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Roles of transmembrane
protein 135 in mitochondrial
and peroxisomal functions -
implications for age-related
retinal disease
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2McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
Aging is the most significant risk factor for age-related diseases in general, which

is true for age-related diseases in the eye including age-related macular

degeneration (AMD). Therefore, in order to identify potential therapeutic

targets for these diseases, it is crucial to understand the normal aging process

and how its mis-regulation could cause age-related diseases at the molecular

level. Recently, abnormal lipid metabolism has emerged as one major aspect of

age-related symptoms in the retina. Animal models provide excellent means to

identify and study factors that regulate lipid metabolism in relation to age-related

symptoms. Central to this review is the role of transmembrane protein 135

(TMEM135) in the retina. TMEM135 was identified through the characterization of

a mutant mouse strain exhibiting accelerated retinal aging and positional cloning

of the responsible mutation within the gene, indicating the crucial role of

TMEM135 in regulating the normal aging process in the retina. Over the past

decade, the molecular functions of TMEM135 have been explored in various

models and tissues, providing insights into the regulation of metabolism,

particularly lipid metabolism, through its action in multiple organelles. Studies

indicated that TMEM135 is a significant regulator of peroxisomes, mitochondria,

and their interaction. Here, we provide an overview of the molecular functions of

TMEM135 which is crucial for regulating mitochondria, peroxisomes, and lipids.

The review also discusses the age-dependent phenotypes in mice with TMEM135

perturbations, emphasizing the importance of a balanced TMEM135 function for

the health of the retina and other tissues including the heart, liver, and adipose

tissue. Finally, we explore the potential roles of TMEM135 in human age-related

retinal diseases, connecting its functions to the pathobiology of AMD.
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1 Introduction

The retina is particularly sensitive to the effects of aging (1),

allowing researchers an in vivo system to discover critical genes and

pathways important in mitigating the aging process using model

organisms. As wild-type mice age, it is common to observe

decreases in visual function (2, 3), presence of sub-retinal

pigmented epithelium (RPE) deposits (4), appearances of RPE

multinucleation (5), formation of cataracts (6), development of

ectopic synapses (7) and signs of neuroinflammation (7, 8) in their

retinas. However, the pathways responsible for the generation of

these age-dependent retinal pathologies is unknown.

Mouse genetic methodologies have been instrumental to our

understanding of the molecular underpinnings of the retinal aging

process. A noteworthy example of harnessing mouse forward genetics

to identify a critical gene involved in retinal aging comes from the study

of the FUN025 mice. The FUN025 mice originated from a N-ethyl-N-

nitrosourea (ENU) mutagenesis screen and were identified as a strain

showing progressive age-dependent retinal pathologies including

photoreceptor cell degeneration, ectopic synapse formation, and

increased retinal stress with an earlier onset (as early as two months

of age) and faster rate compared to wild-type C57BL/6J mice (9–11).

The progressive retinal pathologies in FUN025 mice differ from rapid

retinal degeneration observed in mice with mutations in

phosphodiesterase 6B (Pde6b) (12), rhodopsin (Rho) (13), and other

genes linked with inherited retinal diseases in humans that is complete

by two to three weeks of age (14). Importantly, the unique spatial

pattern of progression for age-dependent retinal pathologies in wild-

type C57BL/6J mice from the peripheral to the central retina (7) is

maintained in the retina of FUN025 mice albeit with earlier onset and

faster progression (11), indicating that the retinal aging process is

accelerated in FUN025 mice.

Identification of the gene responsible for the age-dependent

retinal phenotypes in the FUN025 strain can lead to new insights

into pathways contributing to retinal aging. Positional cloning of

the FUN025 line revealed a point mutation in the donor splice site

of exon 12 of the transmembrane protein 135 (Tmem135) gene (11).

Overexpression of Tmem135 can prolong longevity in nematodes

when exposed to cold temperatures (15) but no previous studies

have correlated Tmem135 with aging in mammals. The discovery of

Tmem135 as a gene implicated in retinal aging of mammals lead to

subsequent studies on the function of Tmem135 in cells and mice as

well as associations between the pathways affected by Tmem135 and

age-related retinal diseases such as age-related macular

degeneration (AMD). Intriguing similarities have been observed

between retinal abnormalities in Tmem135FUN025 mutant mice and

retinal pathologies in AMD patients (11), as well as between gene

expression profiles of the Tmem135FUN025 mutant eyecups and

RPE/choroid samples from multiple stages of AMD (16).
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In this review, we summarize the current literature on Tmem135.

We provide an overview of the molecular functions of TMEM135 that

are critical for the regulation of mitochondria, peroxisomes, and lipids.

We also describe the age-dependent phenotypes of mice with

perturbations in Tmem135, highlighting the concept that proper

balance of Tmem135 function is vital for the health of the retina and

other tissues such as the heart, liver, and adipose tissue. Lastly, we

postulate about the possible roles of TMEM135 in human age-related

retinal diseases by relating the roles of TMEM135 to the pathobiology

of AMD.
2 Molecular functions and roles
of TMEM135

Tmem135, also known as peroxisomal membrane protein 52

(Pmp52), encodes a 52 kilodalton protein with five transmembrane

domains that is highly conserved across multiple species (15).

Protein domains of TMEM135 also share similarities with

members of the Tim17 protein family, which are central

components of translocases of the mitochondrial inner membrane

that are important for mitochondrial biogenesis (17). Based on this

information, it is unsurprising that the TMEM135 protein shows

colocalization with both mitochondria (11, 15) and peroxisomes

(18–23). TMEM135 can be also found on lipid droplets, but this

localization may be contingent on cellular stress such as microbial

infections (24) and cold exposure (15). Further evidence indicates

that TMEM135 translocates from peroxisomes to mitochondria

(25), suggesting that TMEM135 is involved in functional

interaction between mitochondria and peroxisomes (26). Here,

we will summarize studies on the molecular roles of TMEM135,

which suggest that TMEM135 is likely a multi-functional protein

involved in the regulation of mitochondria and peroxisomes.
2.1 TMEM135 is a mitochondrial
fission regulator

Earlier work indicates an important role of TMEM135 in

“mitochondrial dynamics” (11), which is the collective term for

biogenesis, fusion, fission, and mitophagy events required to preserve

mitochondrial integrity within cells during times of cellular and

nutritional stress (27). Fibroblasts from mice with the

Tmem135FUN025 mutation that causes the loss of TMEM135 function

had overly elongated mitochondrial networks that manifested in

decreased number and increased size of mitochondria (11), while

fibroblasts with overexpression of wild-type Tmem135 had

fragmented mitochondria that were more abundant and smaller than

wild-type controls (11). Colocalization between TMEM135 and a
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mitochondrial fission factor, dynamin-related protein 1 (DRP1), was

observed at sites of mitochondrial fission (11), suggesting that

TMEM135 may regulate mitochondrial fission through interaction

with DRP1.

A recent study further elucidated the molecular function of

TMEM135 as a regulator of DRP1, and thus, mitochondrial fission

and its importance in the interaction between peroxisomes and

mitochondria (25). Hu et al. observed that mitochondria appear

overly fused in brown adipose tissue cultured from mice with the

adipose tissue specific peroxisome deficiency, leading to impaired

thermogenesis (25). Proteomic analysis of the mitochondria isolated

from the peroxisome deficient brown adipocytes after cold exposure

revealed TMEM135 as the most decreased protein (25), suggesting its

involvement in the peroxisomal regulation of mitochondrial fission.

The absence of TMEM135 on the mitochondria after cold exposure of

the peroxisome deficient brown adipocytes indicated the prerequisite of

TMEM135 to translocate from peroxisomes to mitochondrial

membranes for the initiation of mitochondrial fission (Figure 1) (25).

Investigation of the DRP1 phosphorylation state indicated that

TMEM135 promotes protein kinase A (PKA)-dependent

phosphorylation of DRP1 and its recruitment to mitochondria (25),

defining the mechanism through which TMEM135 promotes

mitochondrial fission. It was also shown that the translocation of

TMEM135 from peroxisomes to mitochondria depends on
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plasmalogens (25), a class of glycerophospholipids containing a

vinyl-ether and ester bond that are dependent on peroxisomes for

their production (28). These findings add to the growing substantiation

of an intimate relationship between peroxisomes and mitochondria

that is needed for proper mitochondrial dynamics and homeostasis

(29–33).
2.2 TMEM135 is an exporter of DHA
from peroxisomes

A role of TMEM135 in lipid homeostasis was first indicated by

transcriptomic profiling of retinal tissues isolated from mice with

the Tmem135FUN025 mutation. The retinal phenotypes of

Tmem135FUN025/FUN025 mutant mice correlated with increased

expression of genes involved in fatty acid metabolism, cholesterol

metabolism, and steroid metabolic processes (16), suggesting that

the function of TMEM135 is important for the regulation of lipid

synthesis. In support of this notion, age-dependent progression of

neutral lipid and cholesterol accumulation was observed in the

eyecups of Tmem135FUN025/FUN025 mutant mice (16).

The relationship between TMEM135 and lipid metabolism was

further defined through a high-throughput and semi-quantitative

lipidomics analysis of Tmem135FUN025/FUN025 mutant tissues.
FIGURE 1

TMEM135 acts as a mitochondrial fission factor. Peroxisomes can interact with mitochondria, leading to the translocation of TMEM135 from the
peroxisomal membrane to the mitochondrial outer membrane. The movement of TMEM135 from peroxisomes to mitochondria precipitates the
recruitment of DRP1 and other proteins including AKAP1 and PKA1 that eventually leads to the activation of DRP1. Activated DRP1 causes fission of
mitochondria. Image created using Biorender.com. TMEM135, transmembrane protein 135. DRP1, dynamin-related protein 1. AKAP, A-kinase anchor
protein 1. PKA1, protein kinase A 1. [Figure adapted from Hu et al. (25)].
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Untargeted profiling of intact lipid species using liquid

chromatography with tandem mass spectrometry (LC-MS/MS) in

the livers, retinas, hearts, and plasmas of Tmem135FUN025/FUN025

mutant mice showed that each tissue had robust decreases in lipids

containing Docosahexaenoic acid (DHA or C22:6n3) compared to

wild-type control mice (34). Since all lipid classes that are known to

harbor DHA were affected by the Tmem135FUN025 mutation, which

was confirmed by gas chromatography mass spectrometry (GC-

MS) (34), it became apparent that TMEM135 has a major task in

cellular DHA homeostasis.

DHA is an omega-3 polyunsaturated fatty acid (PUFA)

important for neuronal development and function as well as an

important mediator of inflammation and disease (35). The

concentration of DHA within tissues results from the

contribution of this omega-3 PUFA from dietary sources and

endogenous production within cells (36). Since the diet consumed

by Tmem135FUN025/FUN025 mutant mice did not contain DHA (34),

it must originate from the endogenous production from the

‘Sprecher pathway’ of DHA synthesis that takes place in the ER

and completes in peroxisomes in these animals (37). The ER

possesses desaturases [fatty acid desaturase 1 (Fads1) and 2

(Fads2)] and elongases [elongation of very long chain fatty acids-

like 2 (Elovl2) and 5 (Elovl5)] needed for the desaturation and
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elongation of dietary essential fatty acid 18:3n3 to generate C24:6n3

(38). Then, C24:6n3 is imported into peroxisomes for

retroconversion to C22:6n3 by their beta-oxidation enzymes (39).

The ER and peroxisomal components of the ‘Sprecher pathway’

were evaluated in the livers of Tmem135FUN025/FUN025 mutant mice

to determine the molecular basis of the diminished DHA

concentrations due to the Tmem135FUN025 mutation (34).

Remarkably, there were no decreases in any of the components,

and rather there were increases in the peroxisomal beta-oxidation

enzymes required to produce DHA (34) indicating that reduced

DHA in Tmem135FUN025/FUN025 mutant mice does not result from a

defect in the ‘Sprecher pathway’ of DHA synthesis. The remaining

step where TMEM135 may play a role in the generation of DHA

within cells is the export of DHA from peroxisomes (Figure 2).

While the exact molecular mechanism is unknown, it is thought

that there is a protein on peroxisomes capable of exporting DHA

from these organelles (40). The results of the lipid and pathway

investigation of Tmem135FUN025/FUN025 mutant mice strongly

suggested that TMEM135 has a critical function in exporting

DHA from peroxisomes to deliver DHA to the ER for

esterification into lipids (Figure 2) (34). This is consistent with

the postulated function of TMEM135 involving the transport of

metabolites between organelles (18, 41).
FIGURE 2

TMEM135 exports docosahexaenoic acid (DHA, C22:6) from peroxisomes to regulate cellular lipid synthesis. Cells utilize the ‘Sprecher pathway’ to
synthesize DHA. (1) Cells uptake C18:3n3 from the blood and send it to the endoplasmic reticulum (ER). (2) The ER transforms C18:3n3 to C24:6n3
through a series of elongation and desaturation steps. (3) C24:6n3 migrates to the peroxisome for its import into its matrix. (4) Peroxisomal beta-
oxidation enzymes (ACOX1, DBP, ACAA1, and SCPx) digest C24:6n3 to C22:6n3. (5) TMEM135 transports C22:6n3 from the peroxisomal matrix to the
cytoplasm for its use by cells. (6) C22:6n3 accumulates within the ER to prevent the cleavage of the transcription factor SREBP and its activation of
genes involved in lipid synthesis. Image created using Biorender.com. ACOX1, acyl-CoA oxidase 1. DBP, D-bifunctional protein. ACAA1, acetyl-
coenzyme A acyltransferase 1. SCPx, sterol carrier protein x. SREBP, sterol response element binding protein.
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2.3 TMEM135 influences
peroxisome proliferation

Changes caused by Tmem135 perturbations affect the number

of peroxisomes, organelles that have chief responsibilities connected

with cellular metabolism through its interactions with

mitochondria, lipid droplets, lysosomes, and ER (42). In cultured

fibroblasts with the Tmem135FUN025 mutation, there was an

increase of peroxisomes, while fibroblasts overexpressing

Tmem135 showed reductions in peroxisomal number (34). It is

known that peroxisome proliferation is in part mediated by the

actions of the peroxisome proliferator activated receptor (PPAR)

family of transcription factors (43). Peroxisomes and their protein

contents were decreased in the livers of Tmem135FUN025/FUN025

mutant mice upon genetic ablation of PPAR alpha (Ppara) (34),

indicating that activation of PPARa signaling is involved in

increasing peroxisome proliferation in these mice. While it is

unclear what drives the changes in PPAR signaling due to the

changes in TMEM135 function, it is possible that impaired DHA

export from peroxisomes results in the generation of peroxisome-

derived metabolites that interact with PPARs such as ether

phosphatidylethanolamines (EtherPEs) known to activate the

PPAR signaling (44) which is increased in Tmem135FUN025/FUN025

mutant mice (34). More work is required to discern the molecular

mechanism underlying the peroxisome proliferation changes

observed in Tmem135 mutant and overexpressing cells, and its

relationship with the TMEM135 molecular function.
2.4 TMEM135 is a mediator of intracellular
cholesterol trafficking

TMEM135 has been implicated to have a role in the distribution

of intracellular cholesterol by two different studies (45, 46). First,

Tmem135 was identified in a shRNA screen for genes involved in

trafficking of cholesterol from low-density lipoprotein (LDL) to the

plasma membrane of HeLa cells (45). TMEM135 was further

validated as a protein involved in intracellular cholesterol

trafficking by knocking it down in HeLa cells, which resulted in

fewer contacts between lysosomes and peroxisomes as well as

decreased cholesterol in the plasma membrane (45). These results

suggested that lysosome-peroxisome trafficking of cholesterol

mediated by contacts between these organelles is impaired in

Tmem135 knockdown cells. This result was further confirmed in

another study using RPE1 cells, an immortalized RPE cell line often

utilized in cilia-focused research (46). The authors observed fewer

lysosome-peroxisome contacts (46) and an increased accumulation of

cholesterol in the lysosomes of cells with decreased Tmem135

expression (18). After treatment with LDL, the knockdown of

Tmem135 expression impaired the ability of cholesterol from LDL

particles to reach the ER. Accumulation of cholesterol was observed

in the eyecups of Tmem135FUN025/FUN025 mutant mice (16), which

may occur due to defective cholesterol transport in these mice.

Interestingly, accumulation of cholesterol in Tmem135FUN025/FUN025

mutant eyecups coincided with upregulation of sterol regulatory
Frontiers in Ophthalmology 05
element binding transcription factor 2 (SREBP2)-targeted

genes that are involved in cholesterol metabolism including

hydroxymethylglutaryl-CoA synthase (Hmgcs1), sterol O-

acyltransferase 1 (Soat1), ATP-binding cassette subfamily A

member 1 (Abca1), and ATP-binding cassette subfamily A member

1 (Abcg1) (16). It is worth exploring whether these biochemical and

expression manifestations result from defective lysosome-peroxisome

interactions in Tmem135FUN025/FUN025mutant mice. Moreover, based

on the TMEM135 function in DHA export (34), it would be

interesting to investigate whether DHA-esterified lipids influence

membrane fluidity and interactions of these organelles.
3 Tissue-specific roles of TMEM135
and its relevance to human disease

Insight into the significance of TMEM135 on metabolic

functions of tissues can be gleaned by the age-related phenotypes

in mice with modifications of Tmem135 function. Remarkably, all

tissues from mice with a homozygous mutation in Tmem135

(Tmem135FUN025/FUN025 mutant) or overexpression of Tmem135

(Tmem135 TG) show opposing differences in their mitochondrial

shape (Figure 3) and number of peroxisomes (11, 34, 47–49).

However, there are specific tissues that are more sensitive to the

Tmem135 mutation or overexpression (47, 50). There were also

tissue-specific lipid adaptations (34). These findings indicate there

is a tissue-specific reliance for TMEM135 on sustaining homeostasis

through aging. Here, we will summarize the phenotypes of the

Tmem135FUN025/FUN025 mutant and Tmem135 TG mice (Table 1)

and the potential relevance of TMEM135 in human diseases

associated with those phenotypes.
3.1 Ocular phenotypes of Tmem135
mutant mice

Tmem135FUN025/FUN025 mutant mice develop an age-dependent

photoreceptor cell degeneration (11, 16), which coincided with

visual loss, ectopic synapse development, and neuroinflammation

consisting of Müller glia activation and immune cell infiltration into

the subretinal space (11, 16). Tmem135FUN025/FUN025 mutant mice

also showed changes in the RPE such as autofluorescence, increased

thickness, increased density, decreased electroretinogram c-wave

amplitudes, and lipid accumulation (11, 16, 47) (Table 1).

It is possible that the retinal phenotypes of the Tmem135FUN025/

FUN025 mutant mice may be occurring due to their deficiency of DHA

(34). DHA has an important role in membrane fluidity of rod

photoreceptor outer segments that is required for phototransduction

(51). There are reports of other mouse models with retinal DHA

deficiency including elongation of very-long-chain fatty acids-like 2

(Elovl2) mutant (52), acyl-CoA synthetase 6 (Ascl6) knockout (53),

major facilitator superfamily domain containing 2A (Mfsd2a)

knockout (54, 55), and adiponectin receptor 1 (Adipor1) knockout

mice (56, 57) that show similar retinal pathologies to those observed in

Tmem135FUN025/FUN025 mutant mice (11, 16, 47).
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It is also possible that the retinal phenotypes of

Tmem135FUN025/FUN025 mutant mice result from enhancement of

mitochondrial fusion triggered by the Tmem135 mutation (11).

Boosting mitochondrial fusion in the retinas of Tmem135FUN025/

FUN025 mutant mice may lead to increased nutrient intake and

metabolic stress as detected in other tissues caused by excessive

mitochondrial fusion (58, 59). Supporting this idea, a NMR-based

metabolomics study revealed an accumulation of metabolites from

glucose, amino acid and lipid metabolic pathways in primary-

cultured Tmem135FUN025/FUN025 mutant RPE cells compared to

wild-type RPE cells (50). In addition, mice with retinal metabolic

stress such as RPE-specific vascular endothelial growth factor A

(Vegfa) or superoxide dismutase 2 (Sod2) have thicker RPE like the

Tmem135FUN025/FUN025 mutant mice (11, 47). Future studies will

need to be undertaken to determine the roles of the reduced DHA

and overly fused mitochondria in Tmem135FUN025/FUN025 mutant

mice in regard to the development of their retinal pathologies.
3.2 Ocular phenotypes of Tmem135
TG mice

In contrast to Tmem135FUN025/FUN025 mutant mice, Tmem135

TG mice exhibit progressive RPE degenerative phenotypes

including migration, vacuolization, dysmorphia, and thinning

(47). Additionally, Tmem135 TG mice displayed thinner myelin

sheaths of axons in the optic nerve (49). However, unlike
Frontiers in Ophthalmology 06
Tmem135FUN025/FUN025 mutant mice, there were no signs of

photoreceptor cell dysfunction or degeneration in Tmem135 TG

mice at least until one year of age (47).

The retinal phenotypes of Tmem135 TG mice may result from

their excess mitochondrial fragmentation (11, 47) and/or decreased

peroxisome proliferation (34). It is believed that mitochondrial

fission is important for the removal of damaged mitochondrial

membranes in order to maintain mitochondrial function (58, 60).

However, excessive mitochondrial fragmentation initiated by

Tmem135 overexpression could cause mitochondrial dysfunction

in the RPE and lead to degeneration of this cell type. Similar to

Tmem135 TG mice, mice with RPE-specific ablation of

transcription factor A, mitochondrial (Tfam) or PPARG

coactivator 1 alpha (Pgc-1a) show attenuated mitochondrial

function and degenerated RPE (61, 62). It is plausible that

mitochondrial fragmentation in Tmem135 TG could stem from

their decreased peroxisomal proliferation (34). Inhibition of proper

peroxisome biogenesis by eliminating peroxisomal biogenesis factor

3 (Pex3) or peroxisomal biogenesis factor 5 (Pex5) expression

promoted mitochondrial fragmentation in mouse embryonic

fibroblasts (33). Recent work has shown that genetic ablation of

the multifunctional protein 2 (Mfp2; also known as hydroxysteroid

(17-beta) dehydrogenase 4 or Hsd17b4) gene encoding D-

bifunctional protein (DBP), which is a critical enzyme required

for peroxisomal beta-oxidation (34, 63), specifically in RPE cells can

lead to RPE degenerative changes (64). Interestingly, expression of

Mfp2 is decreased in the eyecups of Tmem135 TG mice (34).
A B

C D

FIGURE 3

Mitochondrial shape in Tmem135 mutant tissues. Representative electron micrographs of mitochondria in the photoreceptor inner segments
(A), retinal pigmented epithelium (RPE) (B), heart (C), and liver (D) of wild-type C57BL/6J (WT) and Tmem135 mutant mice. Mitochondria are labeled
in green. Note the enlarged mitochondria in all Tmem135 mutant tissues relative to WT tissues. The magnifications for the photoreceptor inner
segment and RPE micrographs are 8800X, heart micrographs are 7100X, and liver micrographs are 11500X. The scale bar in all micrographs
represents 1 micron.
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Dissecting out the roles for mitochondrial fragmentation and

decreased peroxisomal proliferation will be critical to determine

the contributions of these organelles to the RPE degeneration

observed in Tmem135 TG mice.
3.3 Potential connection between
TMEM135 and AMD

Studies from cell culture and animal experiments signal a

substantial role of TMEM135 in energy homeostasis in aging. To

date, there has been no direct association between TMEM135 and

age-related retinal diseases including AMD. However, there are

multiple levels of similarities between Tmem135 mouse models and

AMD including ocular pathologies and molecular and cellular

changes (11, 16). Here, we will discuss potential involvement of

TMEM135 in AMD pathogenesis.

3.3.1 Mitochondrial changes in AMD
Dysfunction of mitochondria is an important pathobiological

event in AMD (65–67). In the retina, there are numerous

mitochondria within the photoreceptor and RPE cells (68).

Mitochondria provide these retinal cells a constant supply of

energy required for facilitating phototransduction and

sequestering of reactive oxygen species from photons of light and

other oxidative stresses (69). It is well established that aging disrupts
Frontiers in Ophthalmology 07
mitochondrial homeostasis, which may predispose the retina to

AMD (70). In particular, the RPE is thought to be the first tissue

affected by AMD (71). Surveys of the mitochondria in the RPE of

AMD-afflicted eyes uncovered robust decreases in their number

and size (72). The changes in mitochondrial shape and number in

the RPE of AMD donor retinas correlated with decreased

mitochondrial proteins (73), increased mitochondrial DNA

damage (74–76), and increased mitochondrial oxidative stress

(77). To evaluate the functional consequences of these changes,

RPE from human AMD donor eyes were cultured and assessed

using the Seahorse Extracellular Flux Analyzer (78). These RPE

cultures displayed a reduction in their glycolytic function (78) that

has been validated by another group using a different method (79).

The accrual of this work suggests targeting mitochondria is a viable

treatment strategy for AMD as proposed by many groups in the

AMD research field (80–91). It is of note that elamipretide, which

targets mitochondria, recently failed in a phase 2 trial of geographic

atrophy (92). However, this may still be a viable therapeutic for

intermediate AMD (93), suggesting that targeting mitochondria at

earlier stages of disease development may be more efficacious to

treat early/intermediate AMD.

The deviations of normal mitochondria in the RPE of donor

retinas hint at possible disruptions of mitochondrial dynamics in

AMD. The proteins involved in mitochondrial fusion, fission, and

autophagy were quantified in RPE cultures from AMD and control

RPE cultures (94). Interestingly, upon treatment with the
TABLE 1 Summary of features associated with TMEM135 loss of function and overexpression.

Organellar Changes Tissue Phenotypes

Mitochondria
(11, 25, 47–49)

Peroxisomes
(25, 34)

Eye Heart (48) Liver (34) Fat
(25)****

Neural retina
(11, 16, 47)

RPE (11, 16, 47)

TMEM135
Loss
of function

Overly-
fused mitochondria

Increased number ▪ Photoreceptor
cell degeneration
▪ Abnormal ERG
▪ Ectopic synapse
development
▪ Müller glia
activation
▪ Immune cell
infiltration into the
subretinal space

▪ Autofluorescence
▪ Increased
thickness
▪ Increased density
▪ Decreased ERG c-
wave amplitudes
▪ Lipid
accumulation

▪ No
phenotype**

▪ No
phenotype*
• Less severe
non-alcoholic
fatty liver
disease, less
hepatic lipid
accumulation
when combined
with the
leptin
mutation***

▪ Cold
intolerance
▪ Increased
diet-induced
obesity
▪ Glucose
intolerance
and insulin
resistance
▪ Increased
adiposity

TMEM135
Overexpression

Excess
mitochondrial
fragmentation

Decreased
number

▪ No phenotype* ▪ Degeneration
▪ Migration
▪ Vacuolization
▪ Dysmorphia
▪ Thinning

▪ Increased
fibrosis
▪ Hypertrophy
▪ Large
vacuoles
between
myofibrils

▪ No
phenotype**

▪ Increased
cold tolerance
▪ Decreased
diet-induced
obesity
▪ Glucose
tolerance and
increased
insulin
sensitivity
▪ Decreased
adiposity
*Data is from study on Tmem135 mutant or overexpressing mice under normal unstressed conditions.
** Data is not shown from studies on Tmem135 mutant or overexpressing mice.
*** Phenotypic difference was observed in Tmem135 mutant mice that are homozygous for the leptin mutation compared to homozygous leptin mutant mice.
**** Data is from studies using adipose-specific Tmem135 conditional knockout mice.
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mitochondrial uncoupler FCCP, there was a disease-specific

response in the RPE cultures from the AMD donor eyes

including an increase of mitochondrial fission factor (MFF) (94).

MFF is a protein necessary for mitochondrial fission (95), and its

amplified expression correlated with the mitochondrial

fragmentation typically observed in the RPE from AMD donor

eyes. Since TMEM135 is a mitochondrial fission factor (11, 25, 47,

49), it may be involved in mitochondrial fragmentation in the RPE

of AMD patients as well. Future work on the origins of

mitochondrial fragmentation in AMD-diagnosed retinas is

essential since the pharmacological inhibition of mitochondrial

fission is thought to be a therapeutic target for non-exudative

AMD (96).

3.3.2 Decreased DHA-containing lipids in AMD
The mammalian retina, notably the rod photoreceptor outer

segments, contains the highest density of DHA than any other tissue

in the body, which is important for membrane fluidity of the outer

segments (97). As previously discussed, DHA can originate from

dietary sources or endogenous synthesis through the ‘Sprecher

pathway.’ Dietary intake of DHA has been related to decreased risk

for AMD, but these findings have not been well replicated as

commented in other excellent reviews (98–100). This could be due

in part to the preferential uptake of DHA in different forms such as

triglycerides, phosphatidylcholine, or lysophosphatidylcholine by the

retina (101). Recent work suggested an important contribution of rod

photoreceptor-derived DHA in AMD (102). They showed through

LC-MS/MS andMALDI-molecular imaging that there was a decrease

of DHA-containing phosphatidylcholines in the peripheral retinas of

AMD patients (102).

Transcriptomic analysis of donor retinas also supports the

claim that there is less DHA in AMD-afflicted eyes. Integrated

microarray and RNA-Seq datasets (GSE29801 and GSE135092) of

RPE/choroid samples from AMD patients (16, 103–105) showed

increased sterol regulatory element binding transcription factor 1

(SREBP1), a transcription factor required for the synthesis of fatty

acids and cholesterol, and its target genes fatty acid synthase

(FASN), fatty acid desaturase 1 (FADS1), and FADS2 (16). Recent

work showed that decreased DHA enhances the transcription of

SREBP1 target genes (106) (Figure 2), suggesting that reduced DHA

could cause increased SREBP signaling in AMD. Intriguingly,

reduced DHA as well as increased expression of Srebp1 and its

target genes were also observed in Tmem135FUN025/FUN025 mutant

eyecup samples (16). Common molecular and pathological features

between Tmem135FUN025/FUN025 mutant mice and AMD patients

suggest that the role of TMEM135 in peroxisomal export of DHA

within retinal cells may be important in mitigating dysregulated

lipid synthesis in AMD.

3.3.3 Altered cholesterol metabolism in AMD
Cholesterol metabolism in AMD has been well investigated

because there are large accumulations of esterified cholesterol

within drusen, the pathological hallmark of AMD (107), and

strong associations of AMD risk with genes involved in

cholesterol transport (108–114). Disruptions to normal
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cholesterol homeostasis in the retina is thought to contribute to

the onset of drusen in the sub-RPE space of the human retina (115).

An understanding into retinal cholesterol metabolism comes from

inquiries on the pathobiological nature of the retinal phenotype of

ATP-binding cassette, subfamily A, member 4 (Abca4) knockout

mice, which lead to discoveries on a vital role of dysregulated

cholesterol trafficking as an important pathobiological event in the

development of AMD-like pathologies in this model (116). Abca4

knockout mice are characterized by the accumulation of A2E, a

major lipofuscin fluorophore, that coincides with delayed dark

adaptation (117, 118). A2E can displace cholesterol from the

plasma membrane of RPE cells, accumulate cholesterol within

RPE cells, and impede the ability of cholesterol efflux from these

cells (119). Furthermore, cholesterol accumulation can induce

ceramide production in the RPE and allow for complement-

mediated damage on the RPE plasma membrane in Abca4

knockout mice (120). Comparably, mice with the loss of

Niemann-Pick Type C disease (NPC) intracellular cholesterol

transporter 1 (NPC1), that lose the ability to transfer cholesterol

from lysosomes to the cell, have impaired visual function and

lipofuscin aggregation at 2 months of age (121). Given that

TMEM135 has been shown to play a role in the intracellular

trafficking of cholesterol between lysosomes and peroxisomes (45,

46), this function of TMEM135 may be important in sustaining

cholesterol metabolism within the retina and preventing the

formation of esterified cholesterol-enriched drusen in the sub-

RPE space.
3.4 Effects of TMEM135 modulation in
other tissues

There have been published associations with TMEM135 and

other human medical conditions such as osteoporosis (122–127),

breast cancer (128, 129), prostate cancer (130, 131), melanoma

(132, 133), non-small lung cancer (134), glioblastoma multiforme

(134), non-alcoholic fatty liver disease (135), cognitive disorders

(136), and metabolic disease (25). Significance of TMEM135

functions have been also indicated by phenotypes in other tissues

due to Tmem135 mutation and overexpression. While readers are

encouraged to refer to individual studies for details, we will

summarize the phenotypes in other mouse tissues caused by

modulation of Tmem135.

Overexpression of Tmem135 impacts the heart along with the

RPE (48). The hearts of Tmem135 TG mice on a mixed C57BL/6J

and FVB/NJ background show hypertrophy with increased fibrosis

(48). Ultrastructural abnormalities such as large vacuoles co-

occupying the space between myofibrils with mitochondria were

observed in Tmem135 TG hearts at varying severities (48). Cardiac

phenotypes of Tmem135 TG mice most likely derive from their

mitochondrial fragmentation. Other mouse models with heart-

specific conditional ablation of mitochondrial fusion display

cardiac phenotypes comprising dilated cardiomyopathy and

cardiac hypertrophy (137, 138). It remains unknown if

mitochondrial fragmentation in Tmem135 TG originates from
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mitochondria or peroxisomes as TMEM135 can translocate from

peroxisomes to mitochondria for fission events (11, 25, 34).

While livers of Tmem135FUN025/FUN025 mutant mice appear and

function normally regardless of the remarkable changes in their

hepatic peroxisomes and lipidome (34), physiological significance

of these cellular changes could be observed when the Tmem135FUN025

mutation was combined with the leptin mutation (Lepob), which

causes metabolic disease with significant hepatic lipid adjustments

and dependency on functional peroxisomes in mice (139–141). Both

male and female mice that are homozygous for Tmem135 and leptin

mutations (Tmem135FUN025/FUN025/Lepob/ob) had lower body, liver,

and gonadal fat pad weights compared to their Lepob/ob counterparts

(34). The Tmem135FUN025 mutation also decreased the amount of

plasma cholesterol by impairing the secretion of very low-density

lipoprotein (VLDL) and LDL (142). Modifications of the classic

obesity and dyslipidemia phenotype in Lepob/ob mice by the

Tmem135FUN025 mutation correlated with attenuation of their non-

alcoholic fatty liver disease (NAFLD) phenotypes. There were less

severe NAFLD pathologies and hepatic lipid accumulation in

Tmem135FUN025/FUN025/Lepob/ob mice compared to Lepob/ob mice

(34). Together, these phenotypic changes suggest that impairment

of TMEM135 function affects molecular pathways involved in the

pathogenesis of metabolic disease with dysregulated lipid

metabolism, which may include activation of PPAR signaling and

increased peroxisome proliferation (34).

Most recently, adipose-specific deletion of Tmem135 was shown

to result in impaired thermogenesis and increased diet-induced

obesity and insulin resistance in mice, revealing significant roles of

TMEM135 in the brown fat and energy homeostasis (25).

Conversely, Tmem135 overexpression increased thermogenesis

and prevented diet-induced obesity and insulin resistance (25).

This study revealed aforementioned function of TMEM135 in the

regulation of mitochondrial fission and placed TMEM135 as a

critical mediator of the peroxisomal regulation of mitochondrial

fission and thermogenesis (25). Additionally, the authors identified

a single nucleotide polymorphism (SNP) in the human TMEM135

gene associated with increased body mass index (BMI) in a

Hispanic population (25). Functional studies indicated that this

specific SNP in TMEM135 reduces the function of the protein and

may promote the occurrence of human metabolic diseases (25).
4 Future perspectives of
TMEM135 research

There has been a wealth of knowledge on TMEM135 from new

publications over the last several years. Yet, there are still many

unanswered questions regarding this fascinating protein that need

to be answered and its role in aging.

TMEM135 is increasingly recognized for its involvement in

lipid homeostasis. Studies have shown that TMEM135 expression is

elevated in conditions with lipid accumulation (15). However, the

specific molecular mechanisms regulating TMEM135 expression

remain to be fully elucidated. This aspect presents a potential
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avenue for future research to understand the role of TMEM135 in

lipid homeostasis.

As detailed by the descriptions of mice with the loss-of-function

mutation and overexpression of Tmem135 in this review,

TMEM135 has significant roles in multiple tissues. Future studies

on TMEM135 should utilize mouse genetic approaches to

interrogate the role of this protein in a tissue-specific manner.

These strategies could include Cre-Lox technologies or viral vectors

that modulate TMEM135 expression in discrete cells. This would

prevent off-target effects that may confound the interpretation of

the role of TMEM135 in a particular cell-type since TMEM135 has

important roles in multiple cells. Also, it is unclear the contributions

of dysregulated mitochondrial dynamics, DHA concentrations,

peroxisome proliferation, and intracellular trafficking on the

phenotypes of the Tmem135 mutant and overexpressing mice.

These pathways should be targeted to determine their

contribution towards the phenotypes of these mice.

Previous studies highlight the crucial role of TMEM135 in

connecting cellular organelles, particularly peroxisomes and

mitochondria, as well as peroxisomes and lysosomes. The

growing understanding of organelle interactions has attracted

significant scientific interest. A key area of research is the role of

these organelle interactions in the retina, particularly how they

contribute to normal aging and their potential alteration in age-

related conditions such as AMD.

Lastly, while genetic and molecular biological studies on

TMEM135 have progressed, exploring the protein biochemically

could yield valuable insights. For instance, identifying the structure

of TMEM135, its binding partners, and small molecules that

regulate its activity could pave the way for new therapeutic

approaches targeting TMEM135 in metabolic and age-

related diseases.
5 Conclusion

Aging is a significant stressor for tissues, but the molecular

nature of aging remains a mystery. By using forward genetics,

important genes and pathways involved in aging can be determined.

In this review, we summarized the findings on TMEM135, an

important player involved in retinal aging of mice that was

uncovered through forward genetics. This unbiased phenotypic

investigation led to the discovery of a critical protein involved in

the regulation of mitochondrial and peroxisomal functions, as well

as lipid homeostasis. Disruptions of TMEM135 function have

detrimental consequences to the murine retina, but other tissues

including the heart, liver, and adipose tissue can also be impacted by

changes in TMEM135. Importantly, both the loss-of-function

mutation in Tmem135 and overexpression of Tmem135 caused

pathology development in mice, indicating the balance of

TMEM135 function is required for normal healthy aging.

Although no direct connection has been made between

TMEM135 and age-related retinal diseases, accumulating

evidence points to the involvement of TMEM135 in the
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molecular pathways underlying such diseases. As more information

is collected on TMEM135, we will gain a better understanding of

how aging contributes to disease processes, thus providing

invaluable insight for the creation of novel therapies and

identification of promising biomarkers for those individuals who

may be affected by these conditions in the future.
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