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Membrane-anchored proteins play critical roles in cell signaling, cellular

architecture, and membrane biology. Hydrophilic proteins are post-

translationally modified by a diverse range of lipid molecules such as

phospholipids, glycosylphosphatidylinositol, and isoprenes, which allows their

partition and anchorage to the cell membrane. In this review article, we discuss

the biochemical basis of isoprenoid synthesis, the mechanisms of isoprene

conjugation to proteins, and the functions of prenylated proteins in the neural

retina. Recent discovery of novel prenyltransferases, prenylated protein

chaperones, non-canonical prenylation-target motifs, and reversible

prenylation is expected to increase the number of inherited systemic and

blinding diseases with aberrant protein prenylation. Recent important

investigations have also demonstrated the role of several unexpected

regulators (such as protein charge, sequence/protein-chaperone interaction,

light exposure history) in the photoreceptor trafficking of prenylated proteins.

Technical advances in the investigation of the prenylated proteome and its

application in vision research are discussed. Clinical updates and technical

insights into known and putative prenylation-associated retinopathies are

provided herein. Characterization of non-canonical prenylation mechanisms in

the retina and retina-specific prenylated proteome is fundamental to the

understanding of the pathogenesis of protein prenylation-associated inherited

blinding disorders.
KEYWORDS

post-translational modifications, mevalonate pathway, retina, prenylation, farnesylation,
geranylgeranylation, inherited retinopathies
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1 Introduction

Post-translational modifications (PTMs) of proteins are

covalent chemical modifications of target peptide motifs which

influences protein folding, structure, stability, localization, protein-

protein interactions, and function (1, 2). Protein lipidation is a class

of PTMs involving enzymatic conjugation with various lipid

molecules such as cholesterol (3), phospholipids (4) ,

glycosylphophatidylionositine (GPI), and isoprenes (5). Protein

lipidation facilitates protein anchorage to the plasma membrane,

protein-protein interactions, and membrane-cytoskeleton

interaction (6, 7). The focus of this review article includes

isoprene-modification of proteins, and inherited retinal

dystrophies with underlying protein prenylation defects.

Protein prenylation involves thioether linkage of an isoprenoid

molecule, either a 15-carbon farnesyl pyrophosphate (FPP) or a 20-

carbon geranylgeranyl pyrophosphate (GGPP), to one or more

cysteine residues of a carboxy terminal target peptide motif (8–

10). The biological role of prenylation is best known in the context

of cancer biology. Ras GTPases, well-known prenylated protein

targets, play critical roles in signal transduction, cell growth, and are

implicated in various forms of cancer and cancer progression. For

review of Ras prenylation, the reader is referred to the following

review articles (11, 12).

In this review, we aim to provide a thorough background of protein

prenylation mechanisms, recent advances in approaches to study

protein prenylation, and to discuss the role of prenylated proteins in

retinal physiology and pathology. We also discuss putative approaches

for determining prenylated proteome in the retina.
1.1 Biochemical basis of protein
prenylation: de novo synthesis of
isoprenes, and signal sequence-dependent
enzymatic prenylation

The lipid moieties required for protein prenylation, FPP and

GGPP, are key isoprenoid intermediates of the mevalonate/

cholesterol synthesis pathway (Figure 1). Briefly, acetyl-CoA is

converted to HMG-CoA in a sequential manner catalyzed by

ACAT1, ACAT2, and HMG-CoA synthase 1 (HMGCS1), which is

then converted to mevalonate by HMG-CoA reductase (HMGCR)

(13). HMGCR is the rate-limiting step in the mevalonate pathway and

is the mechanistic target of statins, a commonly used drug used in the

treatment of hypertension and hypercholesteremia (14). Mevalonate

kinase (MVK) catalyzes the phosphorylation of mevalonic acid to

phosphomevalonate and is subject to feedback inhibition by

downstream isoprene intermediates like geranylpyrophosphate

(GPP), FPP, and GGPP (15). Phosphomevalonate is converted to

isopentenyl pyrophosphate (IPP) by phosphorylation and

decarboxylation, catalyzed by phosphomevalonate kinase (PMK) and

mevalonate pyrophosphate decarboxylase (MPDC), respectively (16).

IPP undergoes reversible isomerization to dimethylallyl pyrophosphate

(DMAPP). The condensation of IPP and DMAPP results in the 10-

carbon isoprenoid geranyl pyrophosphate (GPP). Subsequent

condensation of 1 or 2 more IPP units to GPP yields the 15-carbon
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and the 20-carbon isoprenoids FPP and GGPP, respectively (17). Key

mevalonate pathway intermediates IPP, FPP, and GGPP feed into the

synthesis of squalene, dolichols, ubiquinone, sterols and derivative

steroid hormones, as well as protein prenylation (18). A schematic

representation of isoprene synthesis through the mevalonate pathway

is provided in Figure 1.

After isoprenoid generation, irreversible prenylation is

catalyzed by protein farnesyltransferase (FTase) or protein

geranylgeranyltransferase type I (GGTase-I), which differ in target

carboxy-terminal signal peptide recognition and the isoprenoid

substrate (9). FTase catalyzes the addition of farnesyl

pyrophosphate (FPP), while GGTase-I catalyzes the addition of

geranylgeranyl pyrophosphate (GGPP, Figure 1) (8–10, 19, 20). The

C-terminal recognition motif for prenylation is the CAAX (also

referred to as Ca1a2X) domain, in which ‘C’ is the cysteine to be

prenylated, ‘A’ is any aliphatic amino acid, and ‘X’ is an amino acid

which determines enzyme specificity (8, 21, 22). The target motifs

for FTase typically have serine, methionine, alanine, or glutamine at

the X residue position, while GGTase-I usually recognizes leucine or

phenylalanine. Some substrates may also be recognized by both

enzymes as targets for prenylation (23–26). Recent studies have

shown that proteins terminating in C(X)3X and CXX may also

potentially be substrates of FTase, where X represents any amino

acid (27–29).

Following prenylation at the cysteine residue in the target motif,

most prenylated proteins then undergo two additional modifications

before transport to the cell membrane. First, the terminal -AAX

residues are cleaved by the CAAX proteases Ras converting enzyme

1 (RCE1P) or zinc metallopeptidase (STE24). The resulting carboxylate

then undergoes methylation by the S-adenosylmethionine-dependent

isoprenylcysteine methyltransferase (ICMT) to form a post-

translationally modified prenylcysteine methyl ester C-terminus on

the protein (30, 31) (Figure 1). The three steps (prenylation, proteolytic

cleavage, and methylation) described above are necessary for function

of most prenylated proteins but recently it has been found that heat

shock protein chaperone Ydj1p in yeast undergoes prenylation without

subsequent proteolysis or methylation in what has been deemed the

“shunt pathway”, with evidence of these processing steps actually being

deleterious to the protein’s function (32).

The other enzyme responsible for the transfer of 20-carbon

geranylgeranyl-group from GGPP to the target motif is termed

geranylgeranyltransferase type II (GGTase-II). GGTase-II is unique

in that it can modify diverse C-terminal motifs from the Rab family of

proteins including CCXX, CXC, or XXCC, where cysteine residues

undergo geranylgeranylation and X represents any amino acid (33–36).

GGTase-II also requires Rab escort protein (REP) for substrate

recognition. REP binds to the substrate motif to be prenylated and

presents the catalytic site of GGTase-II for prenylation (37). Recently, a

fourth non-canonical prenyltransferase, GGTase-III, was identified

which adds a second isoprenoid geranylgeranyl group onto a pre-

farnesylated protein substrate with a -CCFarAIM C-terminal motif (38,

39). Interestingly, a chemical proteomic study described the discovery

of non-canonical prenylated protein, ALDH9A1, which lacks any

classic prenylation motif (40). Moreover, this modification was found

to be reversible and not inhibited by known prenyltransferase

inhibitors suggesting the possibility of a yet-to-be identified
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prenyltransferase (40). Single cell RNA seq data analysis of the

developing mouse retina (41, 42) suggests the expression of this non-

canonical prenylated protein in majority of cell types in the developing

retina. Taken together, the discoveries of non-canonical C-terminal

sequences for FTase recognition, GGTase-III, and the possibility of

other non-canonical prenyltransferases have challenged our

understanding of this modification and have greatly expanded the

potential pool of prenylated proteins.
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1.2 The molecular basis of
prenyltransferase specificity

The mechanistic understanding of the isoprene substrate (FPP

vs. GGPP) specificity of prenyltransferases stems from structural

studies, structure-function studies, peptide library studies,

computational approaches, radiolabeling, and affinity tagging

approaches (22, 43–45). Both FTase and GGTase-I are
FIGURE 1

Schematic representation of the biochemical requirements and processes involved in protein prenylation. The mevalonate/cholesterol synthesis
pathway is required for the generation of the isoprene moieties (FPP and GGPP) required for protein prenylation. A detailed description of the pre-
squalene pathway essential for de novo synthesis of isoprenes has been described in Section 1.1. The prenyl groups are then conjugated to target
motifs by the action of prenyltransferases (FTase or GGTase). Following prenylation, the target protein undergoes sequential proteolysis (by RCE1),
and subsequently methylated before protein maturation and chaperone-mediated membrane trafficking. Alternatively, some prenylated proteins
remain cytosolic, through the shunt pathway; without further trafficking to the plasma membrane.
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heterodimeric metalloenzymes consisting of an identical a subunit

and distinct, homologous b subunits (46–48). The isoprene-binding

site of both enzymes is constituted by the interface of the a and b
subunits, and predominantly consists of amino acid residues of the

b subunit. The isoprene binding pocket of both GGTase-I and

FTase is lined with conserved aromatic residues. The selectivity of

FTase for the shorter FPP (5 carbon) substrate is explained by the

presence of bulky tryptophan and tyrosine residues of the b subunit

(W102 and Y365), within the FPP binding pocket. This blocks the

binding of the larger 20-carbon GGPP prenyl moiety (47).

To identify the prenyltransferase enzyme and target protein

interactions responsible for substrate selectivity, a series of peptide

substrates were co-crystallized with each prenyltransferase (26). This

study revealed that the various CAAX sequences bind and interact

along one face of the funnel-shaped peptide-binding site in both

prenyltransferases except for the C-terminal X residue. FTase utilizes

two complementary binding pockets for the X residue depending on

the identity of that residue. For example, an X residue of S, Q and M

interacts with a binding pocket comprised of Y131a, A98b, S99b,
W102b, H149b, A151b and P152b, while F, L, H and N residues

interact with a separate binding pocket comprised of residues L96, S99,

W102,W106, A151 of the b subunit (26). GGTase-I differs greatly in its
X residue specificity in that it is composed of one binding pocket which

contains the residues T49, H121, A123, F174 of its b subunit. GGTase-I
appears to prefer hydrophobic residues at the X position in its target

substrates (26). Taken together, differential binding of

prenyltransferases for the X residue in the CAAX domain, and the

presence or absence of bulky residues in the isoprene-binding site of

FTase and GGTase-I underlie the difference between protein

farnesylation and geranylgeranylation.
2 Protein prenylation in the
neural retina

The discovery of farnesylation of rod transducin gamma

subunit in the early 1990s (49) spurred a series of protein

biochemistry and pharmacological studies investigating protein

prenylation in the retina, especially photoreceptor (PR) cells.

Investigations of protein prenylation-associated retinopathies

(discussed in sections below) have also provided critical insights

into the retinal functions of prenylated proteins. We first discuss

some important pharmacological and protein engineering

approaches that have provided general insights into the role and

requirement of protein prenylation in the neural retina.

Several upstream inhibitors of mevalonate pathway are known to

suppress protein prenylation by depleting the cellular isoprene pool. The

best-known class of drugs that impact protein prenylation are statins.

Statins block HMG-CoA reductase activity, the rate limiting step thus

decreasing the pathway flux, and thereby decreasing the levels of

intermediate isoprenes. Statins mimic the natural substrate molecule,

HMG-CoA, and competitively inhibit HMG-CoA reductase (50).

Statins therefore inhibit the synthesis of a broad range of important

isoprenoid metabolites. Intravitreal injection of lovastatin led to early

changes in the structural organization of the neural retina characterized

by formation of rosette-like arrangements of PRs and eventually necrosis
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of the retina by 4 days (51, 52). Surprisingly, pharmacological inhibition

of downstream squalene epoxidase in the neural retina, by intravitreal

injection of NB-598 did not lead to acute retinal dystrophy despite

cholesterol synthesis inhibition (51, 52). Retinal sensitivity to intravitreal

injection of lovastatin was found to be due to defective protein

prenylation in the retina, suggesting an indispensable role of protein

prenylation in retinal development (51, 52).

Other small molecule inhibitors of mevalonate pathway targeting

farnesyl diphosphate synthase (FPPS) and geranylgeranyl diphosphate

synthase (GGPPS) like the nitrogen-containing bisphosphonates (N-

BPs) and their analogues have been studied in the setting of lytic bone

disease and cancer (53, 54). Prenyltransferases have been extensively

targeted for developing cancer therapeutic compounds such as

tipifarnib (FTase inhibitor) and GGTI-2418 (GGTase-I inhibitor)

(55–57). The effect of such inhibitors in the developing and mature

retina has not been studied, and may provide key insights into the

function of prenylated proteins in retinal development and/or retinal

pathologies. Post-prenylation enzymes RCE1P, STE24, and ICMT

inhibitors have also been of interest as cancer therapeutic strategies

(58), but their effects on the retinal structure and function remains to be

investigated. Conditional gene deletion strategies or small molecule

inhibitor studies are necessary to further elucidate the role and

requirement of FTase, GGTase-I, FPPS, GGPPS, and post-

prenylation processing enzymes in the maintenance of normal

retinal structure and function. Given that protein prenylation is

essential in all tissues and cell types, including those in the retina,

one may expect pan-retinal expression of critical players of protein

farnesylation and geranylgeranylation. We used publicly available

datasets and transcriptome datamining tools to demonstrate the

expression of key players of protein prenylation pathway in

essentially all retinal cell types of the developing murine retina (41,

42) (Figure 2).

The mechanism behind the distribution of prenylated targets in

rod PRs was explored by Maza and coworkers using chimeric

fluorescent probes consisting of different prenyl groups (farnesyl vs.

geranylgeranyl), and charged or neutral amino acids upstream of the

prenylation site (59). It was shown that prenylated fluorescent protein

probes exhibit weak membrane binding and are dynamic in their

distribution, suggesting that the membrane compartmentalization

mechanisms are not dependent on the nature of the lipid moiety

alone (59). Endogenously prenylated proteins may be targeted more

efficiently to the cell membrane by interacting with dedicated

chaperones. The connecting cilium is suggested to act as an active

sorting platform, facilitating the interaction of the target prenylated

protein with prenyl-binding chaperones like PrBPd, for efficient

trafficking to the rod outer segment (59). Positively charged

prenylated proteins were enriched in the synapse and inner segment

(IS) compared to their negatively charged counterparts (59). The

absence of positively charged prenylated probes from the outer

segment (OS) was initially attributed to the stronger binding at

nascent and basal discs at the OS-IS junction. However, this

behavior was found to be rather dynamic as photobleaching resulted

in the decline of signal strength at the OS-IS junction suggesting a

nuanced mechanism of compartmentalization that balances specific

interactions with dynamic redistribution (59). Lastly, it was shown that

PrBPd, a chaperone for trafficking prenylated proteins to the outer
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segment, is dependent on specific structural elements beyond just the

prenylated site (59). In summary, trafficking of prenylated proteins in

PRs is dependent on prenyl-lipid moiety, charge on the upstream

amino acids, prenylated cargo interaction with appropriate chaperones

for efficient membrane targeting and may be even influenced by

light exposure.
3 Protein-prenylation associated
inherited retinopathies

We have discussed the biochemical basis of protein prenylation,

the cellular requirement of de novo synthesis of isoprenes, and

provided some insights into protein prenylation in the retina. An

excellent, comprehensive review by Roosing et. al., covered this

topic of interest nearly a decade ago (5). We herein provide the

background and updates on protein prenylation-associated

inherited retinal diseases, and insights from transgenic mouse

models of retinal prenylopathies.
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3.1 Choroideremia (OMIM #303100)

The first-described example of prenylation defect-induced

visual system dysfunction was X-linked choroideremia, wherein

point deletion mutation in the gene CHM/REP1 (Chromosome X,

location: Xq21.2), encoding Rab escort protein 1 (REP-1) was

identified. REP-1 serves as a chaperone for several Rab proteins

and is a crucial accessory protein for GGTase-II. Mutations in REP1

causes progressive mid-peripheral atrophy of the retina, RPE and

the choroid, resulting in progressive vision loss, ultimately leading

to blindness (60). More specifically, male patients initially present

with night blindness in childhood, which then advances to

peripheral visual field impairment and ultimately to total

blindness later in life (61). Whereas female carriers are usually

asymptomatic but may exhibit a unique speckling pattern on

fundus autofluorescence imaging, and sometimes night blindness

as well (62).

REP-1 chaperones unprenylated Rabs and presents the cargo to

GGTase-II for geranylgeranylation (63, 64). REP-1 deficiency leads
FIGURE 2

Expression of protein prenylation players in the developing retina. Prenylation is necessary for the maintenance of all retinal cell types, and hence the
maintenance of normal retinal structure and function. Query of publicly available mouse retinal single-cell RNAseq dataset (41) using a simple, user-
friendly, open source RNA-seq data mining platform (42) demonstrates the expression of key mevalonate pathway players, prenyltransferase
subunits, proteases, methyltransferase in essentially all cell types of the developing murine retina (between E11 to PN 8 days).
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to the accumulation of unprenylated Rab proteins in the retina (65).

Immunolabeling studies showed that REP-1 is expressed in both

rods and cones, predominantly in the inner segment and the

perinuclear cytoplasm (66). Interestingly, while CHM gene

expression is found in extraocular tissues as well, the gene

mutation predominantly affects the retina and choroid in

patients. This is due to shared functional redundancies between

REP-2, which may partially compensate for the geranylgeranylation

of Rab GTPases in extraocular tissues (67). For example, it was

shown that while Rab27a exhibits a similar affinity for REP-1 and

REP-2, REP-1-Rab27a complex (Figure 3) has a greater preference

for GGTase-II compared to the REP-2-Rab27a complex in the

retina (69).

The notion of CHM manifesting as a non-syndromic

retinopathy has been challenged recently (70). Whole

metabolomic analysis of plasma samples from 25 CHM patients

versus age- and sex-matched controls showed plasma alterations in

oxidative stress-related metabolites, in addition to alterations in

tryptophan metabolism, leading to significantly elevated serotonin

levels (70). Lipid metabolism was found to be disrupted in CHM

patients with evidence of dysfunctional lipid oxidation, and

dyshomeostasis in several sphingolipids and glycerophospholipid

levels (70). Aberrations in sphingolipid metabolism has been

implicated in neurodegenerative diseases, metabolic disorders,

immune function, and cancer (71).
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Several preclinical and clinical studies targeting CHM have

yielded important insights into factors that affect developing

effective therapeutic interventions (72–78). In vivo studies on

CHM gene transfer utilizing HIV-based lentiviral vectors led to a

decrease in the geranylgeranylated Rab protein load. However, this

approach also showed limited transfection of PRs by lentiviral

vectors (73). Alternatively, adeno-associated virus (AAV) vectors,

such as adeno-associated virus serotype 2 (AAV2) mediated

delivery of CHM have been shown to achieve efficient

transduction of REP1 in PRs and RPE, with an acceptable safety

profile (72, 79–81). However, recent results from phase III of the

Efficacy and Safety of BIIB111 for the Treatment of Choroideremia

(STAR) trial did not meet the primary endpoint of best-corrected

visual acuity (BCVA) for FDA approval. The work highlights the

need to consider the stage of disease, anatomical differences,

surgical variability, and dose administration among participants

(76). Gene therapy for choroideremia may still provide significant

visual acuity gains if treated early. Episomal scaffold/matrix

attachment region (S/MAR)-based plasmid vectors carrying the

human CHM gene in CHM patient-derived fibroblasts and a CHM

mutant zebrafish model showed some promise. This may provide

an alternative delivery strategy for gene augmentation in CHM

patients (82).
3.2 Phosphodiesterase 6 subunits and
its interactors

3.2.1 Phosphodiesterase 6 subunits
(OMIM #613801)

Proteins of the sixth family of type I cyclic nucleotide

phosphodiesterases (PDE6) are key effector enzymes in the

phototransduction cascade in rod and cone PRs (83, 84). PDE6

isoforms are regulated by small inhibitory g-subunits (Pg); G-
protein mediated disinhibition is vital for PDE6 activity and the

phototransduction cascade (84). Rod PDE6 complex is composed of

a catalytic PDE6A/B heterodimer and two copies of PDE6G (or Pgr)
(Figure 4), whereas cone PDE6 is a homodimer of catalytic PDE6C

subunits each associated with the cone specific Pgc subunit.
PDE6 complex assembly occurs in the inner segment of PRs

including complex formation with HSP90 and AIPL1 co-

chaperones. Moreover, the Pg subunit of transducin also plays a

critical chaperone-like role in PDE6 complex formation and was

found to cause rapid retinal degeneration in Pg-deficient knockout
mouse model (85, 86). The prenylated and processed CAAX motif

on the g subunit serves to enhance membrane binding of the

transducin- bg dimer (Figure 5). It was shown that in contrast to

the cone PDE6, the rod PDE6A/B requires Pg for proper folding

and maturation (87). While rod PDE6A is farnesylated, the rod

PDE6B subunit and cone PDE6 undergo geranylgeranylation (88,

89). Prenylation facilitates membrane attachment of PDE6 complex

and enhances its binding with AIPL1 (90, 91). Rod PDE6A/B not

only requires prenylation for membrane trafficking to the outer

segment of the retina, but it is also dependent on post-processing by

RCE1 (92). Loss of carboxymethylation following prenylation and

proteolytic processing does not hinder trafficking of PDE6 complex
FIGURE 3

Predicted REP1-RAB27 dimer complex. REP1 (Uniprot ID: P24386) is
a chaperone required for presenting Rab27 (Uniprot ID: P51159) to
GGTase-II for prenylation at the CXC domain. REP1-Rab27 protein-
protein interactions (highlighted in blue) represent predicted binding
contacts. Loss of this interaction inhibits the prenylation of the
target cargo. Figure generated using ChimeraX (68).
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to the outer segments, but still leads to PR degeneration in an Icmt

homozygous knockout mouse model (93). Mutations in rod PDE6

are responsible for a small subset of autosomal-recessive RP cases

(OMIM #613801) (94, 95). A recent animal model of autosomal
Frontiers in Ophthalmology 07
recessive achromatopsia (OMIM #613093) highlighted the critical

role of prenylation of the catalytic subunit of cone PDE6 (96).

Notably, this study showed that cones from homozygous mutants

exhibited functional deficits, whereas heterozygous mutant cones

were functional. In addition, cones from homozygous mutants

displayed structural deficits suggesting a potential role for PDE6

in maintaining cone OS length and morphology (96).
3.2.2 Prenyl binding protein d (OMIM #615665)
Prenyl-binding protein (PrBP/d) is a 17 kDa ubiquitous

solubilization factor involved in intracellular trafficking of both

farnesylated and geranylgeranylated proteins (97–99). It was first

discovered in PR cells as the fourth subunit of cGMP

phosphodiesterase 6 (PDE6), hence also termed PDE6d (97). The

crystal structure of PrBP/d unveiled a hydrophobic pocket between

two beta sheets, facilitating the insertion of prenyl groups (100). As

an illustration, we have provided the predicted dimerization of

PrBP/d and Rab28 highlighting the hydrophobic interactions

between the two proteins (Figure 6). In PR cells, PrBP/d traffics

prenylated cargo such as PDE6, Rab28, and rhodopsin kinase

(GRK1) from the site of protein synthesis (inner segment) to the

retinal outer segment, and its homozygous deletion causes slow,

progressive rod-cone dystrophy (101, 102). AlphaFold2/ChimeraX

simulation of PrBP/d-GRK1 complex is provided in Figure 7. PrBP/

d was also reported to interact with the prenylated RPGR (retinitis

pigmentosa GTPase regulator) isoform, RPGR1-19 (103, 104).

Mutations in PDE6D are associated with Joubert Syndrome

(JBTS) (OMIM #615665), a complex neuronal ciliopathy

characterized by developmental cerebellar malformations and

accompanying retinal degeneration (105, 106).
FIGURE 5

Predicted Rod transducin bg dimer complex. Transducin bg dimer is
essential for phototransduction. The b (Uniprot ID: P62873) and g
(Uniprot ID: P63211) subunit protein-protein interactions
(highlighted in blue) represent predicted binding contacts. The
prenylated and processed CAAX motif on the g subunit serves to
enhance membrane binding. Figure generated using ChimeraX (68).
FIGURE 4

Predicted Rod PDE6 tetramer complex. The rod PDE6 complex is
composed of a catalytic PDE6A (Uniprot ID: P16499) and PDE6B
(Uniprot ID: P35913) heterodimer with their respective C-terminal
prenylation motifs and two copies of small inhibitory g-subunits
(Uniprot ID: P18545). Figure generated using ChimeraX (68).
FIGURE 6

Predicted PrBP/d-RAB28 dimer complex. PrBP/d (Uniprot ID:
O43924) was recently identified as a Rab28 (Uniprot ID: P51157)
protein interactor, which is farnesylation dependent. This interaction
allows for the trafficking of Rab28 protein. Figure generated using
ChimeraX (68).
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Several groups showed that PrBP/d function enhances ciliary

targeting of INPP5E, a farnesylated protein implicated in JBTS

(OMIM #213300) and Intellectual disability-truncal obesity-retinal

dystrophy-micropenis syndrome (OMIM #610156) (105, 107, 108).

It is important to note, however, that while the interaction between

PrBP/d and INPP5E is farnesylation dependent, the ciliary targeting

of INPP5E is complex and relies on the interplay of four other

ciliary localization signals (109). Recently, an affinity proteomics

study identified a novel set of PrBP/d-interacting prenylated

proteins that are involved in PR integrity, GTPase activity,

nuclear import, or ubiquitination (110). The prenylated protein

interactors identified include ciliogenesis factors such as FAM219A,

serine/threonine-protein kinase NEM1 (NIM1K), and ubiquitin-

like protein 3 (UBL3) (110).
3.3 Aryl-hydrocarbon-interacting protein-
like 1 (AIPL1) (OMIM #604393)

Several frameshift, missense, and nonsense mutations in the

gene coding for Aryl hydrocarbon-interacting protein-like 1

(AIPL1) are reportedly associated with autosomal recessive Leber

congenital amaurosis type IV (LCA4) (OMIM #604393) (111, 112).

Patients with LCA4 typically present with early-onset severe visual

impairment, nystagmus, and poor pupillary light responses

compared to other LCA types (113, 114). Both scotopic and

photopic Electroretinography (ERG) responses were severely

diminished in rods and cones, respectively. Disc drusen, optic

disc edema, and macular atrophy have also been noted (113,

114). Optical coherence tomography (OCT) imaging in older

patients showed severe cone dystrophy (114).
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AIPL1 is a specialized PR-specific co-chaperone required for

PDE6 maturation and stabilization (115–117). Retinal degeneration

caused by AIPL1 defects were described in two mouse models of

LCA4 (115, 116). In Aipl1 knockout mouse model, rapid rod-cone

dystrophy was observed by postnatal 3 weeks of age (115). While

the AIPL1 h/h mouse model, carrying homozygous, hypomorphic

mutant allele for AIPL1, causes diminished expression of AIPL1,

resulting in relatively slower PR dystrophy beginning after 12 weeks

of age with almost complete loss of PRs by 5 months of age (116). In

both models, PDE6 expression was found to be drastically

perturbed, suggesting an indispensable role of AIPL1 in

PDE6 maturation.

The AIPL1 protein contains an N-terminal FK506-binding

protein (FKBP) domain and a C-terminal tetratricopeptide repeat

(TPR) domain with three tetratricopeptide repeats (111). Structural

studies confirmed that the PDE6 prenylation is required for its

binding to the FKBP domain of AIPL1 (91, 118). The TPR domain

serves as a binding site for cytosolic HSP90 and the regulatory Pg
subunit of the PDE6 complex (119, 120). Interaction of PDE6 with

the TPR domain of AIP1L also plays a key role in the chaperone-

dependent folding and maturation of the PDE6 complex (117, 121).

Intriguingly, AIPL1 appears to be colocalized predominantly from

the synapse to the inner segment of PR cells, with an enrichment in

the connecting cilium, while the PDE6 complex is eventually

trafficked to the outer segment (122). This may suggest that

AIPL1 chaperone function is limited to PDE6 maturation and

does not extend to the trafficking of PDE6 to the outer segments.

A recent transgenic mouse study showed that targeted mutation of

PDE6A at the prenylation consensus cysteine target, does not affect

its trafficking to the outer segment (123). Prenylation of PDE6C was

found to be important for the formation of a stable ternary

chaperone complex comprising of AIPL1, HSP90, and PDE6

subunits in HEK293 cells (123). Future work is required to

determine if AIPL1 plays a role, if any, in a relay-type system

where it offloads mature PDE6 complex to another trafficking

chaperone like PrBP/d.
3.4 Guanine nucleotide-binding protein
subunit gamma, Tg

Heterotrimeric G-protein transducin, Gt, is an essential signal

transducer and amplifier in retinal PR cells for phototransduction

(124). It is a membrane-bound G-protein comprised of a, b, and g
subunits, and is bound to a guanine diphosphate (GDP) molecule

(124). Both a and g subunits are lipid-modified, wherein the a
subunit is acylated and the g subunit is farnesylated, despite both

subunits possessing a CAAX motif (125, 126). These modifications

allow for outer segment membrane localization and subsequent

protein interaction (127). Prenylation also enhances the binding of

Gbg to G-protein a subunits (128). The importance of Gg subunit
farnesylation was shown by Kassai and co-workers, who

demonstrated that replacing the farnesyl group of Gg with the

more hydrophobic geranylgeranyl attachment rendered the Gbg
dimer incapable of undergoing light-driven translocation to rod

outer segments (129).
FIGURE 7

Predicted PrBP/d-GRK1 dimer complex. PrBP/d (Uniprot ID: O43924)
binds prenylated rhodopsin kinase (GRK1, Uniprot ID: Q15835). This
interaction allows for the trafficking of prenylated GRK1 from the
inner segment to the outer segment of neural retina. Figure
generated using ChimeraX (68).
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Homozygous deletion of Gg subunit (coded by the gene Gngt1)

in mice showed rod atrophy starting at PN 1 month, with almost

complete rod degeneration by 6 months of age and a significant

decrease in the protein levels of Ga and Gb, despite mRNA levels

comparable to wild-type controls (130). In contrast, another study

found only poor phototransduction signal amplification in intact

rods and showed a decline in visual sensitivity of rods in a Gg-
deficient mouse model, without prompt retinal degeneration (131).

The pivotal role of farnesylation of Gg in mediating

phototransduction was further confirmed in point mutant models

where the Gg farnesylation site was removed (132). This study

showed that farnesylation was not essential for Gbg dimerization

(Figure 5), but essential for localization to the rod outer segments

and participation in phototransduction (132). Surprisingly, despite

the clear functional role of farnesylated Gg in the phototransduction

cascade, there are no known mutations of Gngt1 linked with

inherited retinopathies. This is perhaps attributable to the low

frequency of mutation reported in this relatively small gene (225

bp open-reading frame) (5).
3.5 RAB28 (OMIM #615374)

Rab small GTPases, which belong to the Ras superfamily, are

key regulators of membrane trafficking and cell growth (133, 134).

Rab28 carries a C-terminal CAAX motif that is farnesylated in

contrast to the common Rab geranylgeranylation and was the first

prenylated small Rab GTPase identified to be directly involved in an

inherited retinal disease (135–137). Immunohistochemical analysis

suggested that Rab28 colocalized at the PR basal body and the

ciliary rootlet (137). Rab28 mutations cause cone-rod dystrophy 18

(CRD18) (OMIM #615374), presenting with central retinal atrophy

and hyperpigmented appearance of the fovea. Both scotopic and

photopic ERG responses were significantly diminished, suggesting

decreased rod and cone response to light, respectively (136–138). A

transgenic knockout mouse model of Rab28 showed Rab28

requirement for disc shedding by cone PRs and its subsequent

phagocytosis. Loss of Rab28 function in knockout mice faithfully

mimics the human CRD18 phenotype (139). Moreover, this study

identified Rab28 protein interactors such as KCNJ13 and PrBP/d
(PRBP/d and Rab28 complex, simulated in Figure 6). Autosomal

recessive mutations of KCNJ13 leads to Leber congenital amaurosis

type 16 (LCA16) (OMIM #614186), wherein KCNJ13 regulates

phagocytic uptake of shed outer segments by the RPE (139, 140).
3.6 Retinitis pigmentosa GTPase regulator
(RPGR) (OMIM #300455)

Autosomal dominant mutations in RPGR gene (Chromosome

X, Xp11.4) account for over 70% of X-linked retinitis pigmentosa

cases (XLRP) (OMIM #300455) worldwide (141). Two major

spliced isoforms of RPGR have been identified in the mammalian

retina: RPGR1−19 and RPGRORF15 (142). Both protein isoforms

share an identical N-terminal tandem repeat structure named
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RCC1-like domain (RLD), while the C-terminal domains are not

conserved due to altered mRNA splicing. The C-terminus of

RPGR1−19 constitutes a target prenylation motif which is

geranylgeranylated, whereas RPGRORF15 contains a Glu-Gly-rich

low complexity region in the C-terminus (142, 143). The shared N-

terminal RLD region may confer some functional redundancy

between the two RPGR isoforms, while the differential

prenylation of RPGR1−19 may govern its differential subcellular

colocalization and function. This has been demonstrated in vitro

using transformed human RPE1 cells wherein the prenylated

RPGR1−19 isoform localized to the RPE primary cilia, while

RPGRORF15 does not traffic to cilia (144, 145). Interestingly,

rescue experiments in RPGR knockout mice showed that the

RPGRORF15 isoform sufficiently rescued PR functioning (146, 147).

A report showed a decrease in RPGR1−19 isoform, with

concurrent upregulation in the RPGRORF15 isoform throughout eye

development (147). Thus, suggesting a duality in the role of the two

RPGR isoforms during retinal development vs.. functioning of the

mature retina. However, the exact role of prenylated RPGR1−19 in

early retinal development has not yet been directly established.

Recently, Zhang et.al., showed the effects of common missense

mutations of the shared RLD on the RPGR protein interaction

network, and demonstrated that the RLD domain is indispensable

for interactions with PrBP/d and INPP5E in RPE1 cells (148).

Prenylation of RPGR1−19 isoform is necessary for its ciliary

targeting via PrBP/d trafficking and that prenylation also enhances

the RLD binding region for protein interaction (148). Future work

should aim to gain the mechanistic understanding underpinning

protein interaction disruption on retinal health and whether

prenylation represents a dispensable modification in the setting of

XLRP pathogenesis.
3.7 Mevalonate kinase deficiency
(OMIM #610377)

Mevalonate kinase (MVK) catalyzes the phosphorylation of

mevalonic acid to phosphomevalonate. Autosomal recessive

mutations in MVK causes metabolic disorder with poor

genotype-phenotype correlation (149). It encompasses a severe

form of the disease, mevalonic aciduria (MEVA) (OMIM

#610377 ) , and a mi l d e r pe r i od i c f e v e r s yndrome ,

hyperimmunoglobulinemia D syndrome (HIDS) (OMIM

#260920) (150). HIDS is characterized by regular episodes of

high fever and systemic inflammation in the affected pediatric

patient population. In contrast, mevalonic aciduria patients

present with chronic systemic inflammation, along with

neurodevelopmental issues such as cerebellar atrophy, dystonia,

and ataxia. MKD patients also present with gastrointestinal

complications and retinal dystrophy (151–153). A study in 2013

showed that mutations in MVK causes late-onset non-syndromic

RP, accompanied by mild MKD symptoms (154). It was thought

that the accumulation of mevalonic acid may be responsible for

the neuronal degeneration including, PR deterioration, observed

in MKD patients (153). Two recent studies have shown that
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patients with MKD exhibit significant accumulation of

unprenylated Rab proteins (155, 156). Therefore, the retinal

dystrophy phenotype associated with MKD may arise from

decreased de novo synthesis of isoprenoid metabolites (dolichol,

cholesterol, FPP, and GGPP), as well as cellular insufficiency in

prenylation of the target proteome.
3.8 Autosomal recessive mutations in
NUS1/Nogo B Receptor: a putative
protein-prenylation disorder
(OMIM #617082)

Recent discoveries of novel prenyltansferases, targets motifs,

and non-canonical mechanisms of prenylation, has increased the

probability of discovering yet unidentified prenylopathies. Here,

we briefly discuss the case of a rare autosomal recessive mutation

that primarily affects the cis-prenyltransferase (CPT) complex

involved in dolichol synthesis. The cis-prenyltransferase

complex is a heterotetrameric complex comprised of the

catalytic subunit dehydrodolichyldiphosphate synthase

(DHDDS), and its interacting partner NUS1 or Nogo-B receptor

(NgBR). The CPT complex catalyzes the serial cis-condensation of

multiple IPP molecules to FPP, to ultimately generate dolichol, an

isoprenoid metabolite which serves as the obligate glycan carrier,

and is indispensable for protein glycosylation. We recently

discussed the visual disorders pertaining to the dolichol

synthesis pathway (157).

Recessive mutations in NUS1 leads to a systemic disorder

including neurodevelopmental issues, retinal dystrophy, and

optic neuropathy, unsurprisingly, given the requirement of

dolichol synthesis and protein glycosylation in all cells (158).

NUS1 performs several other critical roles in maintaining

lysosomal homeostasis (159). Interestingly, a recent study

showed that NgBR independently binds to farnesylated Ras

protein, outside of its CPT function, and plays a key role in

membrane localization of H-Ras (Figure 8) (160). Moreover,

NgBR binds not only to farnesylated H-Ras with its canonical

CAAX (CVLS) motif, but also a recombinant geranylgeranylated

H-Ras protein with GGTase-I target CAAX sequence (CLVL)

(160). We have independently demonstrated that conditional

ablation of Nus1 in the developing PRs, using a CRX-Cre

mouse line, causes total PR and bipolar cell loss by PN 2–3

weeks (Ramachandra Rao et.al., unpublished results). However,

the underlying degenerative mechanism remains to be

understood. These findings highlight the need for investigating

the additional chaperone-like roles of NgBR in binding and

trafficking prenylated proteins in the retina.

We have provided a brief, tabular summary of the clinical

features and molecular basis of known, above discussed

prenylation-associated retinopathies in Table 1. Defects in

prenylation or the chaperone-mediated maturation and trafficking

of key membrane-bound prenylated proteins essentially manifest as

early rod-cone or cone-rod dystrophies, depending on the

predominant affected cell type.
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4 Techniques to investigate
prenylated proteome

We have thus far discussed the biochemical mechanisms

underlying protein prenylation, and inherited blinding diseases

characterized by defective prenylation of proteins expressed in the

neural retina. With the discovery of novel prenyltransferases and

non-canonical target motifs, it would be unsurprising if other

prenylation-associated retinopathies and/or systemic disorders

are discovered. It is therefore essential to develop approaches to

investigate the retinal prenylome. We now turn our attention to

technical advances and available methodologies in predicting

and/or directly determining the cellular prenylome. We also

discuss possible applications of computational, proteomic,

and in vitro approaches to determine the total retinal

prenylated proteome.
4.1 Computational approaches to predict
cellular prenylome

Computational approaches have been developed to enable

prediction of prenylated proteome. Maurer-Stroh and Eisenhaber

developed the algorithm PrePS to predict prenyltransferase

substrates, based on data from experimentally derived prenylated

motifs and prediction of new motifs acting as a substrate for

farnesylation or geranylgeranylation (161). The training dataset

consisted of 692 FTase and 486 GGTase-I substrates curated by

literature survey as well as BLASTP analysis with known prenylated

substrates against an NCBI database. In addition, an 11 amino acid

sequence upstream of the prenyl cysteine was added to refine the

algorithm. With this refinement of PrePS, the algorithm expands

the rules which predict the prenylation of a substrate to a 15-amino

acid sequence (162, 163). However, experimental determination of
FIGURE 8

Predicted NUS1-HRAS dimer complex. Nogo B-Receptor (NUS1,
Uniprot ID: Q96E22), a part of the cis-prenyltransferase complex,
was recently shown to bind farnesylated HRAS (Uniprot ID: P01112)
and plays a chaperone-like role in its membrane localization. Figure
generated using ChimeraX (68).
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the target peptide prenylation is still necessary to determine true

false positive rate of this predictive methodology. FlexPepBind is a

structure-based computational modeling approach for predicting

FTase substrates (162). This algorithm predicts peptide binding

through a structure-based modeling approach by aligning different

peptide sequences onto a template peptide-receptor complex. This

structure-based predictive method was further experimentally

validated using in vitro assays, wherein 26 of the 29 tested novel
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peptide were FTase targets suggesting a very low false negative

prediction (162).

Computational approaches dependent on training datasets are

expected to be biased against non-canonical, unidentified novel

prenylation target motifs. To address this discrepancy, a recent

study used yeast Hsp40 Ydj1p chaperone as a genetic reporter (164).

Ydj1p is prenylated but is subject to the shunt pathway in which the

prenylated protein does not undergo the downstream proteolytic
TABLE 1 Overview of ocular outcomes in protein prenylation-associated inherited retinopathies.

DISEASE RETINAL FINDINGS OCULAR CLINICAL FEATURES IMPLICATED
PROTEIN

ROLE
OF PRENYLATION

Choroideremia
(ref #61)
(OMIM
#303100)

Diffuse, progressive degeneration of the
retinal pigment epithelium (RPE),
photoreceptors and choriocapillaris

Progressive peripheral vision loss, and
ultimately central vision loss. Rod-
cone dystrophy.

Rab escort protein-1
(REP-1)

Chaperones unprenylated
Rab proteins and presents
them to GGTase-II
for geranylgeranylation

Retinitis
Pigmentosa 40
(ref #94, 95)
(OMIM
#613801)

Pale retina, attenuated retinal vessels, and
typical intraretinal bone spicule pigment in
the peripheral retina.

Progressive peripheral vision loss; tunnel
vision at the later stages of the disease.

Rod Phosphodiesterase
subunits alpha and beta
(PDE6a) & (PDE6b)

Prenylation enables proper
trafficking of PDE6 from
photoreceptor inner
segment to the
outer segment.

Achromat-
opsia (ref #96)
(OMIM
#613093)

Fundus exam can appear normal early in
the disease course. Late-stage retinal
pigment epithelial mottling and atrophy.

Visual acuity ranges from 20/200 or worse
in complete achromatopsia to 20/80 in
incomplete achromatopsia. Color vision is
severely or completely diminished.

Cone Phosphodiesterase
6 (PDE6C)

Prenylation enables proper
trafficking of PDE6C from
photoreceptor inner
segment to the
outer segment.

Joubert
Syndrome (ref#
105, 106)
(OMIM
#615665)

Early-onset severe rod-cone dystrophy.
Late-onset cone-rod dystrophy, and optic
nerve atrophy.

Rod-cone dystrophy. Oculomotor
abnormalities are common, including
oculomotor apraxia, decreased vestibulo-
ocular reflex cancellation, compensatory
head thrusts or catch-up saccades,
and nystagmus.

Prenyl-binding protein
(PrBP/d)

A ubiquitous solubilization
factor involved in
intracellular trafficking of
both farnesylated and
geranylgeranylated proteins.

Leber
congenital
amaurosis type
IV (ref# 113,
114)
(OMIM
#604393)

Several retinal abnormalities develop in
isolation or combination including
chorioretinal degeneration and atrophy
centered around the fovea, “bone-spicule”
like pigmentation, subretinal flecks,
pigmented nummular lesions at the level
of the RPE, and optic disc abnormalities

Abnormal or absent pupillary response,
keratoconus, nystagmus, nyctalopia

Aryl-hydrocarbon-
interacting protein-like
1 (AIPL1)

Photoreceptor specific co-
chaperone that facilitates
PDE6 maturation.

Cone-rod
dystrophy 18
(ref# 136–139)
(OMIM
#615374)

Macular atrophy and hyperpigmentation.
Peripheral cone-rod dystrophy was also
noted later in disease course.

Decreased visual acuity and increased
photophobia in childhood. Followed by
dyschromatopsia, scotomas in the center of
the visual field, and partial peripheral
vision loss. Progressive peripheral
vision loss.

Ras-related protein Rab28 Essential role in cone-
specific disc shedding and
phagocytosis. Prenylation
aids in its localization at the
ciliary rootlet.

X-linked
Retinitis
Pigmentosa
(ref# 142. 147)
(OMIM
#300455)

Variable depending on the type of
photoreceptors affected. Rod predominant
dystrophy findings include RPE atrophy,
“bone spicule” pigmentary deposits, and
retinal vessel attenuation. Whereas cone
predominant dystrophy exhibits bullseye
maculopathy, eventually developing bone
spicule pigmentary deposits and retinal
vessel attenuation.

Nyctalopia and peripheral visual field loss
are noted early in rod involved
dystrophies. Cone dystrophies present with
decreased visual acuity, photophobia, and
color vision disturbances. Central scotoma
is common. With disease progression, cone
dystrophies will present with patchy loss of
peripheral vision and nyctalopia as
rods degenerate.

Retinitis pigmentosa
GTPase regulator
isoforms (RPGR1−19

and RPGRORF15)

Prenylated RPGR1−19 is
thought to play a role in
early retinal development,
whereas RPGRORF15 is vital
for the maintenance of
mature photoreceptors.

Mevalonate
kinase
deficiency (ref#
151)
(OMIM
#610377)

Retinal findings can include RP-type
phenotype with RPE atrophy, bone spicule
pigmentary deposits, and retinal
vessel attenuation.

Uveitis, blue sclera, nyctalopia and
peripheral vision loss, and cataracts
depending on the form of the disease, ie,
MEVA vs. HIDS.

Mevalonate
Kinase (MVK)

Essential enzyme in the
isoprenoid synthesis
pathway. Deficiency leads
to lack of FPP and GGPP
synthesis, and cellular
prenylation defects.
Brief overview of clinical outcomes and molecular basis of known protein prenylation-associated inherited retinopathies. Description of retinal findings and clinical outcomes in known
prenylation-associated retinopathies. We have provided appropriate description of the affected gene product, and its putative function in the neural retina.
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processing and remains cytosolic. Prenylated Ydj1p produces a

thermotolerant phenotype in yeast which serves as a rapid proxy to

monitor protein prenylation status. Using this mutation-phenotype

screen, the authors evaluated over 67,000 recombination events,

correlating to about 93.5% of the total possible amino acid

combinations which may code for CAAX motif. The hits

identified from the Ydj1p-based genetic screen did not greatly

overlap with those found in other screenings that utilized

common targets such as Ras, suggesting that a much larger set of

motifs may be serving as prenylation motifs than was previously

thought (164). Only a small subset of prenylated motifs identified

using the Ydj1p-based screening were identified as having a high

probability of prenylation by FlexPepBind and PrePS with results of

27% and 7%, respectively. However, it is important to note that this

discrepancy may also reflect different target peptide-specificities for

the mammalian and yeast prenyltransferases enzymes.

Data mining methods using experimentally determined retinal

proteome and transcriptome data may be highly effective in

predicting the retinal prenylome, including non-canonical

prenylation motifs. Applying targeted data mining to the

transcriptome or proteome specific to the RPE and neural retina—

separated into macular and peripheral regions—could be particularly

powerful (165). These methods may help distinguish the prenylome

specific to the human macula and peripheral retina and allow for

better understanding of protein prenylation-associated vision

disorders. Furthermore, pathway analysis tools like Ingenuity

Pathway Analysis may reveal the potential cellular and retina-

specific functions of these predicted prenylated proteins (166). The

latest advancements in AI-driven prediction of protein structures,

protein-protein interactions, and protein-ligand interactions such as

AlphaFold2 and AlphaFold3, could provide preliminary

computational validation of these predicted retinal prenylomes

(167). It is important to acknowledge that novel hits arising from

predictive, computational methodologies need to be experimentally

validated using in vivo and in vitro approaches, as discussed below.
4.2 In vitro and biochemical approaches
for investigating prenylation mechanisms

Fluorescence tagging of proteins has been extensively utilized to

study prenylation at endogenous levels, providing insights into

prenylated protein maturation and trafficking, and has also

facilitated studies of prenyltransferase inhibitors since membrane

localization is an easily measurable experimental endpoint. Diffuse

fluorescence throughout the cell indicates cytoplasmic localization,

which implies a protein either not undergoing prenylation or

becoming prenylated without further processing as noted in the

shunt pathway. For instance, the effect of proteolysis on membrane

colocalization of K-Ras protein was determined using the above

discussed chimeric approach (168). Using Rce1+/+ and Rce1-/-

fibroblast cells transfected with a chimeric GFP-K-Ras construct,

it was shown that fluorescence was localized to the plasma

membrane in Rce1+/+ cells but diffuse in Rce1-/- cells, suggesting

that proteolysis was necessary for Ras protein membrane

localization (168).
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An alternative approach for detecting protein prenylation inside

mammalian systems that is not reliant on membrane localization as

proxy endpoint, is called Protein Lipidation Quantification (PLQ).

This method is derived from an established method of Micellar

Electro-Kinetic Chromatography (MEKC) that allows selective

partition of prenylated proteins into detergent micelles (using

SDS) during capillary electrophoresis (169, 170). Detergent

micelles serve as pseudo-stationary phase and exhibit differential

electrophoretic migration compared to unprenylated free analyte.

PLQ has been successfully used to separate prenylated full length

fluorescent protein with a C-terminus CAAX motif in in-cell

studies (171).
4.3 Proteomic and lipidomic approaches
for experimental determination of
cellular prenylome

Chemical proteomic approaches facilitate the direct detection of

prenylation in vivo and are based on the development of analogues

of FPP and GGPP that are functionalized with biochemical affinity

tags, immunogenic tags for detection by antibodies, and chemo-

selective tags for bio-orthogonal labeling. Spielmann and coworkers

showed the application of an immunogenic tag by using

anilinogeraniol (AGOH) to detect FTase substrates (172).

Anilinogeraniol is an analogue of an upstream precursor of FPP,

which undergoes cellular kinase-dependent diphosphorylation to 8-

anilinogeranyl diphosphate (AGPP), and where the third isoprene

unit of FPP is replaced with an aniline moiety that then serves as an

epitope for detection by Western blot (172, 173). Biotin-geranyl

diphosphate (BGPP) has been generated for use as an affinity tag

(174). BGPP only allowed for the efficient identification of GGTase-

II substrates as the bulky nature of the biotin group was found to

interfere with the protein substrate binding for FTase and GGTase-

I. Engineered FTase and GGTase-I variants can utilize BGPP as a

donor for protein modification (174). Lysates from cells expressing

wild-type or the engineered prenyltransferase variants were

incubated with BGPP, followed by avidin pull down and

proteomic analysis, which allowed the identification of GGTase-II

target proteins. Several Rab proteins such as Rab7 and Rab27, which

were differentially prenylated in WT prenyltransferase expressing

cells, were identified as GGTase-II substrates (174).

Distefano and coworkers designed alkynylated FPP analogue

C15AlkOPP, which has been used to study protein prenylation

inhibitors, labeling of proteins sensitive to human pathogens, and

the delineation of the prenylome of Plasmodium falciparum, the

causative agent of malaria (175–180). More recently, new alkyne-

tagged isoprenoid analogues which closely mimic FPP (YnF) and

GGPP (YnGG) allowed click-chemistry based detection of

prenylated proteins via mass spectrometry in a human endothelial

cell line (181). These analogues allow quantitative analysis of

endogenous prenylated proteome since they do not alter the

specific activity of prenyltransferases. Upon addition of the alkyne

tagged analogue, proteins are captured via click CuAAC ligation to

azide-containing fluor/biotin-tagged reagents. This facilitates the

enrichment of prenylated proteins and subsequent analysis via LC-
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MS/MS. These analogues also proved useful in investigating protein

prenylation in vivo. Intracerebroventricular (ICV) injection of the

C15AlkOPP analogue in brains of a transgenic mouse model (APP/

PSI) of Alzheimer’s Disease found the upregulation of several

prenylated proteins in diseased mice (182). The development of

these protein prenylation probes has greatly enhanced our

understanding of protein prenylation biochemistry. Appropriate

application of similar approaches in in vitro and in vivomodels may

prove fruitful in delineating the underlying degenerative

mechanisms of prenylation-associated retinopathies.

Experimental determination of retinal prenylome in vivo is

challenging since current prenylation screening assays utilize in

vitro approaches. While proteomic and lipidomic strategies have

proved to be powerful in refining our understanding of the

prenylome, these approaches are expensive and labor-intensive.

However, both the in vitro as well as the proteomic/lipidomic

approaches described above may be highly relevant in defining

the retinal cell type-specific prenylome. For instance, RPE

prenylome and target-specific prenylation mechanisms may be

easily investigated by applying such approaches in induced

pluripotent stem cell (iPSC)-derived RPE cells, as well as primary

RPE cells (183). Similarly, primary Müller glia and ganglion cell

cultures may also be extremely useful in determining retinal cell

type-specific prenylome. Identification of novel retinal cell type-

specific prenylated hits may then be further validated in vivo using

careful conditional gene ablation approaches.
5 Future directions

Defining the total retinal prenylated proteome, as well as cell

type-specific expression, processing, and functions of prenylated

proteins will provide a wholesome understanding of the role and

requirement of protein prenylation on retinal functioning.

Achieving this goal also requires identification and validation of

potential novel prenyltransferases, chaperones, and target proteins

expressed in the neural retina. As discussed above, careful

application of computational approaches will not only facilitate

the identification of retinal prenylated proteome, but also help

determine differential expression of prenylated proteins in the

human macula vs. peripheral retina. These frontiers promise a

comprehensive understanding of prenylation-associated

retinopathies and their respective mechanisms. The challenges in

determining the retinal prenylated proteome, retinal outcomes in

inherited prenylopathies, and putative approaches to achieve those

ends are summarized in Figure 9.
6 Concluding remarks

Protein prenylation in PR plays a key role in protein subcellular

localization and trafficking. A recent study by Maza et.al., highlights
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subcellular colocalization of prenylated proteins in the PR cell (59).

As described, several prenylated retinal proteins are implicated in

various retinal pathologies. The underlying role of aberrant

prenylated proteins in retinal degeneration may be garnered from

their known roles in retinal development and functioning. For

example, G protein transducin, PDE6A, and PDE6B are involved

in phototransduction cascade, while RAB28 and RPGR are involved

in transport regulation. Moreover, mutations affecting AIPL1 and

PrBP/d results in a more generalized prenylation defect as both

chaperones are involved in the appropriate trafficking of their cargo

prenylated retinal proteins. The reported inherited retinopathies

involve the complex interplay of more than just the implicated

prenylated protein including protein chaperones and other protein

interactors. In the case of MKD, one might hypothesize that

supplementing the retina with the deficient isoprenoid groups may

rescue the retinal dystrophy phenotype and reverse the accumulation

of unprenylated Rabs (5). However, stimulating the synthesis of

prenyl groups in the retina may cause undesirable side effects, such

as neoplastic growth as is the case with overexpression of prenylated

Ras oncogenes products. It is also difficult to predict the impact on

isoprene synthesis with this approach given there are multiple

feedback mechanisms that regulates mevalonate pathway (18, 184).

So far, gene augmentation via lentiviral vectors and more recently,

episomal scaffold/matrix attachment region (S/MAR)-based plasmid

vectors seem to offer promising avenues in the treatment of

prenylation-associated retinopathy such as CHM. However, recent

results from phase III STAR trial underscore the need to set realistic

expectations for clinical outcomes and emphasize the need for early

therapeutic intervention to attain better clinical outcomes.

Finally, to fully capture the role of prenylation in the retina and

retinal disorders and thus design therapeutic strategies, it is

important to define the complete prenylome of the retina. More

than 150 proteins are thought to be involved in the molecular

pathways responsible for producing the prenyl lipid moieties or

serve as potential substrates for prenylation as determined by

PRENbase (http://mendel.imp.ac.at/PrePS/PRENbase/) (44). In

addition, it is estimated that over 1166 proteins in the human

proteome contain the CAAX motif suggesting that the number of

prenylated proteins might be underrepresented in PRENbase. To

add to the growing number of potentially prenylated proteins,

studies have identified prenylation substrates in both yeast and

mammalian systems that diverge from the canonical CAAX box

and calls for the expansion of the classically recognized prenylation

motif (27, 28). There are estimated to be more than 1000 proteins

each with either a C(x)3X or CXX motif at their respective C-

terminus. The discovery of heat shock protein chaperone Ydj1p in

yeast which undergoes prenylation without subsequent proteolysis

or methylation further adds to the complexity of this lipid

modification (32). These studies highlight the need to identify

potentially “shunted” proteins and proteins containing non-

canonical C-terminal sequences, especially in the retina.
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Application of chemical proteomic approaches, genetic modeling,

and targeted mining of retinal proteome to identify putative retinal

prenylome will provide a fulsome mechanistic understanding of

prenylation-associated blinding disorders.
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FIGURE 9

The challenges, approaches and future directions in the investigation of protein prenylation in the retina and associated inherited retinopathies.
Determination of retinal prenylated proteome, and the retinal function of such prenylated proteins is challenging. We identify some of the immediate
questions and challenges, as well as state-of-the-art approaches in better understanding prenylation mechanisms in the retina. A comprehensive
approach linking computational, in vitro, proteomics and lipidomics, and in vivo strategies can help fully define the retinal prenylome. Such
approaches may vastly improve our understanding of prenylation-associated retinopathies, and fast-track the development of therapeutics for these
devastating blinding disorders.
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