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With advancements in the implementation of artificial intelligence (AI) in different

ophthalmology disciplines, it continues to have a significant impact on glaucoma

diagnosis and screening. This article explores the distinct roles of AI in specialized

ophthalmology clinics and general practice, highlighting the critical balance

between sensitivity and specificity in diagnostic and screening models.

Screening models prioritize sensitivity to detect potential glaucoma cases

efficiently, while diagnostic models emphasize specificity to confirm disease

with high accuracy. AI applications, primarily using machine learning (ML) and

deep learning (DL), have been successful in detecting glaucomatous optic

neuropathy from colored fundus photographs and other retinal imaging

modalities. Diagnostic models integrate data extracted from various forms of

modalities (including tests that assess structural optic nerve damage as well as

those evaluating functional damage) to provide a more nuanced, accurate and

thorough approach to diagnosing glaucoma. As AI continues to evolve, the

collaboration between technology and clinical expertise should focus more on

improving specificity of glaucoma diagnostic models to assess ophthalmologists

to revolutionize glaucoma diagnosis and improve patients care.
KEYWORDS
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Overview

Artificial intelligence has ushered in a transformative era in ophthalmology and continues

to be implemented in different disciplines in ophthalmology practice, especially in the domain

of glaucoma (1). Diagnosis models, tailored with precision and specificity, are proving

indispensable in specialized ophthalmology clinics. These models are designed to delve deep

into complex datasets, accounting for a myriad of patient-specific variables to ensure accurate

and timely diagnosis. In contrast, screening models, streamlined for efficiency and broader

applicability, are being employed in general practice settings. Their primary objective is to flag

potential cases among a larger pool, serving as an initial sieve or triage for community
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referrals to capture those who require a more detailed assessment and

to classify who should see a glaucoma specialist and who should not

in order to prioritize care and hence improve healthcare outcomes

(2). Both types have generally gained significant attention due to their

potential to enhance the diagnostic process by identifying subtle

changes in the optic nerve and retinal structures that might not be

discernible to human eyes and also by providing rapid and consistent

assessments of optic nerve damage. Moreover, they have the potential

to improve accessibility to diagnosis in underserved regions where

expert ophthalmologists are scarce (3). The bifurcation of these AI

applications – diagnosis for specialty clinics and screening for general

practice – accentuates the diverse utility of machine learning and

deep learning in catering to both depth and breadth in glaucoma care.

In this review, we will provide a review on how diagnostic model

development is different from screening model development

in glaucoma.
Diagnostic and screening models:
sensitivity vs. specificity

In medical diagnostics, the balance between sensitivity and

specificity is pivotal, and AI models developed for glaucoma are

no exception. For screening models deployed in general practice

settings, sensitivity takes precedence. A highly sensitive model

ensures that as many potential cases of glaucoma as possible are

identified, even at the risk of including some false positives, because

as the economic and personal impacts of glaucoma tend to worsen

with further progression to advanced disease, early detection and

accurate diagnosis followed by prompt treatment are of vital

importance to prevent vision loss and the subsequent burden

associated with glaucoma (4). Conversely, in specialized

ophthalmology clinics, diagnostic models should prioritize

specificity. A specific diagnostic tool aims to confirm the disease

with a high degree of accuracy, reducing the likelihood of false

positives (Figure 1). By minimizing erroneous diagnoses, resources

can be efficiently utilized, unnecessary treatments can be avoided,

and patients can be reassured of the accuracy of their diagnosis.

This diagnostic process relies on judgment on the combination of

abnormalities detected upon precise evaluation of many aspects,

including optic nerve appearance, particularly optic disc cupping,

intraocular pressure measurement, visual field (VF) assessment as
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well as assessment of structural optic nerve injury using various

imaging modalities, most importantly optical coherence

tomography (OCT) imaging (5). In addition, documentation of

progression in these parameters through patients’ follow-up is an

essential factor in the diagnosis. Together, the emphasis on

sensitivity in screening and specificity in diagnosis ensures a

holistic and tiered approach to glaucoma management through AI.
Screening models

Screening models for glaucoma have been tailored predominantly

around one of the hallmark clinical features of the condition: the cup-

to-disc ratio from colored fundus photographs. Other screening

models utilize retinal nerve fiber layer thickness for OCT imaging or

visual field tests as well. Colored fundus photographs are considered

the simplest and the most widely adopted method for visualization and

examination of the optic nerve head (6). They provide an easy, non-

invasive and relatively cost-effective tool not only for glaucoma

screening but also for early detection, disease monitoring and patient

education. However, the associated need for human expertise to

interpret and grade the images, inter-observer discrepancies and

anatomical variations of the optic nerve head appearance may

negatively affect the diagnostic accuracy (2). For the sake of

simplicity and clarity in differentiation, images with a large cup-to-

disc ratio, indicative of potential glaucomatous changes, are often set in

contrast to those with a small ratio, representing the controls (7). This

clear demarcation aids the AI in identifying and flagging suspicious

cases efficiently. Additionally, given the crucial nature of early detection

in glaucoma, it is imperative that these screening models yield high

sensitivity. By doing so, they prioritize capturing as many potential

glaucoma cases as possible, even if it means occasionally mislabeling a

healthy eye. The overarching philosophy behind this approach is that it

is preferable to over-identify and then refine through further

assessment rather than miss a case and risk irreversible vision loss

for a patient.

In this review methodology, we conducted a comprehensive

literature review by performing a PubMed search using keywords

(Glaucoma, Artificial Intelligence, Screening, Diagnosis, Deep

Learning), and we have established rigorous eligibility criteria for

article selection, emphasizing relevance to our research topic, recent

publication dates, peer-reviewed status, credibility of the source,

and scholarly authority. This ensured the inclusion of high-quality

and pertinent literature in our review. Next, the AI models were

categorized into screening models and diagnostic ones according to

the above-mentioned indicators.
Models using colored
fundus photographs

Observing changes in the optic nerve and retinal structures and

monitoring the cup-to-disc ratio over a period of time can automate

the screening process. The observation using automated image

processing and AI tools can aid in screening and potentially patient

self-testing to check their retinas regularly. If a change in the cup-to-
FIGURE 1

Screening model versus diagnostic model.
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disc ratio is observed, the patient can be further referred for a more

detailed diagnosis.

The majority of currently published studies are primarily

screening studies. The first publication studying the application of

AI on colored fundus photographs was back in 1999, when

Sinthanayothin et al. described successful anatomical localization of

the optic disc, fovea, and blood vessels from 112 retinal photographs

with precise accuracy and high sensitivity (8). Later on, several

authors have evaluated AI-based colored fundus photograph

analysis for its utility for detecting glaucoma. Some of these

publications developed AI models relying on segmentation and

analysis of the optic nerve head (9–11) while others were based on

detecting features suspicious for glaucomatous optic neuropathy such

as high vertical cup-to-disc ratio, nerve fiber layer defects,

peripapillary atrophy, disc hemorrhages and rim thinning (12–17)

from colored fundus photograph datasets. All were proven to be

efficient in screening for glaucomatous optic neuropathy with enough

sensitivity to be transferred into real-world practice with an aim of

improving patients care (18). Moreover, a similar algorithm was

proposed to efficiently screen for closed-angle glaucoma, in which the

authors trained their model to detect the hidden features of shallow

anterior chamber on colored fundus photographs (19).
AI models using OCT imaging of the
optic nerve

In addition to colored fundus imaging, measurement of the

retinal nerve fiber layer (RNFL) thickness is a critical component of

glaucoma diagnosis; it offers an objective, quantitative, and early

indicator of optic nerve damage, allowing for timely diagnosis,

monitoring disease progression, and guiding treatment decisions to

preserve a patient’s vision and quality of life (20) and therefore they

were a major target for AI technologies (20). Several AI algorithms

were developed and trained using OCT image datasets. These

include Barella et al. (21) Burgansky-Eliash Z. et al. (22), Huang

et al. (23), Naithani et al. (24), Xu J et al. (25), Larrosa et al. (26) and

Muhammad et al. (27) which all have proved the effectiveness of AI

systems in distinguishing healthy suspect eyes from eyes with early

glaucoma and highlighted the potential role of these models in

screening for glaucomatous abnormality with high sensitivity that

can reach up to 100% according to some authors (28). Recently,

Noury et al. proposed a DL model that was successfully trained to

detect glaucoma in various ethnic groups based on OCT dataset

analysis (29). Additionally, a new DL model was trained by anterior

segment OCT dataset to function as an automated gonioscopy to

screen for angle closure glaucoma at a valid accuracy (30).
Models using visual field
perimetry testing

When deep learning machines are trained by a large VF dataset

and their models are processed to make VF features more

susceptible to detection, AI algorithms can predict, diagnose and
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monitor glaucoma with high accuracy gains, low cost and raised

efficiency (3). Since 1994, many publications have validated the

efficiency of DL machines trained by standard automated perimetry

(SAP) perimetry data in distinguishing glaucomatous VF patterns

from normal and non-glaucomatous ones and in classifying the

severity of glaucomatous field loss as in Goldbaum et al. (31). Chan

et al. (32), Sample et al. (33), Andersson et al. (34), Bowd et al. (35),

Cai et al. (36) and Kucur et al. (37). Furthermore, a smartphone

application called “iGlaucoma” DL system was developed to

interpret VF pattern deviation and was found to be a clinically

effective tool to detect glaucomatous optic neuropathy showing its

promise for clinical applicability (38).
Diagnostic models

Diagnostic models for glaucoma delve deeper than their

screening counterparts, focusing on a more comprehensive and

definitive dataset. Table 1 shows a comparison between the two

models’ types. The gold standard for confirming glaucoma is the

demonstration of longitudinal progression in glaucoma-pattern loss

(39). Therefore, it is imperative that the data these models are

trained on represents cases that have been unequivocally proven to

exhibit this pattern over time. However, relying solely on structural

changes might not suffice for a conclusive diagnosis. Incorporating

multi-modality becomes pivotal in creating a robust diagnostic tool.

A holistic evaluation of glaucoma ideally marries both functional

and structural assessments. Functional imaging, like visual field

tests, offers insights into the patient’s visual capabilities and

potential areas of loss, providing a real-world context to the
TABLE 1 Comparison between screening and diagnostic models
in glaucoma.

Parameter Glaucoma
Screening Model

Glaucoma Diagnos-
tic Model

Use Initial identification of
potential
glaucoma cases.

Detailed assessment and
confirmation of glaucoma.

Data Used for
Model
Development

Fundus images with
varying cup to
disc ratios.

Longitudinal data showcasing
glaucoma-pattern loss.

Nature of
Data to
be Inputted

Predominantly fundus
images with potential
glaucomatous changes.

Multi-modal data, including
visual field tests, fundus imaging,
and OCT.

Type of
Model
(IT Aspect)

High-sensitivity
detection models. Often
simpler algorithms that
prioritize breadth over
depth. Simple image
processing tools to
observer cup to disc
ratio changes over time
can be utilized.

Advanced algorithms trained on
multi-modal data. Typically
utilizes deep learning and
complex neural networks. Other
classification models such as
decision trees or support vector
machines can be utilized in
combination with image
processing tools.

Deployment General practice settings,
primary care clinics,
community
health centers.

Specialized ophthalmology
clinics, advanced
diagnostic centers.
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structural changes observed. Conversely, structural assessments,

whether through colored fundus imaging or OCT, provide

intricate details about the physical changes in the retina and optic

nerve. By synergizing these modalities, diagnostic models offer a

panoramic view of the disease’s state and progression, ensuring that

the diagnosis is both accurate and holistic.

From an information technology (IT) perspective, a group of

classifiers, normally referred to as an ensemble of classifiers, can be

used to aid in the diagnosis process. Possible classifiers include, but

are not limited to, neural networks, support vector machines and

decision trees. It is either that each classifier might diagnose the case

independently then their classifications are combined, either equally

or weighted according to their accuracy, or an ensemble is

constructed from multiple classifiers all receiving the same input.

Such an approach does not only fine-tune the AI’s precision but it

also fortifies the clinician’s confidence in the provided diagnosis.

However, achieving complete independence among classifiers in an

ensemble is difficult. Usually, the goal is to reduce the dependency

as much as possible to ensure that the ensemble can benefit from the

diversity of the classifiers. Some factors and conditions that could

promote independence among classifiers and establish that the

classifiers make their predictions without influencing each other

in an ensemble are: using different data subsets, using different

feature subsets, using fundamentally different algorithms, and

random initialization of training parameters. Conducting

statistical tests to check the correlation between the errors of the

classifiers can provide empirical evidence for their independence.

While the previously mentioned models are primarily screening

tools, a few were developed as diagnostic ones. The recent Dixit

et al. model, trained by a VF dataset and supplemented by clinical

data such as cup-to-disc ratio, intraocular pressure and central

corneal thickness, succeeded in capturing VF trends and glaucoma

progression and hence can be used as a diagnostic tool rather than a

screening model that can actually supplement and confirm

glaucoma diagnosis in specialized clinics with high specificity and

accuracy (40). Furthermore, the DL model described by Fan et al.

which was trained on a dataset of photographs from the ocular

hypertension treatment study demonstrated diagnostic accuracy in

the detection of primary open-angle glaucoma with a specificity that

allows standardization of this model for the diagnosis of glaucoma

in clinical trials (41). Also, more recent studies have focused on the

diagnosis of glaucoma in myopic population (42) and to grade the

severity of glaucoma in those with already confirmed diagnoses

(43). Another important aspect in glaucoma diagnosis is

documentation of disease progression over serial testing. This has

been demonstrated by some models, including Belghith et al. (44)

and Christopher et al. (45) model which demonstrated a high

diagnostic specificity glaucoma progression detection on serial

OCT images. Progression of glaucomatous changes in serial visual

field tests can also be efficiently detected by AI models, as in (46), in

which the application of progression of patterns (PAP) on the

Gaussian mixture-model with expectation maximization (GEM)

model has shown a high diagnostic accuracy for progressing

glaucomatous visual field. Also, Sample et al.’s publication (47)

has shown that AI models can detect progression and accurately

differentiate true progressing changes from test-to-test variability.
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Discussion

According to the Ophthalmic Imaging and Intelligent Medicine

Branch and the Intelligent Medicine Professional Committee of the

China Medical Education Association guidelines on evaluation of

ophthalmic AI research, AI-based ophthalmic diagnostic models

are primarily evaluated based on sensitivity, specificity and accuracy

indicators, other assessment parameters can include Kappa

consistency coefficient, precision and receiver operating

characteristic curve (AUC-ROC), among others (48). Clinical

standards in ophthalmology often set benchmarks for these

metrics, and AI models are evaluated against these standards to

ensure their reliability. The reported performance across various

modalities, such as OCT or fundus photography, contributes to the

model’s versatility and practicality in real-world clinical settings. In

our review, the AI models were categorized into screening models

and diagnostic ones according to these indicators, particularly the

sensitivity parameter in screening models, defined as the percentage

of true positive subjects to all positive cases, and the specificity in

diagnostic models, defined as the percentage of true negative

samples to all negative samples. Additionally, all models reviewed

in this paper were proven to have excellent performance on

assessment and evaluation measures for ophthalmic AI research

to ensure high quality, reliability and transparency in their design

and development.

An AI model can be optimized for either screening or diagnostic

tasks by adjusting its operating point. This involves finding the right

balance between sensitivity and specificity, allowing customization

based on the specific requirements of screening or diagnosis. The

sensitivity-specificity tradeoff refers to the model’s ability to

correctly identify positives (sensitivity) and negatives (specificity),

and tuning helps tailor its performance to the desired emphasis in

either screening or diagnostic applications (49). When tuning an AI

model for screening, one should prioritize high sensitivity to

minimize false negatives, ensuring a better chance of catching

potential cases. However, the tradeoff may be an increase in false

positives. This can be crucial when the goal is early detection or

broad identification of potential issues. On the other hand, for

diagnostic tasks, the emphasis may be on high specificity to

minimize false positives, providing more confidence in the

accuracy of the identified cases. The flexibility to adjust the

operating point allows healthcare professionals or system

administrators to align the AI model with the specific goals of the

task at hand (50).

In view of the above, a sufficiently robust AI model, exhibiting

high sensitivity and specificity, can be versatile enough to be

applicable in both screening and diagnostic tasks. The dual

strength of high sensitivity and high specificity ensuring effective

identification of positives and minimizing false positives will make

the model reliable for early detection in screening scenarios and

accurate diagnosis in more detailed examinations. The concept

implies that a well-balanced AI model can offer a practical and

efficient solution for both broad identification and precise

confirmation of glaucoma.

When discussing the economic aspects of glaucoma screening,

we should delve into the consequences of sensitivity and specificity
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tradeoffs. A model with high sensitivity that detects actual positive

cases early would potentially reduce the future burden of treating

advanced stages of glaucoma. Early intervention can lead to more

cost-effective and less invasive treatments compared to managing

advanced cases (51). However, striving for high sensitivity may

result in an increased number of false positives, where the model

identifies cases that, upon further review, turn out not to be

glaucoma. This triggers additional human involvement, clinic

visits, and diagnostic tests, incurring costs in terms of both time

and resources that could be allocated more efficiently. Therefore,

finding the right balance is essential. A well-tuned AI model should

minimize the number of missed positive cases while keeping false

positives at an acceptable level. This approach optimizes the

economic efficiency of glaucoma screening ensuring that the

benefits of early detection outweigh the costs associated with false

positives. It’s a delicate equilibrium that considers both the potential

burden of treating late-stage glaucoma and the economic cost of

false positives in terms of human time and effort.

While AI models can enhance efficiency and assist in the

screening process, they are often viewed as tools to augment

human capabilities rather than replace them (52). Human

clinicians act as the final arbiter, incorporating AI-generated

insights into their decision-making process. Our expertise

remains crucial for several reasons. Firstly, we still need a clinical

Judgment and consideration of various factors beyond what an AI

model might analyze, such as patient history, comorbidities, and

lifestyle factors. Also, some glaucoma cases can be complex,

requiring a deep understanding of the clinical context. Human

clinicians are adept at handling intricacies that may be challenging

for AI models to interpret accurately. Moreover, effective

communication with patients is vital in healthcare. Clinicians can

explain diagnoses, treatment plans, and potential outcomes in a way

that patients can understand, addressing their concerns and

ensur ing informed dec is ion-making . F ina l ly , e th ica l

considerations involved in diagnosis and disease monitoring

require human clinicians to navigate the complexity of patient

preferences, cultural factors, and ethical guidelines (53). This

collaborative approach ensures a balance between the efficiency of

AI technology and the expertise, empathy, and holistic

understanding brought by human clinicians in the field of

glaucoma screening and diagnosis.
Obstacles and challenges

Although the implementation of AI in the field of glaucoma

diagnosis presents numerous advantages in screening and diagnosis

of glaucoma, there are certain limitations to consider. AI algorithms

have predominantly been trained and validated on specific patient

groups or collections of datasets. This raises questions about the

potential to generalize their outcomes to real-world populations

where many confounding ocular and medical complexities exist

rather than ideal-world situation. Furthermore, challenges persist in

scenarios involving patients with anomalous, tilted or crowded

optic discs, where misclassification could be a major concern (3).

Another significant hurdle to the adoption of AI strategies in
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glaucoma ophthalmic field is what is called the “black box”

phenomenon (54). This refers to the process of mental acceptance

of outputs from a brand-new machine, the decision processing of

which is vague or incomprehensible and whether to trust and

largely apply such techniques instead of the traditional “old-

school” methods. In general, robust large-scale population-based

validation of these algorithms is imperative to confidently extend

their use in general glaucoma diagnosis (2).
Conclusion

The use of AI in the diagnosis of glaucoma holds immense promise

for enhancing early detection, accuracy, and accessibility. While many

models were proven to be successful as screening tools with high

sensitivity to detect glaucoma, the development of diagnostic models

with the utilization of multi-modal anatomical and functional datasets

that can serve as glaucoma diagnostic models in specialized glaucoma

care clinics remains a challenge. As research and development in this

field continue, a synergy between AI and clinical expertise will pave the

way for a more comprehensive approach to revolutionize glaucoma

diagnosis and improve patient outcomes.
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