body that are anchored into the lens capsule. Light rays enter the lens from the anterior pole.
Lens epithelial cells form a monolayer that covers the anterior hemisphere of the lens. The anterior epithelial cells (light blue) are quiescent.
Equatorial epithelial cells (orange) proliferate, and one of the daughter cells (green) will start to differentiate into lens fibers cells. The bulk of the lens
is made up of fiber cells (white and pink). These long and skinny cells are hexagonal in cross section (lower right cartoon). Newly formed fiber cells
will elongate toward the anterior and posterior poles, and the tips of these fiber cells will form the suture (blue lines). A photo of the lens suture
stained for F-actin to mark the cell boundaries is shown on the upper right. During fiber cell maturation, there is a process that removes all cellular
organelles to prevent light scattering. Fiber cells are highly compacted at the center of the lens, also known as the lens nucleus (pink). Scale bar for
suture picture, 44mm. The rest of the cartoons are not drawn to scale. (B) A Venn diagram summary of the tissue, cellular, and molecular factors that
influence lens stiffness and/or resilience.
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opposing changes in lens nucleus volume. Loss of EphA2, a receptor

tyrosine kinase, results in a smaller and softer lens nucleus without

any changes in overall lens stiffness (82, 83). In contrast,

knockdown of tropomyosin 3.5 (Tpm3.5), an F-actin stabilizing

protein, resulted in a larger and stiff lens nucleus, but these

knockdown lenses were soft at high compressive loads (84). From

these data, lens volume, nucleus volume, and nucleus stiffness are

unlikely to play significant roles in overall lens stiffness, at least in

rodent lenses. In human lenses, an alternate theory proposes that

the restriction of cytoplasmic movement in the lens nuclear fibers

can lead to increased lens stiffness and decreased accommodation

with age (85). This idea is discussed below in the section on lens

protein modifications with age.

The relationship between lens resilience or elasticity with lens

and nucleus volumes is unclear. Lens resilience, measured by axial

diameter recovery in 2- to 24-month-old mice after compression,

was ~94-96% of the pre-compression axial diameter (35).

Interestingly, in very old mice, lens resilience is nearly 99% (35).

This jump in lens resilience is not correlated with lens volume since

the lens stops increasing in volume by 18 months of age (35). The

increased lens resilience in 30-month-old mice could be related to

the significant increase in nucleus volume (35). Alternatively, the

lenses from 30-month-old mice are very stiff and do not compress

much; thus, these lenses recover more fully after load removal.
Cellular arrangement and packing

Hexagon cell shape and organized fiber
cell packing

The correlation between hexagon cell shape and the organized

packing of lens fiber cells on lens stiffness is weak. Studies of mouse

models with a disturbance of cell membrane-associated proteins,

periaxin and ankyrin-B, showed changes in fiber cell shape and

decreased lens stiffness (86). These abnormal fibers appear

polygonal but differ in width and height compared to the uniform

cell size in control lens fibers (86–88). Further work revealed that

changes in fiber cell hexagon cell shape and disorganization of fiber

cell packing does not affect lens stiffness. Loss of tropomodulin 1

(Tmod1), an actin pointed-end capping protein, in the lens only

leads to a mild change in lens stiffness at low compressive loads (41,

89). The loss of EphA2 or mutations in myosin IIA (NMIIA) lead to

obvious defects in fiber cell packing and hexagon cell shape, but no

changes in lens stiffness (82, 90–92). Further, in aged mice, there is a

loss of hexagon cell shape, uniform fiber cell size, and organized

fiber cell packing, but lenses from the very old mice are very stiff.

Thus, the collective evidence suggests that organized fiber cell

packing and hexagon cell shape does not affect lens stiffness. It is

likely that decreased levels of cytoskeletal proteins in homozygous

periaxin knockout and heterozygous ankyrin-B knockout lenses

lead to changes in stiffness rather than just simply a change in cell

shape, as discussed below.

In the mutant mouse models described above with disordered

lens fibers, resilience is increased in very old mice and in EphA2

knockout lenses. The increased lens resilience in very old mice
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happens suddenly at 30 months of age, but the hexagonal cell shape

changes are apparent by 12 months of age. Thus, in this case, it is

unlikely that ordered fiber cell packing affects lens resilience. For the

EphA2 knockout lenses, the reason for increased resilience is due to

the lens suture changes discussed in detail below.
Lens suture

The lens suture structure differs between non-accommodating and

accommodating species. Typically, in non-accommodating mouse

lenses, there are well-aligned Y-shape sutures with 3 branches, and

there are a low percentage of wild-type lenses that exhibit sutures with

additional branches (42, 82). Each layer of the Y-suture in mouse

lenses is overlaid precisely on previously shells of lens fiber cells (42,

82). In contrast, in accommodating species, lens sutures begin as a 3-

pronged Y shape and continue to branch with the addition of new

layers of lens fibers (21, 58). Studies of the EphA2 and ephrin-A5

knockout mice have revealed the role of the Y-suture in lens resilience.

Ephrin-A5 is part of a family of ligand proteins that bind to Eph

receptors. Loss of either EphA2 or ephrin-A5 result in misaligned

shells of lens fiber cells that have abnormal lens suture branching (82,

93). There are no changes in lens stiffness in either EphA2 or ephrin-

A5 knockout lenses, but there is increased lens resilience, and

knockout lenses recovered more completely after load removal (82).

This change in lens resilience is not related to disorganized fiber cell

packing because the ephrin-A5 knockout lenses have increased

resilience with normal, organized, and hexagonal lens fiber cells (94,

95). Thus, this data indicates that Y-shaped sutures in mouse lenses

constrain the resilience of the tissue. It should be noted that these

biomechanical studies compressed the lenses with a high load that

resulted in higher than physiological strains on the lens. When control

and knockout lenses were compressed to physiological strains, both

groups of samples recovered completely after load removal.
Lens fiber cell interdigitations

It has long been hypothesized that the complex interdigitations

that create a 3D zipper between fibers cells is required for lens

biomechanical properties (28, 29). This elegant pattern of

interlocking membrane structures changes during fiber cell

differentiation and maturation, and has been characterized

extensively by electron microscopy (24–29, 35, 83, 84, 96–107).

During lens fiber cell maturation, the loss of cellular organelles is

accompanied by the appearance of large interlocking paddle

domains between neighboring cells (83, 84, 96–98). In Tmod1

knockout lenses, which are softer at low mechanical loads (41),

the large paddle domains do not form between these knockout fiber

cells (96). Tmod1 interacts with the spectrin-actin network and is

normally associated with b2-spectrin at the fiber cell membrane in

the valleys between large paddle domains. Loss of Tmod1 causes

dissociation of b2-spectrin from the cell membrane and abnormal

distribution of a-actinin, a crosslinking protein for antiparallel

actin filaments, along the cell membrane (89). This is the first

direct evidence that fiber cell interdigitations influence lens stiffness.
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There is no change in lens resilience in these knockout lenses, and it

remains unknown whether fiber cells interdigitations play a

significant role in lens elasticity.
Molecular level alterations

The F-actin network and
associated proteins

The F-actin network plays a crucial role in lens fiber cell shape

and patterning [reviewed in (30)]. When Tpm3.5 is knocked down

in mouse lenses, there is a significant decrease in stiffness at high

compressive loads (84). Electron microscopy and single fiber cell

staining studies reveal no obvious changes in fiber cell

interdigitations, but the decrease in Tpm3.5 at the fiber cell

membrane causes a reorganization of the F-actin network. While

the protein levels remained unchanged, there was an expansion of

the b2-spectrin- and a-actinin-associated F-actin networks at the

cell membrane displacing the fimbrin, also known as plastin,

bundled F-actin network. The alteration in the type of F-actin

network at the fiber cell membrane is correlated with decreased

stiffness of the knockdown lens.

Several studies have looked at the effects of actin polymerization,

myosin motor domain, and myosin light chain kinase inhibition on

lens stiffness. Treatment of chick lenses ex vivowith F-actin andmyosin

disruptors, including latrunculin, blebbistatin, and ML-7, resulted in

softer lenses under whole tissue compression tests, and the effects of

treatments were reversible (108). The stiffness changes were

accompanied by a decrease in the levels of F-actin and

phosphorylated myosin along with dissociation of F-actin and

myosin from the basal surface of fiber cells. Presumably, shorter

actin filaments or disruption of myosin motor activities leads to the

softening of treated lenses. In contrast, AFM studies of sheep lens fibers

treated with cytochalasin D, an inhibitor of F-actin polymerization, or

nocodazole, an inhibitor of microtubule polymerization, showed no

changes in local stiffness of the fiber cells (55). Since the lenses were

flash frozen, stored at -80°C, and thawed before cell dissociation with

chelating agents, the cells were presumably no longer metabolically

active. Thus, the use of cytoskeletal inhibitors in this study may have

little effect on these thawed cells.

Interestingly, recent studies of transgenic mice with human

mutations in NMIIA showed no change in lens stiffness (91, 92).

One mutation was in the motor domain of NMIIA, and two

mutations were in the tail domain. It should be noted that the

motor domain mutation and one of the tail domain mutations are

homozygous embryonic lethal, and therefore, in the heterozygous

transgenic mice, compensation by the endogenous wild-type

protein may affect the biomechanical testing results.

Reports of softer lenses due to loss of periaxin or decreased

levels of ankyrin-B are accompanied by decreased protein levels of

b-actin, b2-spectrin, desmoyokin, NrCam, activated myosin, and

calcium channels as well as changes in the localization of membrane

cytoskeleton proteins in immunostained lens fibers (86, 87). The

changes in fiber cell shape and width are likely downstream of the

loss of these membrane proteins that are required for normal cell
Frontiers in Ophthalmology 05
architecture. These data support the notion that lens stiffness

depends on a normal F-actin network.

The role of the F-actin network in lens resilience is unclear. While

loss of Tmod1 slightly alters lens stiffness at low compressive strains,

the loss of Tmod1 andmutations in NMIIA do not affect lens resilience

(41, 91, 92). The Tpm3.5 knockdown lenses have decreased lens

resilience, but this is likely due to high strains on the softer

knockdown lenses that are unable to recover fully after load removal.
Beaded intermediate filaments

Lens fiber cells are supported by a specialized beaded

intermediate filament network, composed of two proteins, CP49

(also known as phakinin) and filensin [reviewed in (32)]. Initially,

the “beaded” structure of these intermediate filaments was

erroneously attributed to the binding of a-crystallin proteins

(109, 110). There is a spontaneous mutation in CP49 in the 129

mouse strain that leads to loss of CP49 (111, 112). Deletion of either

CP49 or filensin causes complete loss of the beaded intermediate

filaments in the lens (112–115). CP49 knockout lenses are softer

than control lenses (41, 43). The contribution of CP49 to lens

diameter and formation of the lens nucleus is unclear. One report

suggests loss of CP49 leads to decreased lens diameters and nucleus

diameters (43) while another study shows no difference in lens

volumes and nuclear volumes when compared to control lenses

(41). Both studies showed that resilience of lenses without CP49 is

comparable to control lenses (41, 43). Thus, the loss of beaded

intermediate filaments leading to softer lenses without a change in

lens elasticity is presumably due to weakening of the fiber cell

cytoskeleton. The conflicting reports of lens and nucleus diameter

and volume changes in mice with CP49 disruption are not clearly

linked to the change in lens stiffness.
Protein modifications and crosslinking

For transparency and high refractive index, lens cells contain an

extraordinarily high amount of proteins (~450mg/ml), and 90% of

all lens proteins are crystallins (18). Crystallins are divided into

three families in humans, a, b, and g. Since there is little or no

protein turnover and no loss or renewal of cells in this tissue, the

proteins made during initial embryonic development are present in

the nuclear fiber cells at the center of the lens for an entire lifetime.

There have been many studies showing post-translational

modification, glycation, and aggregation of crystallins with age.

Alpha-crystallins, members of the small heat shock protein family,

have been shown to have chaperone-like activity and act as sinks to

sequester misfolded or unfolded proteins to prevent protein

aggregation (116, 117). The other major classes of crystallins

belong to the family of b/g crystallins that function as structural

proteins that bind calcium in the lens (116, 118–121). By 35-45

years of age in human lenses, there is significant loss of a-crystallin
proteins from the soluble protein fractions in the lens nucleus, and

at the same time, there is an increase of insoluble high molecular

protein species (7, 122, 123). This change in protein solubility
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coincides with the typical onset age for presbyopia, and it is

hypothesized that the increased size and stiffness of high

molecular weight protein species may affect the ability for the lens

nucleus to deform during accommodation (124), supporting the

theory that the cytoplasm of aged nuclear fibers has restricted

movement (85).

During aging, human and mouse lenses have increased levels of

advanced glycation end products (AGEs) (125–133). Studies of

mouse lenses after thermal stress revealed changes in lens stiffness

that were correlated with increased AGEs (132, 134). Treatment of

mouse lenses under thermal stress with a plant flavanone,

hesperetin, prevents the increase in AGEs and the increase in lens

stiffness. However, heating the tissue may cause other types of

damage to lead to the change in lens stiffness. In addition to

glycation, lysine acylation is a common type of protein

modification. In the lens, changes in lysine have been detected as

one of the major post-translational protein modifications (135–

137). Human and mouse lenses treated in vitro and in vivo with

aggrelyte-2 had reduced lens stiffness and increased water-soluble

proteins, presumably through protein acetylation and breaking of

disulfide bonds (138, 139). Many other post-translational

modifications of crystallins have been described in aging lenses,

including phosphorylation, deamindation, methylation,

racemization, isomerization, lipidation, oxidation, and truncation

[reviewed in (140–143)]. Studies have largely linked these protein

changes to cataracts. Presumably, any protein modifications that

results in disulfide bond formation or crosslinking can lead to

changes in lens stiffness, but there have not yet been any direct

experiments to address the possible changes in biomechanics due to

specific post-translational protein modifications.

The strategy to break disulfide protein bonds to reverse

presbyopia has previously been explored through the application

of a-lipoic acid to animal and human lenses. There was

encouraging data from old animal and in vitro human studies

that this agent could soften lenses (144–146). Unfortunately, the

formulation of a-lipoic acid UNR844 being developed by Novartis

failed in phase 2b clinical trials, and this potential treatment for

presbyopia has been abandoned (147).
Lipids in the cell membrane

The lipid content of human lens fiber cell membranes changes

with age until about 40-45 years of age (148, 149), coinciding with

the onset of presbyopia. Cholesterol content influences cell

membrane rigidity, and lens fiber cell membranes have unusually

high levels of cholesterol (150–154). High cholesterol contents lead

to the formation of cholesterol bilayer domains in lens fiber cell

membranes (155). AFM studies suggest that cholesterol content in

the fiber cell membranes regulates cell elasticity (156). Age-related

changes in the cholesterol species in fiber cell membranes (150) and

the binding of a-crystallins to the cell membrane with age (157–

163) are thought to lower lens deformability with age (164).
Frontiers in Ophthalmology 06
Hydrostatic pressure and osmotic balance

Hydrostatic pressure is maintained in the lens by a network of

sodium channels, gap junctions composed of connexins, and water

channels composed aquaporins (165). There is a steady increase in

hydrostatic pressure in the lens with age (166). Loss of connexin 46

(Cx46 or a3) leads to stiffening of knockout lenses possibly due to

protein degradation and nuclear cataracts (48). It is worth noting

that heterozygous Cx46 knockout lenses have elevated hydrostatic

pressure (165), and therefore, it is also possible that the loss of Cx46

causes increased lens stiffness due to the disruption of the gap

junctions’ ability to regulate lens hydrostatic pressure. Water

channels, made of aquaporin 0, are abundant in the lens fiber

cells and are thought to facilitate intercellular water transport in the

lens cortex (167–169). Aqp0 is known to be cleaved during fiber cell

differentiation leading to a loss of water channel function, and

cleaved Aqp0 is thought to function as cell-cell adhesion molecules

in mature fiber cells (170–173). Heterozygous and homozygous

Aqp0 knockout lenses demonstrate changes in lens fiber cell shape,

enlarged extracellular spaces, and these mutant lenses are softer

than control lenses (45). Thus, the loss of Aqp0 in lenses can lead to

changes in lens stiffness due to altered hydrostatic pressure and

changes in fiber cell structure and stability (45, 174).

The hydrostatic pressure in the lens may be influenced by the

ratio of bound vs. free water in the lens. Water is bound to the

abundant amount of crystallin proteins in the lens, and during

pressure changes, which can occur during accommodation, bound

water is released from proteins resulting in an increase of free water

in the lens, and thus decreasing the osmotic pressure (175–178).

This process is known as syneresis. The ratio of free-to-bound water

decreases with age leading to increased bound water and increased

internal hydrostatic pressure as accommodative ability decreases

(179–181). The change in free water content in the aging lens has

been proposed as a possible contributor to lens stiffening with age

and cataract formation (182).
Concluding thoughts

Studies of animal and human lenses have revealed that lens

stiffness is influenced by the capsule, complex interdigitations

between fiber cells, the F-actin and beaded intermediate filament

networks, age-related protein modifications, hydrostatic pressure,

and osmotic balance. Lens elasticity is linked to the capsule, suture

alignment, and the lipid and protein composition of fiber cell

membranes. Surprisingly, animal lens studies do not show a clear

link between lens volume, nucleus volume, nucleus stiffness, or

organized fiber cell packing with overall lens biomechanical

properties (Figure 1B). A common factor in regulating lens

stiffness and elasticity is the integrity of the capsule. This

important basement membrane is required to hold all lens cells

together and provides the anchoring point for zonular fibers. While
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the contribution of the capsule to the development of presbyopia

remains unclear, the contribution of various extracellular matrix

components of the lens capsule to tissue biomechanics remains to

be studied.

Lens fiber cell interdigitations are affected by cytoskeletal

protein complexes, and both factors are required for normal lens

stiffness. The mechanism for how fiber cell morphology is

modulated by cytoskeletal proteins is unknown, and the signaling

pathways required for normal fiber cell interdigitation development

are still being studied. Protein modifications affect protein-protein

interactions that in turn modulate osmotic balance and hydrostatic

pressure. Changes in this balance lead to altered lens stiffness, and

protein-protein disulfide bonds are now a target for pharmaceutical

intervention for preventing, delaying, or even reversing presbyopia.

The patterning of the lens suture affects tissue elasticity likely

though a change in the distribution of forces in lenses with branched

sutures. These data support the known differences between

accommodating and non-accommodating species where

accommodating and more elastic lenses have high branched

sutures. The age-related change in composition of the lipids and

proteins bound to the fiber cell membrane suggests that the fluidity

of cell membranes also influences lens resilience. The

interconnected nature of tissue, cellular, and molecular level

alterations that affect lens biomechanical properties with age

suggest that strategies to prevent or reverse presbyopia may need

to target multiple factors that influence the stiffening of the lens.
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