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optical coherence
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Lauren Nicole Ayton1,2,3† and David Cordeiro Sousa2,3*†
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Purpose: Female carriers of X-linked inherited retinal diseases (IRDs) can show

highly variable phenotypes and disease progression. Vascular reactivity, a potential

disease biomarker, has not been investigated in female IRD carriers. In this study,

functional optical coherence tomography angiography (OCT-A) was used to

dynamically assess the retinal microvasculature of X-linked IRD carriers.

Methods: Genetically confirmed female carriers of IRDs (choroideremia or X-

linked retinitis pigmentosa), and healthy women were recruited. Macular

angiograms (3x3mm, Zeiss Plex Elite 9000) were obtained in 36 eyes of 15 X-

linked IRD female carriers and 21 age-matched control women. Two tests were

applied to test vascular reactivity: (i) mild hypoxia and (ii) handgrip test, to induce

a vasodilatory or vasoconstrictive response, respectively. Changes to vessel

density (VD) and vessel length density (VLD) were independently evaluated

during each of the tests for both the superficial and deep capillary plexuses.

Results: In the control group, the superficial and deep VD decreased during the

handgrip test (p<0.001 and p=0.037, respectively). Mean superficial VLD also

decreased during the handgrip test (p=0.025), while the deep plexus did not

change significantly (p=0.108). During hypoxia, VD and VLD increased in the deep

plexus (p=0.027 and p=0.052, respectively) but not in the superficial plexus. In

carriers, the physiologic vascular responses seen in controls were not observed in

either plexus during either test, with no difference in VD or VLD noted (all p>0.05).

Conclusions: Functional OCT-A is a useful tool to assess dynamic retinal

microvascular changes. Subclinical impairment of the physiological vascular

responses seen in carriers of X-linked IRDsmay serve as a valuable clinical biomarker.
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Introduction

Inherited retinal diseases (IRDs) are a group of heterogeneous

conditions caused by pathogenic variants, typically leading to

progressive vision loss. Males with X-linked IRDs, such as X-

linked retinitis pigmentosa (XLRP) and choroideremia, experience

severe retinal degeneration and eventual central vision loss at later-

stages of disease. Female carriers of X-linked IRDs may present with

a spectrum of retinal changes ranging from near normal retinae to

severe retinal degeneration, the latter known as “male-pattern”

degeneration (Figure 1) (1–3). This variability in retinal

phenotype has been found to be attributed to X-chromosome

inactivation (4), involving the random inactivation of one of two

X-chromosomes in females (XX individuals) during early

embryonic development (5).

One possible factor and/or consequence for the phenotypic

heterogeneity seen in female carriers may be impaired vascular

blood supply causing oxidative stress and subsequent production of

reactive oxygen species, as seen in other degenerative conditions

such as age-related macular degeneration (6, 7). Disruption to

macular blood supply leads to hypoxia, retinal dysfunction, and

disease (8). In support of this theory, markers of oxidative stress

have previously been found in the aqueous humor of males with

XLRP (9), plasma of males with choroideremia (10), and in the

chmru848 zebrafish retina (11). However, further studies are required

to establish clear causalities. Decreased perfusion density and vessel

density in the superficial and deep capillary plexuses have been

previously reported in people with IRDs, such as retinitis

pigmentosa (12, 13), Stargardt disease (14, 15), and Best

Vitelliform Macular Dystrophy (16), compared to healthy

controls. Furthermore, people with choroideremia have also been
Frontiers in Ophthalmology 02
found to have reduced deep capillary plexus vessel density,

compared to healthy controls (17).

Although structural changes have been assessed in female

carriers, impaired blood flow in the retinal vessels or oxidative

stress have not been previously reported. There are currently

l imited studies reporting the integrity of the retinal

microvasculature in female carriers of IRDs. A single study assessed

retinal vascular structure in female choroideremia carriers and found

no difference in the superficial and deep capillary plexuses, compared

to healthy controls (18). Other studies have reported changes in

choriocapillaris blood flow in female carriers of X-linked IRDs (19,

20). Altered physiological retinal vascular responses may serve as a

biomarker of the risk of progression to sight-threatening disease.

Optical coherence tomography angiography (OCT-A) is an

imaging modality used to provide non-invasive, high-resolution

imaging of the retinal microvasculature. Motion contrast images are

produced by the movement of red blood cells in the retinal blood

vessels over sequential B-scans. OCT-A has been widely used to

assess the retinal microvasculature in different retinal diseases (21),

including diabetic retinopathy, macular degeneration, retinal vessel

occlusion, schizophrenia and bipolar disorder (22–25). Recently,

functional OCT-A has been used to dynamically assess retinal

vascular reactivity in healthy individuals (26–30) and people with

systemic disease (31–34). This technique involves inducing

physiological changes to elicit vasoconstriction or vasodilation to

assess the dynamic response of the retinal microvasculature.

Detecting subtle microvascular alterations prior to symptoms

manifestation could be advantageous for promptly diagnosing

and treating various rare or systemic conditions (22, 35, 36).

Hence, it could function as a versatile method employed by

numerous healthcare professionals across different disciplines.
FIGURE 1

Retinal disease spectrum of female carriers of X-linked retinitis pigmentosa and choroideremia. Fundus autofluorescence imaging illustrating grades
1-4 for each condition, as previously described by Edwards et al (1) (fine, coarse, geographic, and male pattern phenotypes, respectively) and Nanda
et al (2) (normal, radial, focal pigmentary retinopathy, and male pattern phenotypes, respectively).
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Functional OCT-A offers a distinct approach to visualizing and

measuring tissue activity that surpasses other imaging techniques

(37). This study aimed to evaluate the dynamic retinal

microvascular responses in female carriers of X-linked IRDs with

relatively mild retinal disease, using functional OCT-A.
Methods

This prospective case-control study and informed consent

process adhered to the tenets of the Declaration of Helsinki and

received ethical approval from the University of Melbourne Human

Research Ethics Committee (ID: 22809). Written informed consent

was obtained from each participant prior to commencement of the

study, which was undertaken at the Centre for Eye Research

Australia, Victoria, Australia. Participants were recruited between

November 2021 and January 2023.
Study setting

Female carriers of X-linked IRDs (RPGR-associated XLRP and

choroideremia), as confirmed by genetic testing, were referred by

ophthalmologists, ocular genetics clinics, or responded to

advertisements through the University of Melbourne and the

Royal Victorian Eye and Ear Hospital. Advertisements for healthy

age-matched female controls were distributed using the University

of Melbourne staff newsletter, and other contacts of the authors.

Sample size was calculated considering a 5% clinically

significant difference between the two cohorts in mean vessel

density and 5% standard deviation, based on previous work by

our team in individuals with diabetes (38). A minimum of 12 female

carriers of X-linked IRDs and 12 healthy women were required for

80% power and an alpha value of 0.05.
Inclusion and exclusion criteria

Participants were excluded if they had any of the following ocular

conditions: severe retinal disease (i.e., male pattern phenotype),

significant lens opacities (Lens Opacities Classification System III

(39) equal to, or more than, grade 2), high refractive error (spherical

equivalent above +4.00 or below -6.50 dioptres), glaucoma and/or

ocular hypertension, neuro-ophthalmic disease, and previous

intraocular surgery. Furthermore, participants were also excluded if

they had any of the following systemic conditions: diabetes,

uncontrolled hypertension (systolic >140 mmHg or diastolic >90

mmHg), inflammatory diseases, nephropathy, or other microvascular

complications. Smokers (>20 cigarettes per day) and pregnant

women were also excluded. Participants were also excluded if they

were taking any vasoactive medication.
Study design and interventions

Demographic data collected for all participants included age,

smoking status, known diseases (systemic and ocular), current
Frontiers in Ophthalmology 03
medication, history of intraocular surgery or trauma, symptoms

of hypoxia during previous airplane flights. Researchers were

unmasked to the carrier status of participants attending the

study visits.

Eligible participants were asked to refrain from smoking,

consuming caffeine and/or alcohol at least six hours prior to their

appointment to reduce any vasoactive effects (40). Participants were

randomly assigned into morning and afternoon appointments, to

reduce the effect of any diurnal variations in systemic or

ocular measurements.

All participants underwent an ophthalmic assessment

comprised of best corrected visual acuity , s l i t lamp

biomicroscopy, intraocular pressures (iCare TA01i tonometer,

iCare Finland Oy, Vantaa, Finland), wide-field retinal fundus

photography (Optos Daytona, Optos, Marlborough, MA, USA),

and ocular biometry for axial length measurements (Zeiss

IOLMaster 500, Carl Zeiss Meditec, Inc., Dublin, CA, USA). Body

mass index and baseline measurements of blood pressure and

oxygen saturation (SpO2) were also recorded.

The Zeiss Plex Elite 9000 (Carl Zeiss Meditec, Inc., Dublin, CA,

USA) device was used to capture OCT-A images. The 3x3 mm

angiography scans were captured at baseline and during the two

dynamic test procedures (Figure 2). The built-in projection artifact

removal software was used in order to increase the quality of the deep

plexus angiograms. High quality (signal strength > 8/10 and no

movement artefacts) images were captured at each time point for the

right eye, followed by the left eye. Participants were provided with a

10-minute break between the two tests to ensure recovery from the

handgrip test (41) before commencing the hypoxia challenge test.
Handgrip test (isometric exercise)
- vasoconstriction

The handgrip test protocol has been previously detailed (30).

The test is a sympatheticomimetic stimulus leading to a steady

increase in heart rate and blood pressure, causing a peripheral

vasoconstrictive response.

Following detailed explanation of the study procedure,

participants were placed in position on the OCT-A device with

their elbows flexed at 90°, wrist and thumb facing upwards.

Maximal grip force was measured prior to initiation of the

handgrip test using a hydraulic dynamometer (Baseline 12-0241

LiTE, Baseline®, United States). Participants sustained grip at one

third of their maximal grip force, for 3-5 minutes. OCT-A

acquisition (3x3mm images) commenced after 90 seconds of

continuous grip. A second clinician (CC, EC, or HK) measured

blood pressure and SpO2 every minute during the test. As per the

protocol, the test was ended if diastolic blood pressure was greater

than 120mmHg, or any adverse events were noted (42).
Hypoxia challenge test – vasodilation

The hypoxia challenge test was initially developed by the British

Thoracic Society (43) and has been previously reported in detail (30).
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Participants breathed a gas mixture of 99.993% nitrogen through a

40% flow Venturi mask (Intersurgical EcoLite™, Intersurgical,

Berkshire, United Kingdom) at 10L/min, corresponding to a

fraction of inspired oxygen (FiO2) of 15%. Blood pressure was

measured every 5 minutes from the initiation of hypoxic challenge,

and SpO2 was continuously monitored. Following 30 minutes of

hypoxic conditions, 3x3mm images were obtained for both eyes by a

second clinician (SG). Testing was terminated if the diastolic blood

pressure was greater than 120mmHg, or SpO2 was less than 90%.
Image analysis

Angiography images were exported for each test following

projection artifact removal. Images were excluded if they had

poor image quality (i.e., off-centre images, motion artefacts, or

inaccurate segmentation). Single images were captured to represent

each time point, due to the acquisition time of the macular scans

(~45-60 seconds). As the last to be captured, the left eye was used to

calculate perfusion density or otherwise known as vessel density

(VD) and vessel length density (VLD) for both superficial and deep

capillary plexuses, considering relatively longer exposure to the
Frontiers in Ophthalmology 04
challenge test, compared to the right eye. Deep capillary plexus, as

defined by the Zeiss Plex Elite, is a combination of the intermediate

and deep capillary plexuses. Right eye images were not used to

replace excluded left eye images. Images were analyzed using an

automated feature of Fiji (ImageJ2, version 2.9.0) (44, 45) to

binarize images (default, auto-threshold adjustment) and perform

vessel calculations automatically, in order to avoid measurement

bias associated with manual analysis (Figure 3). The Fiji software

‘measure’ function was used to calculate VD (ratio of white pixel by

total number of pixel). The ‘skeletonize 2D/3D’ and ‘measure

skeleton length tool’ plugins were used to skeletonize vessels and

calculate VLD. VLD values were converted to mm-1, based on the

total pixels and 3x3 mm area of the enface OCT-A images, as

previously described (46–48).
Statistical analysis

Statistical analyses were performed using GraphPad Prism

version 9.5.1 (GraphPad Software, Boston, MA, USA). Normal

distribution of values was tested using the Shapiro-Wilk test for

normality. Differences in participant age, baseline data, and
FIGURE 2

Study protocol. Baseline OCT-A images (*) were captured before each challenge test. Participants completed both challenge tests in the following
order: (i) Handgrip test (green arrows) was performed first: OCT-A images were captured following 90 seconds of gripping the hydraulic
dynamometer. A 10-minute break for recovery was provided after the handgrip test, and a second set of images were taken, to account for any
residual variation in the vasculature following the rest period. (ii) Hypoxia challenge test (blue, dotted arrows): OCT-A images captured following 30
minutes of breathing fraction of inspired oxygen (FiO2).
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systemic measurements (i.e., blood pressure, heart rate, and SpO2)

between female carriers and healthy controls were compared using

an unpaired t-test or Mann-Whitney test, as appropriate. Repeated

measures ANOVA was used to calculate changes in VD and VLD

between baseline and challenge test results. An alpha value of 0.05

was used to determine statistical significance.
Results

Nineteen female carriers of X-linked IRDs with positive genetic

test results were screened, however, 4 were excluded from

participation (2 carriers had diabetes, 1 carrier with high myopia,

and 1 due to vasoactive medication use). Thirty-six eyes from 15

genetically confirmed female carriers of X-linked IRDs (53%

choroideremia and 47% RPGR-associated retinitis pigmentosa) and

21 healthy women were studied. Four angiography images from each

participant group were excluded due to poor image quality. Baseline

data and demographics are summarized in Table 1. There were no

statistically significant differences in baseline parameters between

groups for participant age, systolic arterial pressure (SAP), diastolic

arterial pressure (DAP), heart rate (HR), body mass index (BMI),

axial length, and intraocular pressure (IOP). Best corrected visual

acuities were reduced in female carriers compared to healthy controls

(median -0.02 logMAR vs -0.1 logMAR, p=0.001), although this

difference was not clinically significant (carriers had 20/20 vision

while healthy controls had vision one line better than 20/20). Changes

in retinal vascular response compared to baseline in response to each

challenge test are illustrated in Figures 4, 5 (for raw values, see

Supplementary Table 1). At baseline, VD and VLD were not

significantly different between healthy controls and female carriers

for superficial and deep capillary plexuses (p>0.05) (Table 1).
Retinal microvascular response

Handgrip test
In healthy controls, superficial and deep capillary plexuses

demonstrated significant decrease in VD in response to the
Frontiers in Ophthalmology 05
handgrip test (p-values of 0.01 and 0.02, respectively), compared

to baseline (Figure 4). The superficial capillary plexus VLD

decreased during the handgrip test compared to baseline

(p=0.03). Although there was a trend towards a reduction in VLD

in the deep capillary plexus, this did not achieve statistical

significance (p=0.05). The female carrier cohort did not show the

expected vasoconstrictive response (VD or VLD) to handgrip in

either the deep capillary plexus or superficial capillary

plexus (p>0.05).

Hypoxia challenge test
In the healthy cohort, the deep capillary plexus significantly

increased in VD and VLD during the hypoxia challenge test (p-

values of 0.01 and 0.03, respectively), despite no statistically

significant changes in the superficial capillary plexus, compared to

baseline (p>0.05) (Figure 4). Female carriers of X-linked IRDs did

not show any statistically significant physiological retinal vascular

changes in response to hypoxic conditions (p>0.05) (Figure 4).
Systemic response

The expected physiologic systemic response was observed

during the handgrip test in both groups, with increases in SAP,

DAP, and HR, compared to baseline, which were not significantly

different between controls and female carriers. The expected

decrease in SpO2 was observed during the hypoxia challenge test

in both groups, however, there were no significant changes in SAP,

DAP, and HR, compared to baseline. Furthermore, these observed

changes were not significantly different between controls and

female carriers.
Sub-analysis of near normal
retinal phenotype

Dynamic retinal microvascular response of female carriers with

the mildest phenotype, near normal retinae (n=5), were compared

with that of healthy women. In response to the handgrip and
FIGURE 3

Step by step processing of OCT-A images. Images from a representative healthy control participant: (A) retinal angiogram of the superficial capillary
plexus, (B) binarized image (used for VD calculation), (C) skeletonized image (used for VLD calculation).
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hypoxia challenge tests, only a single carrier showed the expected

change in VD and VLD of the superficial and deep capillary

plexuses, as seen in healthy women. Whereas the remaining 4

had no significant changes in vessel density.
Discussion

This study aimed to assess dynamic retinal microvascular changes

in female carriers of X-linked IRDs with relatively mild retinal disease,

using a functional OCT-A protocol. Changes in physiological
Frontiers in Ophthalmology 06
conditions induced by isometric exercise and hypoxia elicited

significant changes in VD and VLD in healthy women, compared

to baseline. However, such dynamic retinal changes were not seen in

female carriers of X-linked IRDs, despite equivalent changes in

systemic measurements for SAP, DAP, HR, and SpO2 in both

participant groups. There were no significant differences between

VD and VLD between female carriers and healthy controls at

baseline. Accordingly, carrier status is associated with dysregulation

of the retinal vasculature as opposed to structural vascular

impairment. It follows that altered retinal vascular responses may

serve as markers of carrier status and potentially guide in

understanding the underlying vascular impairment in retinal disease.

Control participants in the current study demonstrated the expected

retinal vascular responses to both challenge tests, as reported by Sousa et

al. (33) On the contrary, Brinkmann et al. reported no significant

changes in retinal perfusion in the superficial and deep capillary

plexuses in healthy individuals following isometric exercise (49). These

differencesmay be attributed to differences in OCT-A imaging devices or

image analysis methods. The study by Sousa et al. used RTVue XR

Avanti OCT-A and the study by Brinkmann et al. used the Spectralis

OCT Angiography Module which both have different wavelength,

acquisition speed, and axial resolution to the Zeiss Plex Elite, used in

the current study (50). A study by Arya et al. compared VD and vessel

length density (i.e., VLD) between three OCT-A devices (RTVue XR

Avanti, Cirrus HD-OCT 5000, and Plex Elite 9000) and found

significant differences in OCT-A metrics (50). Therefore, comparison

of vessel density between different devices is not ideal due to differences

in accuracy, repeatability and reproducibility (50). The Zeiss Plex Elite

9000 has an axial (optical) and transverse resolution of 6.3µm and 20µm,

respectively, compared to the RTVue Avanti OCTA device which has an

axial and transverse resolution of 5µm and 15µm, respectively. These

differences in device specifications may influence overall image quality,

and certainly limit the ability to detect a change in vessel diameter of

small retinal capillaries. However, the aim of functional OCT-A is to alter

the threshold for detection of blood flowwithin the retinal microvascular

network, so that the blood flow of a retinal capillary close to this

threshold is more of less likely to be detected by the device with each of

the stimulus and therefore appear or not in the angiogram. The total

average change in the perfusionmetrics will reflect this. Furthermore, the

RTVue XR Avanti device provides automated calculations of VD, rather

than relying on manual calculations using third-party software (i.e.,

ImageJ). Currently, it is difficult to postulate which device and analysis

method is superior, as there is a need to determine which OCT-A device

and analysis method accurately represents true vascular metrics.

There are many methods available to elicit a dynamic response in

the retinalmicrovasculature. The handgrip test and hyperoxic conditions

have been previously used to induce retinal vasoconstriction (27, 30, 51,

52), while the flicker test and hypoxia have been reported to illicit a

vasodilatory response (27, 30, 53). Currently, these techniques are

limited to research use, however they may have clinical applicability

with standardization of methods and reporting of test findings. The

hypoxic challenge and handgrip tests were selected for the present study

as they are fast, inexpensive, reproducible, and easily deployed in most

clinical settings. The hypoxia challenge test is standardized by the British

Thoracic Society to assess whether individuals with stable respiratory

disease are suitable for a long-haul flight by exposing them to reduced
TABLE 1 Demographics and baseline data for healthy women and
female carriers of X-linked IRDs.

Parameter (mean
± SD)

Controls
(n=21)

Female
carriers
(n=15)

P
value

Age, yearsa 45 (30 – 54) 48 (32.5 – 55) 0.99

SAP, mmHg 115 ± 12 118 ± 14 0.62

DAP, mmHg 80 ± 11 80 ± 8 0.96

HR, bpm 72 ± 12 73 ± 11 0.86

BMI 25.05 ± 5.29 26.87 ± 6.16 0.36

Axial length, mm 23.81 ± 1.10 23.24 ± 0.92 0.12

Visual acuity, logMARa -0.10 (-0.16
– -0.06)

-0.02 (-0.08
– 0.13)

0.001

IOP, mmHg 15.26 ± 2.49 15.01 ± 2.94 0.78

Baseline superficial capillary plexus

- Vessel density, %
- Vessel length density,

mm-1

24.56 ± 3.10
11.89 ± 1.79

25.87 ± 3.75
12.75 ± 2.16

0.27
0.21

Baseline deep capillary plexus

- Vessel density, %
- Vessel length density,

mm-1

30.91 ± 2.90
16.11 ± 1.70

28.84 ± 3.84
14.89 ± 2.22

0.08
0.08

Retinal severity gradingb – Grade 1: 5
(33%)
Grade 2: 8
(53%)
Grade 3: 2
(13%)
Grade 4: 0 (0%)

–

Refractive error OD: -1.25 ± 2.50
OS: -1.00 ± 2.50

OD: -0.25 ±
2.50
OS: -0.25 ± 2.75

0.14
0.14

OCT-A signal strengthc 8.3 ± 0.7 8.8 ± 0.6 0.02
aValues represented as median (interquartile range).
bSeverity scale score of 1-4 used to capture retinal phenotypic spectrum from near normal
retinae to severe retinal degeneration based on classification introduced by Nanda et al (2) for
RPGR-associated RP and Edwards et al (1) for CHM.
cOCT-A signal for left eye only, as these images were used in the analysis.
Statistically significant values are in bold.
Unpaired t-test and Mann-Whitney test were used to compare the two groups for normally and
non-normally distributed parameters, respectively. Visual acuity was not clinically significant
(carriers had 20/20 vision while healthy controls had vision one line better than 20/20).
BMI, body mass index; DAP, diastolic arterial pressure; HR, heart rate; IOP, intraocular
pressure; OCT-A, optical coherence tomography angiography; SAP, systolic arterial pressure,
SD, standard deviation.
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oxygen levels similar to those encountered in an airplane cabin (54). The

handgrip test is used to assess cardiovascular autonomic function (42),

and has been used for a wide variety of clinical indications (33, 51, 52).

Despite their convenience, both tests have their limitations. It may be

challenging for some individuals to sustain the required handgrip for the

duration of the test. The relatively longer duration of the hypoxia

challenge test can limit its use in some contexts and the Venturi mask

may restrict positioning of the participant at the OCT-A device. These

limitations were not problematic in the current study, and we did not

have any adverse events using either technique.

The two groups in the current study were well matched for age,

gender, BMI, systemic cardiovascular measures, axial length, and IOP.

Best-corrected visual acuity was slightly lower in controls than in

carriers, however this difference was not clinically significant (logMAR

of -0.10 in controls and -0.02 in female carriers, p=0.001). Most carriers

in the current study had grade 1 (33%) or 2 (53%) retinal disease

severity, which are mild retinal phenotypes. Although the results of the

current study may not be applicable to all retinal phenotypes seen in

carriers, they suggest that vascular dysregulation is manifest in carriers

with mild retinal disease, potentially indicating that this may be a

manifestation of carrier status. Longitudinal studies are needed to

establish a causal relationship between vascular dysregulation and
Frontiers in Ophthalmology 07
retinal phenotype severity. A sub-analysis of the mildest, grade 1

female carriers (n=5) showed that only a single carrier had the

expected physiological response to the challenge tests, while the

remaining four carriers did not. Statistical analyses were not

performed due to the limited sample size, however, this further

suggests that vascular reactivity may be impaired in the presence of

the disease-causing genetic variant, despite the degree of retinal disease

severity. Future studies should consider a larger sample size to

determine whether retinal disease severity impacts vascular reactivity.

Conducting this study protocol on female carriers with severe retinal

phenotypes is likely to be precluded by impaired fixation due to visual

impairment and the confounding effects of marked structural

alterations seen in individuals with severe retinal degeneration.

Therefore, female carriers with male-pattern degeneration were not

included in the current study, but it may be of interest in future studies

if the image acquisition challenges can be addressed.
Limitations

The small number of female carriers of X-linked IRDs in the

current study is attributable to several factors: (i) RPGR-associated
FIGURE 4

Change in vessel density (top) and vessel length density (bottom) of female carriers and healthy controls during the handgrip test and hypoxia
challenge test, compared to baseline. Lines represent mean values and 95% confidence intervals. Asterisks represent statistically significant changes
in vessel density and vessel length density after the challenge test, compared to baseline: * p<0.05; ** p<0.01.
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XLRP and choroideremia are rare conditions; (ii) female carriers do

not undergo routine genetic testing, and genetic confirmation of

carrier status was required for participation in the study; and (iii)

strict inclusion and exclusion criteria further limiting the number of

eligible carriers. The genetic cause and underlying cellular

dysfunction differ between RPGR-associated XLRP and

choroideremia. However, since female carriers of both conditions

present a spectrum of retinal disease severity, the current study was

interested in the effect of carrying the disease-causing gene on

vascular reactivity without obvious severe retinal degeneration (i.e.,

male pattern phenotype). Future studies with additional carriers of

both conditions are required to compare each condition against

healthy controls. Precisely why some carriers exhibit a more severe

retinal phenotype is poorly understood. The current findings

suggest that aberrant retinal vascular regulation may be

biomarker for female carrier status. Longitudinal assessment of

carriers from a young age may clarify whether the degree of vascular

dysregulation may predict female carrier phenotypic severity.

As an inherent limitation of OCT-A, VD and VLD are not true

representations of blood flow (55, 56). However, several studies

have previously used such parameters to represent vasodilation and

vasoconstriction (26, 27, 29, 32, 51, 57, 58). There are currently
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several limitations to reporting of OCT-A findings due to: (i)

motion artifacts, projection artifact removal and segmentation

errors seen in eyes with different retinal diseases using current

OCT-A devices (59); and (ii) the absence of a standardized system

for image acquisition and analysis. As discussed, different OCT-A

device platforms have different performance metrics and

operational parameters which can make inter-device comparisons

challenging. Furthermore, there are differences in the quantitative

results obtained for a given image set using different software

packages such as the Zeiss ARI Network (60), ImageJ, MATLAB,

or automated values obtained from select imaging devices. Different

methods were compared and automated ImageJ analysis was found

to be the most reliable and repeatable. A study by Ishii et al. found

that foveal avascular zone calculations measured by an automated

software in ImageJ is comparable to manual measurements, and

significantly different to the values measured using tools available

on the Zeiss ARI Network (61). Therefore, we recognize the need

for a standardized method for analyzing and reporting OCT-A

findings as well as validated methods to enable comparisons

between devices. Prior studies have commonly employed the

practice of averaging multiple OCT-A images to enhance the

precision of quantifying vascular measures (38, 62). However, in
FIGURE 5

Examples of superficial capillary plexus images for participants. Top three panels are retinal angiography images of a 39-year-old healthy control and
vessel density (VD) and vessel length density (VLD) measurements for: (A) baseline, (B) handgrip, and (C) hypoxia. Bottom three panels are retinal
angiography images of a 55-year-old female carrier with coarse retinal phenotype and VD and VLD measurements for: (D) baseline, (E) handgrip,
and (F) hypoxia.
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the current study, achieving this was not feasible, as the retinal

response triggered by the 90-second handgrip test would dissipate

within the time required for acquiring multiple images

(approximately 45-60 seconds per image). For functional OCT-A

to be applied in clinics, the technology should be optimized to

reliably provide repeated measures of VD and VLD within the same

subject and in maculae with retinal disease. We suggest that in

addition to the eye tracking feature enabling follow up imaging,

matching greyscale between angiography scans within the same

subject is an important feature for quantification of OCTA metric

between repeated measures.
Conclusion

This study reiterates the value of functional OCT-A for detecting

changes in retinal vascular regulation in the absence of retinal

vascular network abnormalities. Our findings suggest female

carriers of X-linked IRDs exhibit subclinical impairment of

physiological retinal vascular responses, which may indicate retinal

microvasculature sensitivity to presence of the disease-causing variant

on the X chromosome. Although the causal relationship between

vascular changes and genetics remains unclear, our study suggests

these dynamic vascular changes may serve as a biomarker for disease

severity and prognosis in female carriers.
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