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The significance of growth shells
in development of symmetry,
transparency, and refraction of
the human lens
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1Department of Dermatology, School of Medicine, Oregon Health & Science University, Portland,
OR, United States, 2Department of Biological Structure, University of Washington, Seattle, WA, United
States, 3Department of Biological Structure & Ophthalmology, School of Medicine, University of
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Human visual function depends on the biological lens, a biconvex optical

element formed by coordinated, synchronous generation of growth shells

produced from ordered cells at the lens equator, the distal edge of the

epithelium. Growth shells are comprised of straight (St) and S-shaped (SSh)

lens fibers organized in highly symmetric, sinusoidal pattern which optimizes

both the refractile, transparent structure and the unique microcirculation that

regulates hydration and nutrition over the lifetime of an individual. The fiber cells

are characterized by diversity in composition and age. All fiber cells remain

interconnected in their growth shells throughout the life of the adult lens. As an

optical element, cellular differentiation is constrained by the physical properties

of light and its special development accounts for its characteristic symmetry,

gradient of refractive index (GRIN), short range transparent order (SRO), and

functional longevity. The complex sinusoidal structure is the basis for the lens

microcirculation required for the establishment and maintenance of

image formation.
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Introduction

Symmetry, refraction and transparency are optical properties of the biological lens

required for image formation in the human eye. Studies of lens growth and development

across species report that exponential growth is continuous throughout life without loss or

replacement of cells. A typical model for exponential growth is: W =Wm e–k/A (where “W”

is dry weight, “Wm” = maximum weight, “k” is rate of growth, and “A” is postnatal age) (1,

2). Lens dimensions increase synchronously and continuously through the addition of

symmetric growth shells. These growth shells form a complex sinusoidal structure that
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forms the basis for the lens microcirculation and the formation and

maintenance of transparency.
Brief summary of lens embryology

Lens placode

At ~3 weeks of gestation in humans, a small number of cells (50

to 100) swell, thicken, and form a lens placode at the edge of the

neural plate (neuroectoderm). This lens placode is the origin of the

cells that generate the refractile, symmetric, transparent lens

(Figure 1). The cells in cranial placodes resemble neural

progenitors that differentiate into sensory neurons characterized

by cytoskeleton-enriched processes, forming dendrites and axons,

extending from a cell body containing a nucleus and plentiful

organelles to support cell-to-cell connectivity (3–7). In contrast to

cells in the sensory placodes, cells in the lens placode swell, thicken

and invaginate to form a fluid-filled lens vesicle superficial to the

developing optic cup (future retina) (Figure 2) (3, 8–11).
Lens vesicle becomes the lens nucleus

Elongation of the posterior cells in the lens vesicle closest to the

optic cup results in a solid cellular mass with the apical surfaces

facing inward and the basal surfaces outward. The intercellular

space is compressed, and these cells become the “primary” fibers of

the “embryonic nucleus”, supplied temporarily by the hyaloid

artery, a branch of the ophthalmic artery to the optic cup (2, 3,
Frontiers in Ophthalmology 02
11, 12). The anterior cells of the lens vesicle distal to the optic cup

are not induced to elongate and remain an epithelial monolayer

covering the anterior surface of the embryonic nucleus, and the

germinative center for future growth shells (Figure 2). (NOTE

ABOUT TERMINOLOGY: Early studies suggested the lens was a

single giant cell, with a pale yellow nucleus at the core, surrounded

by a clear albuminoid cortex, like an egg. When the lens was

confirmed to be a cellular tissue, use of the terminology “cortex”

and “nucleus” continued to describe cells in the lens periphery and

lens center, respectively (13, 14).
First growth shells

The cells in the anterior epithelial layer can proliferate and

migrate toward the equator of the developing lens, where they

organize into ordered meridional rows. Synchronized elongation of

the meridional cells, posteriorly and anteriorly, initiates the

formation of a coordinated band of arc-shaped secondary cells,

parallel to the optic axis. This band will become a growth shell at the

peripheral lens cortex (Figure 3) (2, 9, 11, 15, 16). As the temporary

vessels of the hyaloid vasculature regress, each growth shell becomes

the developmental mechanism for adding symmetric layers of new

“secondary” fibers that increase the size of the lens during formation

of the visual system (Figure 2). New growth shells contain

malleable, refractile, organelle-free secondary fibers that subsume

previous shells surrounding the lens nucleus (17–20). New growth

shells can adjust to the optical needs of a growing eye (16, 21).

It is important to emphasize that the coordinated addition of

symmetric growth shells of secondary fibers expands the size of the

lens and creates a biconvex, biological spheroid that functions as an

optical element in the human eye (Figure 4) (11, 19, 22–24). The

spheroid is defined by an equator separating the anterior from the

posterior hemisphere. The radius of curvature of the surface anterior

to the lens equator is ~10mm and the radius of curvature of the

surface posterior to the equator is ~6mm (see Figure 2) (25, 26). With

the growth of the visual system, the optical curvatures vary slightly as

they adjust the focal length of the lens to the dimensions of the

changing eye (16, 27). Throughout development of visual function,

the optics of the growing lens are carefully synchronized with the

establishment and maintenance of optical quality during the life of an

individual (16, 22, 28). As a mechanism for the development of

optics, growth shells are an unprecedented success.
Cellular specialization

In the absence of blood vessels, each growth shell develops

symmetric layers of cellular fibers, containing condensed

cytoplasmic proteins, largely crystallins and cytoskeleton, to

increase the refractive index, and establish transparent short-range

order necessary for focusing images on the retina (3, 22, 29). Growth

shells can do more. Without blood vessels, structural specializations

in the fibers of growth shells contribute to a symmetric circulatory

system for fluid flow that regulates hydration, ionic homeostasis, and

uniform distribution of nutrients, in support of dynamic growth to
FIGURE 1

CRANIAL PLACODES in the TRILAMINAR EMBRYO. This figure
represents a dorsal view of the ectodermal surface of a trilaminar
embryo, prior to neural tube formation (K. Altdorfer, https://
slideplayer.com/slide/12872844/). As the neural plate forms, a
horseshoe shaped region peripheral to the cranial end of the neural
ectoderm, called pre-placodal ectoderm (PPE), forms localized
thickenings, “cranial placodes”, for specialized structures including the
lens. A number of cranial placodes are indicated by circles and labeled.
The lens placode responds to signaling pathways involving FGF, BMP,
Notch, Wnt, betacatenin, and others described elsewhere in the text.
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optimize the optics for the growing, changing visual system (Figure 2)

(3, 7, 12, 30, 31). Without a functioning microcirculation, the lens

cannot develop the symmetric gradient of refractive index (GRIN)

and transparency required for image formation in the growing visual

system (32–35). In fact, the lens might as well be a piece of glass or

plastic. Instead, nature created a growth shell mechanism for the

biological lens, that is unique in all of developmental biology (36, 37).
Growth shells

Structure: straight and S-shaped fibers

Each growth shell is comprised of two types of secondary fibers:

straight (St) and S-shaped (SSh) fibers (Figure 4) (22, 36). St fibers

are crescent-shaped, parallel to the visual axis, and attached to

either the posterior or anterior pole (Figures 4A, B), where they

become growth centers for the anterior or posterior hemispheres of

the growth shell. Posterior to the lens equator, St fibers radiate away

from the posterior pole, separated by 120 degrees (Figure 4B) and

anterior to the lens equator, St fibers radiate away from the anterior

pole separated by 120 degrees (Figure 4B). Notice that the tips of the

elongating St fibers stop short of the opposite poles, ending at the

tips of the Y suture (Figure 4B) (15, 22, 38).

The second type of lens fibers, the SSh fibers, fill in the growth

shell (Figure 4A). SSh fibers are oriented along, and adjacent to, the

St fibers (Figures 4A, B). SSh fibers have three parts: a straight

middle segment, parallel to the St fiber, and two tips, curving away
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from the St fiber, to meet curved tips from other SSh fibers forming

a pair of SSh fibers (Figure 4, red fibers). Anterior to the equator,

where the curved tips meet, the anterior suture forms, and posterior

to the equator, where the curved tips meet, the posterior suture

forms. The sutures are formed where pairs of SSh fibers meet,

anteriorly or posteriorly (Figure 4, red fibers). Because the tips curve

to meet other SSh fibers, they appear as symmetric, sigmoid-shaped

fiber cells when projected in 2-D (Figure 4D). The trigonometric

function describing the SSh fiber is f(x) = arctan(x), which is the

basis for the symmetry of a growth shell and accounts for the

symmetric index of refraction, transparency, and the anterior and

posterior curvatures of the lens.
Structure: sinusoidal networks form
Y sutures

Where the curved tips meet anteriorly, the sutures are

positioned in a “Y-shape” and posteriorly, the sutures form an

“inverted Y-shape” (22). The anterior and posterior sutures are not

aligned and are offset by 60 degrees. This is because of the sigmoid

shape of SSh fibers (Figure 4D). Because the SSh tips curve in

opposite directions away from their middle (Figure 4C), they are no

longer in the same anterior/posterior plane (22, 37–39). Still,

symmetry is maintained in normal development. The result is a

continuous, interconnected sinusoidal network of fibers throughout

the entire growth shell. Throughout the growth shell, SSh fibers in

the posterior hemisphere connect directly with the fibers in the
FIGURE 2

LENS DEVELOPMENT is a MULTISTEP PROCESS BEGINNING at ~3 to 4 WEEKS of EMBRYONIC AGE in the HUMAN: An optic cup extends toward the
surface ectoderm from the neural tube, deep to the lens placode. The optic cup induces invagination of the lens placode, followed by its separation
from the surface as the lens vesicle. Hyaloid vessels (not shown) supply the developing lens briefly, before regressing. Maturation of the lens vesicle
is accompanied by lengthening of the posterior lens cells, adjacent to the optic cup, to form “primary lens fibers”. These cells lose their nuclei and
close the vesicle to create a solid cellular mass. In contrast, the anterior cells become an anterior epithelium that maintains its proliferative ability.
Synchronous proliferation, migration and elongation of waves of epithelial cells generate “secondary” lens fibers that form growth shells. The growth
shells surround the primary fibers of the “embryonic nucleus” (EN), to expand the size of the lens as the optics adjust to the growing eye. The entire
lens mass develops within a thick basement membrane capsule (thick yellow line). An adult lens is refractile, transparent and biconvex, consisting of
concentric layers of lens fiber growth shells. The functional viability and plasticity of an adult lens is prolonged through a unique microcirculation
that nourishes, hydrates and maintains normal electrophysiological homeostasis as the lens grows and adjusts to the optical needs of the growing
retina. The image on the right summarizes the microcirculation: Green arrows indicate the inflow of fluid at the anterior (AP) and posterior (PP) poles
at the center of the anterior and posterior curvatures. Red arrows represent the fluid outflow at the equator. A number of growth factor pathways
are essential for regulation during both embryogenesis and growth shell formation.
frontiersin.org

https://doi.org/10.3389/fopht.2024.1434327
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org


Greiling et al. 10.3389/fopht.2024.1434327
anterior hemisphere. It is easy to understand how reactive oxygen

species, advanced glycation end products, inflammatory agents,

osmolytes, or other systemic stresses can disrupt the coordinated,

symmetric elongation of fibers and alter the suture patterns.

Careful analysis of electron micrographs of developing lenses

confirms that sutures in a growth shell are formed by the

connections between differentiating SSh fibers (22, 36, 38–40). In

contrast, the embryonic lens nucleus at the center of the adult lens

has no sutures and consists of the primary fibers that elongated to

obliterate the lens vesicle and establish the original cell mass

(Figure 2). Subsequently the embryonic nucleus is overlain by

secondary fibers (22, 38). As lens development continues,

secondary fibers organize into isomorphic interconnected growth

shells in a coordinated, synchronized process. The amount of

curvature in the individual tips of the SSh fibers varies relative to

position relative to where the pairs meet and establish a suture

(Figure 4) (39). An unexpected result is the normal variability in the

lengths of the SSh fibers connecting along the suture lines. The

lengths oscillate with a regular, sinusoidal pattern, another

indication of coordinated, synchronization of growth shell

formation (Figure 5). It should be noted that the ends of

secondary fibers expand and overlap at the sutures (39, 40).
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The overlap is part of the 3-D interconnected suture planes,

extending from the surface into the embryonic nucleus. The

suture can act as a channel carrying fluid containing ions,

nutrients, soluble factors, and antioxidants that regulate and

maintain symmetric structure (7, 22, 41, 42). When normal fiber

differentiation is disrupted, the sutures appear abnormal (22).
Structure modeling

When first observed, the unusual organization of St and SSh

fibers is a bit confusing and difficult to understand. To visualize the

details and the overall structure of a growth shell during

development, growth, and aging, Kuszak chose 2-D projections

(22, 36–38, 40). Using computer aided drawings, he applied

geometric methods known since Babylonian times for navigation

of the earth (a spheroid) to study fiber patterns in growth shells of

the biological lens (also a spheroid) (Figure 6) (22, 38). Combining

computer aided drawing with thorough, careful scanning electron

microscopy, Kuszak revealed new information about the assembly

of symmetric growth shells in the lens. His results represent the

synchronous differentiation that is the structural basis for both the

lens optics and the symmetric microcirculation of fluid throughout

the lens, in the absence of vasculature. When differentiating fibers in

the growth shells are exposed to fluid influx through posterior and

anterior sutures, they can respond to the fluid contents like ions,

nutrients, and soluble factors controlling lens growth. The extensive

connectivity between SSh fibers in the growth shells, specifically

posterior and anterior to the equator, accounts for the symmetry of

the posterior and anterior curvatures of the developing lens. The

importance of two organizing centers at the posterior and anterior

poles is very clear. While growth shells were recognized previously

in lens research, the 3-D computer aided drawing provides much

greater detail about their symmetric structure and, potentially, their

functional significance. The collective interactions between

component St and SSh fibers account for the connectivity and

symmetry in the growth shells (22, 36, 37).
Function in microcirculation

Growth shell formation is not simply a space-filling exercise. It

is the basis for a highly connected, complex cellular network,

organized to provide maximal image quality to millions of

photoreceptors in the visual system. Lens growth is carefully

regulated to form a symmetric, refractive optical element that

transmits light waves for the formation of accurate visual images

(7, 31). It is often unappreciated that a lens consists of diverse

populations of fibers constituted from various protein and

membrane specializations completed at very different ages across

the life of the organism. The process of growth shell formation is the

foundation for the symmetry necessary to optimize optical quality,

including the gradient of refractive index, GRIN, and transparency

in a growing eye.

Many biologists accept the correlation between structure and

function (11, 37, 40, 43, 44). As explained in the legend of Figure 6,
FIGURE 3

GROWTH SHELL FORMATION BEGINS WITH COORDINATED,
PERIODIC ELONGATION of EPITHELIAL CELLS at the EQUATOR.
Initially, anterior and posterior elongation of lens epithelial cells
produces straight segments that form a discontinuous band around
the lens periphery. In this image, green fluorescent protein, GFP,
labels the cells elongating away from the equator. With continued
elongation, a small number of these fibers will attach at the anterior
(AP) or posterior (PP) poles separated radially by ~120 deg, (2.09
radians) (not shown). These are the straight (St) fibers that orient all
other cells to fill in the growth shell. The optic axis (not shown)
connects the AP with the PP. Elongation is synchronous and
coordinated. In the figure, the longer fibers are believed to be
forming one growth shell and the shorter fibers are beginning to
elongate to form the next growth shell. Growth shells form
concentric layers observed in intact lenses. (modified from Shi et al.
(2009) J. Cell Sci. 122:1607-15).
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FIGURE 4

SPACE FILLING and FIBER ORGANIZATION in a GROWTH SHELL. An anterior view of the lens fibers in a typical GROWTH SHELL is shown in (A). The
dark and light green bands, each representing 20 individual fibers, are modeled from scanning electron micrographs of the growth shell surface. A
few straight (St) fibers (turquoise) attaching at the anterior pole (B) are organizing centers for the many S-shaped (SSh) fibers (example highlighted in
red) that fill-in the developing growth shell forming the anterior and posterior curvatures of each hemisphere in the biconvex lens (A, B). Three
sutures originating at the anterior (AP) poles are shown as thin yellow lines. Removing a number of fibers (in the figure) allows both the anterior (AP)
and posterior (PP) poles to be seen (B) where three attachments for St fibers and three sutures (orange line) are shown. The optic axis (black line)
connects the anterior and posterior poles. Space filling is a complex process of fiber assembly. During the start of fiber elongation, the middle
segment of each SSh fiber is parallel to the optic axis (as in Figure 3). While one tip of an St fiber (blue) attaches at either the anterior (AP) or
posterior (PP) pole, the other tip is the origin of the sutures (A, B) and the St fibers remain parallel to the optic axis. In contrast, the tips of elongating
SSh fibers (red) do NOT attach at either pole. Instead, the elongating tips of SSh fibers curve away from the poles, toward the plane of the orienting
St fibers, where they join the curved tips from a corresponding SSh fiber, to form a pair and create a suture (B red). For example, (C) represents a
pair of red SSh fibers. An anterior tip curves to meet the curved tip of an SSh fiber (red) elongating from the opposite side of the St fiber and form
anterior (yellow) suture. Note that the SSh fibers are not attached at a pole and each new connection between the SSh fibers lengthens the suture.
Similarly, the posterior tip of the same red SSh fiber curves to meet the tip of a corresponding SSh fiber (not shown) to form and lengthen the
posterior suture (C). Both sutures are shown in the figure, but the suture is only formed when the tips of each SSh pair connect. In this way pairs of
elongating SSh fibers fill in a GROWTH SHELL as they establish the sutures. (NOTE about TERMINOLOGY: The SSh fibers are described as having
“opposite end curvature” by Kuszak because they curve away from the St fibers and the poles. In a 2-D projection of an SSh fiber (D), each SSh fiber
can be described as having a distinctive symmetric, sigmoid shape with the two curved tips extending away from a straight middle segment (D). The
sigmoid function is defined as f(x) = arctan(x). It is well established, but not widely appreciated, that when SSh fibers meet other SSh fibers, the pairs
of SSh fibers fill in and form the posterior and the anterior surface of a GROWTH SHELL. When SSh pairs connect, the sutures are formed. Altered
sutures are an indication of abnormal lens fiber differentiation and function.
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the 2-Dmap of the growth shell introduces distortion at the anterior

and posterior poles enlarging the dimension of the St fibers

(Figure 6). Regardless of the distortion in a 2-D map, the regular,

symmetric pattern of oscillating fibers posterior and anterior to the

lens equator is expected to be critical for the growth shell

mechanism of lens development (Figure 6) (22). The vertical

clefts labeled “St” are the straight (St) fibers. Together with the

sutures, St fibers are positioned every 60 degrees (1.05 radians)

forming regular orienting centers for “waves” of SSh fibers

(wavelength 120 degrees or 2.1 radians) above and below the

equator (Figure 6). The periodic oscillations are oriented to the

positions of the St fibers and sutures anteriorly and posteriorly. In

the absence of vasculature, a simple hypothesis is that these

sinusoidal oscillations are the structural basis for uniform

symmetric fluid flow, known as microcirculation. If St fibers are

spatial organizing centers for symmetric SSh fiber elongation, then

the microcirculation can facilitate uniform fluid flow into the

growth shells, anteriorly and posteriorly, to carry nutrients,

growth factors, and protective molecules deep into the lens to

organize and maintain function (Figure 2) (7, 42, 45). Recent

studies report the importance of uniform, symmetric fluid flow in

the control of hydration, ion homeostasis, refraction, and

transparency in the biological lens (31, 32, 42, 45–47).
FIGURE 5

VARIATIONS in FIBER LENGTH in a GROWTH SHELL. Because the
pairs of elongating SSh fibers intersect the equator, the length from
the equator to fiber tip is expected to be unequal. When actually
measured and plotted, an unexpected finding is that the variations in
length are regular and periodic. Periodic oscillations in lens fiber
lengths represent a sinusoidal pattern, reflecting the careful
synchronization in growth shell formation.
FIGURE 6

SYMMETRY is DETERMINED by TWO TYPES of DIFFERENTIATED FIBER CELLS. This is a 2-dimensional projection of a GROWTH SHELL. The
computer aided drawing software generates a 2-D map by projecting the 3-D lens spheroid (growth shell) onto a 2-D cylindrical surface (Figure 6
right side). It is known as a projection because it simulates a bright light placed inside the spheroid so that any point (x,y,z) on the surface of the 3-D
spheroid is projected to a point (x,y) on the surface of a cylindrical screen, surrounding the spheroid (Figure 6, right side). The lens equator is
represented as a horizontal white line on the cylinder, between the anterior and posterior poles, represented as the open ends of the cylinder. When
the computer “unfolds” the cylinder, the most obvious structural features of the 2-D projection of a typical growth shell are the symmetric
oscillations of the SSh fibers (black and turquoise) above and below the equator (dashed white line), centered on the St fibers (green), positioned ~60
deg (1.05 radians) apart. The St fibers appear “cone shaped” with a wide base near the pole and a narrow tip at the beginning of each suture, near
the equator. This distortion of St fiber dimensions is the result of an increase in scale near top and bottom of the cylinder, making the St fibers
appear disproportionately large at the poles. (The St fibers are represented accurately in Figures 4A, B where their relative size is the same size as
that observed in situ in electron micrographs of actual lenses.) In the 2-D map, the anterior sutures are represented by yellow vertical lines at the top
of the 2-D map and the posterior sutures are orange vertical lines at the bottom of the 2-D map. Even though distorted, the St fibers extend from a
pole to a tip of each suture near the equator (white line). The curved S-shaped (SSh) fibers form the oscillating pattern filling the growth shell. One
curved tip of the SSh fibers connects to a posterior suture and the other curved tip connects to an anterior suture. The extensive fiber
interconnections throughout the growth shell form a symmetric sinusoidal pattern essential for the organization of a symmetric microcirculation.
This fiber symmetry is the basis for establishment and maintenance of refraction and transparency in an effective optical element in the human lens.
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Few examples of symmetry in a biological tissue are more

impressive than the experimental measurement of the loops of

current flow in a biological lens (Figure 2) (46, 48–53). At the time it

was reported, the significance of the symmetric current inflow and

outflow in lens fiber symmetry and function was unrecognized (48, 53).

Now, penetration of nutrients, metabolites, ions, and soluble factors is

thought to occur through influx of fluid into the anterior and posterior

suture planes, established by the alignment of sutures during the

synchronized formation of growth shells (Figure 6). Fluid efflux

occurs at the equator through an intercellular outflow pathway

thought to be mediated by gap junctions. Hydrostatic pressure as

high as 335 mm Hg centrally, falls to 0 mm Hg at the periphery,

creating a pressure gradient for driving flow. The activity and

localization of channels in the fiber membranes regulate flow and are

critical for the optics of the visual system (7, 11, 31, 42, 45, 47, 50, 54).

There is much to learn from the lens about biological symmetry.

The growth shell mechanism is a rare example of a developmental

process for continuous formation and maintenance, year after year,

of a highly symmetric refractile, transparent tissue, and the

establishment of corresponding microcirculation. No other

cellular tissue in the human compares with the transparent lens

for studies of complex molecular and cellular function over a

lifetime. Lens structure and function for image formation is

intimately linked to symmetry, the gradient of refractive index

(GRIN), and transparent short range order. In the eye, the dynamics

of collective, often complex, interactions, at the molecular and

cellular levels are accessible to modern, non-invasive methods of

research in living individuals.

The current hypothesis that the microcirculation is a primary

factor in the formation of the biconvex, human lens, places an

emphasis directly on the significance of fiber membranes (45, 55–58).

The 1000-fold elongation of the SSh secondary lens fibers is achieved

through a dramatic expansion of the membrane surface area (22, 38,

59–63) accompanied by an elaborate reorganization of the lens fiber

cytoskeleton (11, 60, 61, 64–69). It is well established that lens fiber

membranes are specialized to facilitate fluid flow throughout the

decreased intercellular spaces. During the formation of a growth shell

the cytoskeleton condenses at the periphery of the hexagonal fibers, as a

dramatic increase in the proportion of membrane cholesterol

accompanies the increase in fiber membranes, and the intercellular

spaces are narrowed (11, 70–75). Intuitively, a decrease in the

extracellular space might be expected to increase resistance to fluid

flow through the lens microcirculation. Studies of microfluidity suggest

the opposite effect (76–79). High cholesterol can stabilize membranes,

increase hydrophobicity to decrease surface tension, and help move

fluids through the microcirculation of the lens (80). The complexity

and heterogeneity of fiber membranes and their microenvironment

make the study of microcirculation a challenge.While discussion of the

origins of the microcirculation in the growth shell mechanism is

beyond the scope of this article, growth shells are incredibly

important as a foundation for development of the lens as an optical

element in the human eye (58).

When the space between cell membranes decreases, the resistance

to turbulent flow can decrease to favor laminar flow, increasing

microfluidity (77, 79). The microfluidity between membranes can be

enhanced further by an increase in the area of hydrophobic surface,
Frontiers in Ophthalmology 07
reducing interactions between aqueous fluid and charged membrane

phospholipids (80). Increased membrane cholesterol resists oxygen

permeability favoring elimination of intracellular organelles (81, 82)

and stabilizes the elongated fiber shape, the condensation of the

cytoskeleton at the cell periphery, the establishment of transparent

short range order, phospholipid surface projections, and a decrease

the intercellular spaces (83–85). A dynamic cytoskeleton compresses

and stabilizes the cell membrane and positions membrane channels,

cell adhesion molecules, and connexins along the cell surface. The

constructive effects of high cholesterol levels in fiber membrane can

contribute to lens microcirculation and improve symmetry,

transparency, and GRIN in the lens as new symmetric growth

shells are added (82, 84–86).

When growth shells are added at the lens periphery, they seem

most responsive to constituents of the microcirculation. There

appears to be a narrow band of growth shells forming a

supranuclear region between the lens nucleus and cortex, where

plasticity permits fiber reorganization (17, 87–90). Both

electrophysiology and light scattering results indicate a subtle

change several layers deep to the surface, consistent with an

electrophysiological syncytium, and/or a network of interacting

proteins and membranes (16, 17, 27, 90–92). Apparently,

supranuclear fibers in new shells share plasticity to remodel the

surface curvatures and adjust the biconvex lens to changes in optical

requirements as the eye grows. The plasticity that accounts for

variations in light scattering appears be sensitive to intracellular

modifications associated with clinical conditions specific to light

scattering phenotypes, including myotonic dystrophy, genetic

mutations, Down Syndrome and Alzheimer’s Disease (89, 93–95).
Plasticity of growth shells

Plasticity of the lens growth shells allows for subtle improvements

in the optical properties as eyes grow from youth to adult (16, 96, 97).

Developmentally, dramatic plasticity is demonstrated in lens

inversion experiments (98, 99). After removal from the optic cup, a

developing lens can be rotated 180 degrees, and then replaced in the

eye so that the epithelium now faces the vitreous (posteriorly) instead

of the aqueous (anteriorly). After replacement, repolarization occurs

so that the (now) posterior epithelium elongates to fill-in the lens

vesicle and a “cap” of new epithelium forms anteriorly facing the

cornea. The results represent an extraordinarymalleability that allows

the newest growth shells to respond to factors carried through the

microcirculation from the anterior aqueous and/or posterior vitreous.

In a separate example of plasticity, a second lens mass develops in a

mutant zebrafish, apparently because of two growth centers (100).

One of the most extreme examples of lens plasticity during normal

development is the lens of the “four-eyed” fish, Anablebs anablebs

(101–103). The two growth centers in the growth shells account for

the formation of a pyriform-shaped lens that focuses light waves

simultaneously, from two separate environments: air and water, onto

separate regions of the same retina. In a 2-D map of a growth shell,

individual SSh fibers are exposed to both the posterior and anterior

environments by an influx of fluid carried through their posterior or

anterior sutures (Figure 6). Lens fiber plasticity permits the posterior
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and/or anterior curvatures to adjust refraction in response to either

environment (posterior or anterior).

Each growth shell generates symmetric posterior and anterior

convexities, with different radii of curvature, to adjust lens optics for

precise focusing of images on a growing, expanding retina with

minimal spherical aberration. Generation of two biconvex surfaces

in the biological lens is achieved when posterior and anterior

growth centers are established by the St fibers. Orientation of the

SSh fibers, connecting at the sutures posteriorly and anteriorly,

forms two biconvex surfaces that optimize the optics of the visual

system. The number and orientation of lens fibers need to adjust the

size of each new growth shell with age, to conform to the principles

of image formation in the changing human eye (19, 22, 104).
Regulation of growth shell formation

Growth shell development is regulated largely by growth factor

and signaling pathways involving FGF, BMP, IGF, TGFbeta, Notch,

wnt, PDGF, and others (2, 3, 10, 23, 57, 105–112). Numerous studies

support the hypothesis that concentration gradients of FGF and BMP

are central to the regulation of elongation and maturation of lens

fibers (14, 113). These are reviewed in detail elsewhere (10, 14). Both

the levels of the growth factors in aqueous and vitreous and the

locations of their receptors in the lens regulate formation of the

symmetric growth shells (108, 111, 114, 115). The impact of these

regulatory pathways on lens growth and differentiation is so

important that there is systematic redundancy, so that IGF, EGF,

TGFbeta, and other soluble factors contribute to formation of a

growth shell. Redundancy benefits and protects the effectiveness of

the growth shell mechanism in the formation of symmetric,

concentric spherical layers. Given the complexities of the

relationships between growth factors, signaling pathways and, gene

regulatory networks on fiber differentiation, the importance of the

synchronization of growth shell formation is sometimes overlooked.

Bursts of transcription are a direct measure of the synchronized fiber

differentiation in the coordinated development of the growth shells,

and are necessary for generation of symmetry (10, 32, 116–118). The

pulsatile activity of PDGF and the discovery of PDGF receptor in

distal regions of lens epithelium where synchronicity is initiated,

altered our understanding of the regulation of periodic symmetry in

the biological lens (106, 119–123). Correlation of the cellular

distributions of growth factors and receptors will clarify the link

between growth factor activity and coordination of the remarkable

geometric patterns (Figure 6) accounting for symmetry, GRIN, and

transparent short range order in the biological lens.

Research continues to demonstrate the importance of

synchronization of growth factors in regulating development and

maintenance of symmetry, GRIN, and transparency in the

biological lens (2, 10, 105, 106, 109–113, 119–122, 124–126).

Differentiation of symmetric, concentric layers of elongated,

denucleated, transparent, refractile fiber cells in the lens spheroid

is complex and represents unprecedented spatio-temporal

regulation in biology (11, 22, 37, 38, 121). Although the lens
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is ordered at all scales of structure, from molecules to the whole

tissue, the “crystalline” biological lens is not crystalline. It is formed

by concentric shells of symmetric lens fibers (Figures 2, 4, 6).

Complex, synergistic, and cooperative, often overlapping,

signaling pathways promote structural and functional longevity of

lens function (11, 24) Current research needs to consider

interactions within networks of growth factors in the regular and

coordinated assembly of new growth shells in the mechanism of

lens development.
Discussion

It is important to realize that the radius of curvature of a growth

shell is symmetric both anteriorly and posteriorly. The precise

dimensions are carefully regulated to maximize the optical

function of the biconvex, biological lens. The St fibers attached at

the posterior and anterior poles form two spatial organizing centers,

separated by the equator, in each growth shell (Figures 4, 6).

Posterior to the lens equator, the St fibers orient the SSh fibers to

form a posterior convexity, and anterior to the equator the St fibers

orient SSh fibers to form an anterior convexity. The focal point of a

biconvex lens depends on the symmetric gradient in the index of

refraction, and the curvature of both the anterior and posterior

surfaces. While formed by secondary fibers in the peripheral cortex,

each GROWTH SHELL is dynamic and plastic. The surface

curvatures of the posterior and anterior hemispheres can adjust to

the changing optical requirements of image formation during

development and growth of the eye (97, 127, 128). As the lens

grows, the newest growth shells (Figures 3, 4) are added between the

elongating cortical fibers and the deeper established growth shells.

Between the deep cortex and the superficial nucleus, new growth

shells form a thin layer that can respond and continuously modify

the optics of the growing eye. In contrast, fibers in older, deeper

growth shells become highly interconnected and stabilized in the

nucleus, in what is known as an electrophysiological

“syncytium” (17).

It should be emphasized that not all light scattering is the same.

Light scattering depends on wavelength, intensity and scattering

angle, the index of refraction, the size, shape and concentration of

scatterers, their interactions, symmetry, order, and other

biophysical parameters including pressure, temperature, and

concentration (129–133). The diversity of differentiating cells and

fibers generated in growth shells can be evaluated in vivo as

variations in fiber structure optimize image formation in the

human visual system (130, 134–136). The diversity of fibers and

the plasticity of growth shells seem to account for the variability

observed in the zones of discontinuity (Figure 7) (11, 137, 138).

Plasticity can account for sensitivity of differentiating fibers to

environmental factors including glucose levels, toxic substances,

or osmolytes penetrating the lens through the microcirculation to

reach the differentiating lens fibers.

When the layered structure of the lens was first observed in vivo

by Gullstrand, the inventor of the slit lamp, variations in scattered
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light established the basis for understanding the concentric growth

shells. Their symmetry, refraction, and transparency could be

observed directly in the human lens (Figure 7) (139). Small

fluctuations in refractive index gradient and non-random scattering

are associated with normal growth and development resulting from

modified apoptosis, mitophagy, or autophagocytosis (136, 140–142).

These mechanisms are commonly associated with cell death and cell

replacement, not prolongation of molecular and cellular longevity,

typical of the biological lens (143, 144). In a healthy eye, small

fluctuations in the refractive index that produce light scattering from

zones of discontinuity, do not impair vision (145) (Figure 7). Detailed

computer aided drawings of differentiating lens fibers in normal

growth shells can explain images commonly recorded in slit lamp

examinations (22, 36–38, 41, 65). In a growth shell, decreasing

oxidative metabolism results in the loss of organelles and the

reduction in reactive oxygen species to improve transparency

during growth of the lens. In fact, all primary and secondary fibers

formed in a lens are retained for a lifetime. Lens fiber differentiation

involves unique protective mechanisms including antioxidants,

microcirculation, cytoskeletal stability, post-translational

modification (PTM), and high levels of small heat shock proteins

(sHSP) to enhance optical function (symmetry, GRIN, and

transparency) of a lens (11). Failure to preserve the viability of any

fiber is presumed to lead to pathology. Typical lens fiber

differentiation, occurring during lens growth, seeks to decrease the

dimensions of irregularities in the refractive index, “n”, well below

micron sizes. The subtle light scattering from tiny, often temporal,

spatial fluctuations in “n”, is known as Rayleigh scattering. These tiny

fluctuations in “n” are not readily observed histologically, even in

electron micrographs (130, 133, 146, 147). While changes in Rayleigh

scattering can be a measure of differentiation of normal transparent

subcellular structure in living animals, it can also be predictive of the
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progressive loss of transparency under unfavorable conditions of

molecular and cellular aging (11, 91, 92, 130–132, 148, 149).
Conclusion

The human lens is not glass, but could be, if nature chose a

developmental mechanism different than growth shells. Other

ectodermal derivatives in the integument are dehydrated, including

hair, nails, feathers, and claws. Dehydration of the fibers of the

developed lens is all that is needed to produce a solid, glass-like lens,

similar to a camera lens. For example, when a lens is removed from

an eye (rodent, cat, dog, zebrafish, other) and allowed to dehydrate

slowly, in a controlled laboratory environment, a biological lens can

transition into a transparent, refractile solid. Instead, nature chose to

(bio)engineer a highly symmetric and interconnected growth shell

system of lens fibers, supported by an unusual microcirculation that

limits oxidative metabolism and conserves hydration, physiological

homeostasis, and uniform nourishment in a cellular lens. In a

biological lens, optical function is prolonged in the visual system

over a lifetime (7, 30, 31, 47, 56). A relevant comparison can be made

between hydration in a lens and the tardigrade, an extremotolerant

organism known to be able to maintain its cellular structure under

conditions of complete dehydration (anhydrobiosis) (150). Similarly,

the fiber structure of a lens must be maintained under conditions of

severe dehydration. While there are advantages to conducting

research on biological lenses from a materials science perspective,

human vision demands more than a piece of glass or plastic. The

symmetry of the growth shells not only prolongs the functional life of

a lens, it supports dynamic modifications that optimize the optics of

the visual system. The growth shell microcirculation is a major

physiological innovation. The vascular system in non-lens tissue
FIGURE 7

ZONES of DISCONTINUITY and GROWTH SHELLS. Drawings made by Gullstrand of the human eye resemble a photograph from a modern slit lamp.
Both show oscillations in light scattering known as zones of discontinuity. In both images, the variations in light scattering appear as concentric,
symmetric layers in the lens, and are consistent with the growth shell mechanism of lens development and aging. The Gullstrand drawing appears to
have much more prominent scattering from the zones of discontinuity than the modern photo image. The main point is that zones of discontinuity
in the refractile, transparent lens of living patients are concentric and symmetric, consistent with growth shell structure. These images confirm the
value of direct analysis of lens structure and function in living individuals across a broad range of ages using modern optical technology.
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consists of lymphatics and blood vessels that supply oxygen and

nutrients to cells. The vasculature modulates cell and tissue fluid

homeostasis. In a lens, oxygen is toxic and lymphatics carry immune

cells that can recognize modified, aging cells, like the lens fibers, as

abnormal and destroy them. In growth shells, the microcirculation is

a natural alternative to the typical systemic vasculature. The growth

shell microcirculation regulates hydration and provides nutrition in a

protective environment of antioxidants and stress response proteins,

to optimize cellular, molecular, and functional longevity of refractile,

transparent lens fibers.

Coordinated, synchronous differentiation of lens fibers in

growth shells is necessary for the optics of the human eye to

adjust as the visual system grows and ages. Even though multiple

levels of protection (including post-translation modifications, anti-

oxidants, and small heat shock proteins) prolong the biological lens

for an unusually long functional life, tiny failures at the molecular

level and multifactorial, submicroscopic events can slowly and

progressively accumulate and disrupt symmetry and order until a

“tipping” point is reached (11, 151–154). The greatest risk factor for

loss of transparency is aging of molecular and cellular constituents

(11, 24). Membrane specializations (projections, protrusions and

connections) between fiber cells change with normal lens

development and are associated with formation of the symmetric

growth shells. Specific surface features characterizing the boundary

of the organelle free zone (OFZ), are not well defined in a normal

lens. In abnormal lenses, where fiber differentiation is disrupted, the

symmetric relationship(s) between straight and S-shaped fibers in

growth shells is distorted, and result in an asymmetric pattern of

sutures. (22,37,38). Advances in imaging and analytical sciences

suggest that novel integrated research on lens symmetry, GRIN, and

transparency in growth shells, will improve our knowledge of

natural protection for the optics of individuals at risk for lens

opacification that accounts for more than 50% of vision impairment

globally (58, 130, 133, 155–157).
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