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size on topographical maps of
foveal cone density
Emma Warr1, Jenna Grieshop1,2, Robert F. Cooper1,2

and Joseph Carroll 1,2,3*

1Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee,
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Purpose: To characterize the effect of sampling window size on maps of foveal

cone density derived from adaptive optics scanning light ophthalmoscope

(AOSLO) images of the cone mosaic.

Methods: Forty-four AOSLO-derived montages of the foveal conemosaic (300 x

300μm) were used for this study (from 44 individuals with normal vision). Cone

photoreceptor coordinates were semi-automatically identified by one

experienced grader. From these coordinates, cone density matrices across

each foveal montage were derived using 10 different sampling window sizes

containing 5, 10, 15, 20, 40, 60, 80, 100, 150, or 200 cones. For all 440 density

matrices, we extracted the location and value of peak cone density (PCD), the

cone density centroid (CDC) location, and cone density at the CDC.

Results: Across all window sizes, PCD values were larger than those extracted at

the CDC location, though the difference between these density values decreased

as the sampling window size increased (p<0.0001). Overall, both PCD (r=-

0.8099, p=0.0045) and density at the CDC (r=-0.7596, p=0.0108) decreased

with increasing sampling window size. This reduction was more pronounced for

PCD, with a 27.8% lower PCD value on average when using the 200-cone versus

the 5-cone window (compared to only a 3.5% reduction for density at the CDC

between these same window sizes). While the PCD and CDC locations did not

occur at the same location within a given montage, there was no significant

relationship between this PCD-CDC offset and sampling window size

(p=0.8919). The CDC location was less variable across sampling windows, with

an average per-participant 95% confidence ellipse area across the 10 window

sizes of 47.56μm² (compared to 844.10μm² for the PCD location, p<0.0001).

Conclusion: CDC metrics appear more stable across varying sampling window

sizes than PCD metrics. Understanding how density values change according to

the method used to sample the cone mosaic may facilitate comparing cone

density data across different studies.
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1 Introduction

Adaptive optics scanning light ophthalmoscopy (AOSLO)

enables direct observation of the human photoreceptor mosaic

with single-cell resolution (1–3). Of particular interest are the

cone photoreceptors at the fovea – a highly specialized region of

the retina that supports our high-acuity vision (4, 5). Relative to the

parafoveal cone mosaic, foveal cone density is higher and the cones

are contiguously packed (due in part to the absence of rod

photoreceptors) (6). Given the vital importance of foveal cone

photoreceptors for our vision, and the involvement of the fovea

in many pathologies, there is significant interest in advancing

quantitative biomarkers to assess the foveal cone mosaic.

Numerous metrics exist for describing geometric properties of the

cone mosaic, though cone density and cone spacing are used most

often (7–10). Despite convergence on these metrics to characterize

the foveal cone mosaic, there remain differences in the methods

used to derive them – limiting the ability to compare results from

different studies and ultimately limiting progress toward the

development of robust clinical biomarkers.

A frequent inconsistency between studies relates to the size and

shape of the sampling window used to derive metrics of the cone

mosaic. The steep cone density gradient in the central fovea requires

special consideration of how large of an area to use when deriving a

local estimate of cone density (6). Larger sampling windows will

result in lower values of peak density due to inclusion of lower

density neighboring regions, while smaller sampling windows result

in more noisy density maps that can make derivation of the global

peak cone density (PCD) location challenging. Despite this, fixed-

area sampling windows have been used in many studies (6, 8, 9, 11–

20). This issue is partially overcome by using sampling windows that

include a fixed number of cones, regardless of the retinal location.

While this approach has been used by some investigators (10, 21–

24), there is inconsistency in the number of cones sampled. Here we

examined the relationship between the number of cones included in

the sampling window and cone mosaic metrics (location and value

of PCD, location of the cone density centroid (CDC), and density at

the CDC). We also report the effect of variable sampling windows on

the overall cone density topography for individual participants.
2 Methods

2.1 Participants

This study followed the tenets of the Declaration of Helsinki

and was approved by the Institutional Review Board at the Medical

College of Wisconsin (PRO 30741). Included in this study were

right eyes of 44 participants (age range: 12-61 years; 17 males and 27

females) with self-reported normal vision and previously imaged as

part of Cava et al. (2020) and Wynne et al. (2022) (23, 24). Prior to

AOSLO imaging, axial length (IOL Master, Carl Zeiss Meditec,

Dublin CA, USA) and autorefraction (KR-800S, Topcon

Corporation, Tokyo, Japan) measurements were taken. The study

eye was then dilated and accommodation suspended with one drop
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of 2.5% phenylephrine hydrochloride (Akorn, Lake Forest, IL, USA)

and one drop of 1% tropicamide (Akorn, Lake Forest, IL, USA) for

participants aged 18 years and older. For participants under age 18,

one drop of 1% cyclopentolate hydrochloride (Cyclomydril, Alcon

Laboratories Inc., Fort Worth, TX, USA) was used for dilation and

accommodation suspension.
2.2 AOSLO imaging, processing,
and montaging

A dental impression bite bar was used for head stabilization

during AOSLO imaging. Per our imaging protocol, confocal

AOSLO videos consisting of 150-200 frames each were acquired

at various locations within the fovea. Videos were taken at 1.5° field

of view (FOV) with approximately 1° overlap between video

locations or at 1.0° FOV with approximately 0.5° overlap. A

775nm or 790nm super luminescent diode (SLD) was used for

imaging. Several techniques were used to improve the resolution of

foveal cones during imaging. These techniques included imaging

with 0.75° and 0.5° FOVs, using a 680nm SLD (incident power:

32.5μW), or using a sub-airy disk pinhole (0.5-0.7 Airy disk

diameter) (24).

Each video was processed to create high-resolution .tif images as

previously described (24). From each video, a minimally distorted

reference frame was automatically chosen (25) and used to register

and average the remaining frames in the video with a strip-based

registration algorithm (25, 26). Frames were then repaired to

remove additional distortion with a de-warping repair script

(https://github.com/OCVL/Eye-Motion-Repair) based on a

previous method (27). This repair script works by estimating the

bias of random eye motion distortions throughout the reference

frames, based on the median translation observed in each row of the

registered images. The median translation fixes the distortion of the

frame in a same-magnitude but opposite-direction approach (24,

28). These processing techniques create a .tif image with high

signal-to-noise ratio from each acquired video. Additional

improvement in the resolution of the central most foveal cones

was possible by averaging multiple processed images from videos

acquired at the same retinal location – either at different focal planes

or simply at different time points. This approach reduces the

between cell variation in reflectivity, making discrimination of

cones in the mosaic easier (24, 29).

The scale of each montage (μm/pixel) was determined from the

AOSLO system scale as well as the individual’s axial length (2) at the

time of image acquisition. This calculation was previously described

(19) using the following equation:

AOSLO   Scale =
T
f1Ts

(
180
p

)RMF(
AL
24

)

where T represents the periodicity of a Ronchi ruling (μm/cycle), f1
represents the focal length of the model eye in our system (μm), Ts

represents the sampling period of the lines in the model eye image

of the Ronchi ruling (pixels/cycle), RMF represents the assumed

retinal magnification factor (291 μm/degree) of an eye with a
frontiersin.org

https://github.com/OCVL/Eye-Motion-Repair
https://doi.org/10.3389/fopht.2024.1348950
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org


Warr et al. 10.3389/fopht.2024.1348950
24.0mm axial length (30), and AL is the participant’s axial

length (mm).

A custom MATLAB script (https://github.com/BrainardLab/

AOAutomontaging) was used to automatically align the processed

.tif images (31) into a single montage. Alignment of overlapping

images was manually corrected using Adobe Photoshop CS6

(Adobe Systems, Inc., San Jose, CA, USA). Individual frames were

blended to create a flattened, seamless image of the area containing

the subjective peak cone density as well as its adjacent frames.

Finally, a 300 x 300μm region of interest (ROI) centered at the

subjective location of approximate highest cone density (locus of

smallest cones/tightest packing) was cropped for analysis.
2.3 Cone counting and density mapping

Cones were identified using a semi-automated cone counting

software (Mosaic Analytics; Translation Imaging Innovations,

Hickory, NC, USA). One experienced human grader (JC)

manually corrected the cone markings automatically identified by

the algorithm. For each foveal montage, a cone coordinate file was

generated containing the (x,y) locations of the individual cone

markings. For this study we analyzed the effect of sampling

window size when determining bound cone density for individual

foveal montages. We used a square sampling window and specified

the number of cells to be included in each window using a custom

density mapping script (https://github.com/AOIPLab/Metricks/

releases/tag/Warr_et_al_2024). The criterion sampling window

size for generating the density maps was adjusted to include 5, 10,

15, 20, 40, 60, 80, 100, 150, or 200 cells. The sampling window
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expands at each coordinate until it includes at least the specified

number of bound Voronoi cells. Due to the irregularity of Voronoi

cells at the fovea, the sampling window is often unable to be sized

such that it exactly matches the specified number of bound Voronoi

cells. In these instances, we set the sampling window to the smallest

size that still exceeds the specified number of cells, then randomly

remove Voronoi cells around the edge of the sampling window until

the exact number of specified cells is achieved. For edge cells in the

montage, the sampling window expands on two or three sides

toward the center of the montage instead of expanding

proportionally from the target coordinate (this way, density is

only calculated within the bounds of the montage). The density at

each coordinate is calculated by taking the number of bound cells

divided by the sum of their Voronoi areas. The window moves to

each coordinate in the coordinate file and a pixelwise linear

interpolated density map is created for each montage (Figure 1).

The interpolated pixel in each foveal montage containing the

absolute maximum density is the location of the PCD and the

subsequent density value at that point is taken as the PCD. The

CDC was determined by generating an 80% isodensity contour of the

region that includes pixels containing the top 20th percentile of density

values within the foveal montage. We then fit an ellipse around this

80% isodensity region and define the center of this best-fit ellipse as the

CDC location (see Supplementary Figure 1). This method for

determining the CDC is based off the method described by Reiniger

et al. (2021) (32). We determined PCD and CDC metrics from each

sampling window condition across all 440 density maps (44

participants with 10 density maps each). The 10 density maps for

one participant are shown in Figure 2. To assess intra-individual

reproducibility of the PCD and CDC locations, we computed the
FIGURE 1

Extracting pixel-wise density from a foveal montage. Shown in the left-image is a 300 x 300μm foveal montage from participant JC_11660.
Following cone identification, we calculate density at each cone coordinate in the image using a custom MATLAB script (https://github.com/
AOIPLab/Metricks/releases/tag/Warr_et_al_2024). The script works by centering a square sampling window on a given coordinate and expanding
the window until at least the specified number of bound Voronoi cells (e.g., 5, 10, 15, 20, 40, 60, 80, 100, 150, 200 cones) is included. An example of
a 100-cone sampling window is shown in the red-outline box within the foveal montage. The center coordinate is identified with a red circle,
unbound cells are identified with an open circle, and bound cells are identified with a black circle. In some instances, the window includes more
than the specified number of cells. When this occurs, the script randomly removes excess coordinates (cyan circles) to achieve the exact number of
specified bound cells. Then, density for the center coordinate is calculated by dividing the number of coordinates in that window by the sum of their
Voronoi areas. The process is repeated until a density value is calculated at every coordinate of the montage, from which an interpolated density
map is generated (right-most image).
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95% confidence ellipse areas for both PCD and CDC locations from all

10 window sizes using a custom MATLAB script (https://github.com/

AOIPLab/Metricks/releases/tag/Warr_et_al_2024). Example PCD and

CDC 95% confidence ellipses for a single participant are shown

in Figure 2K.
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2.4 Assessing overall cone
mosaic topography

To assess how the sampling window affects overall aspects

of foveal cone topography (not just PCD and CDC), we created
FIGURE 2

Visualizing the effect of sampling window size on foveal cone topography. A 300 x 300μm foveal montage was cropped from participant JC_11686
and cone coordinates were semi-automatically identified (see Methods). Density maps were generated using 10 different sampling window sizes,
with corresponding cone density maps shown in (A-J). As window size increases, PCD decreases. Also, as window size increases, the density maps
show a smoother gradient of density change from the foveal center to the perifovea. The blue filled circle represents the location of PCD, while the
orange filled circle represents the location of the CDC in each density map. The white outline represents the 80% isodensity contour. Shown in
panel (K) are the individual locations of PCD and CDC produced by each of the 10 sampling windows for this participant (blue and orange filled
circles, respectively). The blue outline represents the 95% confidence ellipse of the PCD locations, while the orange outline represents the 95%
confidence ellipse of the CDC locations. The area of the 95% PCD confidence ellipse is 274.65μm² while the area of the 95% CDC confidence
ellipse is 6.34μm². The CDC locations were less affected by the sampling window size, reflected by the smaller 95% confidence ellipse.
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two separate composite maps (mean density and density

standard deviation) for each participant using the data from

their 10 individual density maps. From these two maps, we

extracted a horizontal and vertical cross section through the

average CDC location (derived from that participant’s 10

individual density maps). For most participants, the average

CDC (x,y) coordinates were not whole numbers. In these cases,

we used a weighted average of the values in the rows and/or

columns neighboring the average CDC point (for example, if

the average CDC x-coordinate was 150.3, the 150th column of

values were weighted at 70% while the 151st column of values

were weighted at 30%). Shown in Figure 3 are topographical

plots from both cross-sections illustrating the average trend

from all 44 participants. All MATLAB scripts utilized above can

be found at: https://github.com/AOIPLab/Metricks/releases/

tag/Warr_et_al_2024.
2.5 Statistics

Linear units were used to represent PCD and CDC density

(cones/mm²) as well as PCD and CDC locations (μm). We also

repeated the comparisons using angular units to represent density
Frontiers in Ophthalmology 05
(cones/deg²). See Supplementary Table 1 for participant level data.

A Shapiro-Wilk normality test was used to determine the use of

parametric or nonparametric approaches. All statistics were

calculated using GraphPad Prism (Prism 9.0.0; GraphPad

Software, San Diego, CA, USA).
3 Results

Across all window sizes, average PCD values were larger than

those extracted at the CDC location (p=0.0012, paired t test;

Figure 4A). On average, PCD and CDC both decreased with

increasing sampling window size, though the effect was larger for

PCD (r=-0.8099, p=0.0045) than CDC (r=-0.7596, p=0.0108). As

the density values at the CDC with the smallest window sizes

behaved in an inconsistent fashion, we also examined the

relationship between density and window size using only window

sizes of 20 cones and larger (Figure 4B). We again see a strong

relationship between PCD and window size (r=-0.9192, p=0.0034)

and also for CDC density values (r=-0.8595, p=0.0132). As

summarized in Supplementary Table 2, our density values are

comparable to previous estimates in individuals with normal

vision (10, 13, 21, 23, 24, 33–36). For example, with a window
FIGURE 3

Topographical variation in foveal cone density. For each participant, we derived two composite maps (mean density and density standard deviation)
using their individual density maps from the 10 sampling windows. Horizontal and vertical cross-sections of mean density and density standard
deviation were then extracted at their average CDC point (0 on the x-axis). We averaged these data across all 44 participants, which is represented
by the solid line in all four plots. Also plotted are ±2 standard deviations of all participant data (dashed lines). Data are shown separately for the
horizontal (left) and vertical cross-sections (right). As seen in the top plots, the between-participant variance in average density is greatest near the
average CDC point where the pixel-wise density is highest and changes most rapidly. Meridian orientation is indicated on the x-axes (T=temporal,
N=nasal, S=superior, I=inferior).
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size of 100 cones, the average PCD from all 44 participants was

185,501 cones/mm² (range=128,007-244,921 cones/mm²) and the

average density at the CDC was 174,696 cones/mm²

(range=121,169-242,614 cones/mm²). At a window size of 150

cones, the average PCD from all 44 participants was 182,184

cones/mm² (range=126,323-239,362 cones/mm²) and the average

density at the CDC was 174,295 cones/mm² (range=121,891-

235,663 cones/mm²). The intra-participant differences in density

estimates at the PCD and CDC locations decreased significantly as

window size increased (p<0.0001, ANOVA, Figure 4C). This was

driven largely by the increased PCD values obtained with smaller

sampling windows (Tukey’s multiple comparisons test, see

Supplementary Table 3). The same trends were observed when

reporting density in angular units (cones/deg2), see Supplementary

Figure 2. Across, the 44 participants, as the number of cones in the

sampling window increase, we observed a proportional increase in

window area (y=9.21x + 1.7146, R² = 1; where x is the window size

in number of cones and y is the average bound area window

size across all participants). For example, the average area for the

200-cone sampling window was 1,841.14μm² while the average

area for a 5-cone sampling window was 45.98μm² (see

Supplementary Table 4).

In addition to density values, we observed variation in PCD and

CDC location as a function of window size. Across all 440 ROIs (44

participants with 10 window sizes each), there were no instances

where the reported PCD value occurred at more than one point.

The average PCD confidence ellipse area across all participants was

844.10μm2, which was significantly greater than the average CDC

confidence ellipse area (47.56μm2, p<0.0001, Wilcoxon matched-

pairs signed-rank test). PCD 95% confidence ellipse areas were

greater than CDC 95% confidence ellipse areas for all participants

with one exception (JC_11830). Across the 44 participants, PCD

95% confidence ellipse area ranged from 105.28 to 8,389.90μm2,

while CDC 95% confidence ellipse area ranged from 2.50 to

481.73μm2. Example 95% confidence ellipses are shown for four

participants in Figure 5. There was variation between participants in

the relationship between the magnitude of the offset between PCD

and CDC location and sampling window size. On average, the 44

participants demonstrate relative stability in PCD-CDC location

offset as sampling window size increases (Figure 6A). However,

when assessed individually, some participants showed convergence

of the PCD and CDC location with increasing sampling window,

some showed divergence, while others showed inconsistent trends

(Figure 6B). This heterogeneity in how window size impacts PCD-

CDC offset is likely due to the underlying global topography of each

cone mosaic.

Consistent with prior studies of cone topography (6, 22, 35), we

observed a decline in average cone density as a function of

eccentricity in both the horizontal and vertical meridians

(Figure 3). Additionally, we observed greater within-participant

standard deviation near the CDC location compared to locations

toward the edge of the foveal ROI – indicating that the variability

induced by using different sampling windows affects density more

in areas of rapidly changing density (foveal center) compared to

areas where density is more uniform (edge of the foveal ROI

used here).
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4 Discussion

Consistent with previous studies of the parafoveal cone

mosaic (16, 37–39), our results highlight the importance of

defining the sampling window used in deriving maps of foveal

cone density. Importantly, we find that the value and location of

PCD (versus CDC) is more significantly affected by using a

variable sampling window size. This is demonstrated by the

steeper decline in PCD as window size increases as compared to

density at the CDC (Figure 4A). Additionally, the smaller

average CDC 95% confidence ellipse area compared to PCD

95% confidence ellipse area demonstrates greater stability in

CDC location compared to PCD location as sampling window

size changes. These findings are expected based on how we

define PCD versus density at the CDC. PCD is the interpolated

point of absolute highest density in a given montage whereas

density at the CDC describes a relative maximum based on a

pooled region of highly dense locations. Thus, when the

sampling window is small, we can resolve several high-density

regions in the foveal mosaic, visible as small “islands” of 80%

isodensity contour (Figures 2A–D). To derive the CDC, we

generate a best fit ellipse of the 80% isodensity contour and

define the center of that ellipse as the CDC location. This

method identifies a point whose density is an average of a

region of high cone density. Therefore, despite changes in

sampling window size, the CDC location of an individual ROI

remains more stable than the PCD location. As well, previous

studies have demonstrated superior intersession repeatability

for CDC location compared to PCD location (32) as well as

superior intergrader reproducibility in CDC location relative to

PCD location (23). Taken together, the emerging picture is that

CDC represents a more robust metric to describe the “center” of

the foveal cone mosaic.

As reported by Wang et al. (2019), use of smaller sampling

windows may produce unreliable estimates of PCD and PCD

location (34), though it is important to note they used a fixed

dimension sampling window, which may contain variable numbers

of cones across participants. Additionally, their sampling window of 10

arcmin contains over 200 cones, which would be larger than the largest

sampling window used in our study. Our data support the notion that

smaller window sizes impact PCD and we show that this also applies to

the CDC (albeit to a lesser degree). When excluding the smallest

sampling window sizes, we observe a strong relationship

between sampling window size and both PCD and density at CDC

(Figure 4B). This observation may allow comparison of density

estimates between studies that used different sampling windows to

construct their respective cone density maps. However, while this

approach may work on average, there is variation between

individual cone mosaics in how density estimates and locations vary

as a function of sampling window size (Figure 6B). This is likely due to

more global features of cone topography, including individual

variation in kurtosis of the cone density versus eccentricity function.

Further work is needed to understand if and how best to combine

data across studies employing different methodology, as large and

robust normative databases are needed to advance the use of

AOSLO imaging.
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B

C

A

FIGURE 4

Effect of sampling window size on peak cone density (PCD) and cone density centroid (CDC) values. Shown in panel (A) are average PCD and
average density at the CDC values at all 10 sampling windows across all 44 participants (blue and orange filled circles, respectively). The PCD and
CDC values are each fit to a power function (best fit lines illustrated by dashed blue and orange lines, respectively). As sampling window size
increases, PCD decreases precipitously while density at the CDC remains more stable (though CDC density values still showed a significant
correlation with sampling window, r=-0.86). (B) We re-fit these data excluding the three smallest sampling windows (5, 10, 15 cones). The
relationship between sampling window size and density value is stronger with the exclusion of smaller sampling windows which are more
susceptible to oversampling density. Symbols and lines are same as in (A). In all functions described, x is the sampling window size in number of
cones and y is the cone density in cones/mm². (C) We computed the difference in PCD and CDC density for each participant at each window size.
Each violin in the plot illustrates the distribution of density differences across participants (dashed line = median, solid lines = upper and lower
quartile in each violin). Density difference decreases significantly as window size increases (p<0.0001, Kruskal-Wallis test).
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Limitations of our study include reliance on a single observer’s cone

markings – errors or biases in their coordinates may exist (23). As such,

generalization of these trends should be applied carefully to other datasets

where coordinates were derived from different observers. Additional

factors related to sampling the conemosaic could be considered in future

studies – such as inclusion of “edge” cells within the window, shape of the

window (square, arcuate, circular), and interpolation methods.

Additionally, our sample of 44 participants was almost 2:1 female

(27F, 17M) and almost exclusively white (approximately 70% of

participants self-reported race as white). As it is unknown whether

cone mosaic topography varies with race and ethnicity, our analysis

should be repeated in a more heterogenous population.

Ultimately, the “cost” of variation in any metric (including

those assessed here: PCD/CDC value and PCD/CDC location)

depends on the subsequent application. For this reason, we do

not identify one sampling window as the ideal size when

extracting density metrics. Correlation of cone density with

measures of function (e.g., acuity or sensitivity) may wish to

utilize sampling windows with sizes comparable to some feature
Frontiers in Ophthalmology 08
of the visual system (such as fixational stability) (34). Moreover,

correlation with measures of function would be best made using

cone density at the retinal location used for the specific task

(40–42), which may not occur at the PCD or the CDC (32, 43,

44). Thus, in these scenarios, the PCD or CDC location may not

be overly relevant. Likewise, correlation of mosaic metrics to

other structural features in other imaging modalities would

require co-registration of images to ensure alignment of the

cone mosaic measures with these other retinal features (45, 46).

One application that depends on having a reliable “anchor”

within the cone mosaic is selecting parafoveal and perifoveal

regions of interest from a larger montage for subsequent

analysis. Whether PCD or CDC, this anchor serves as the

(0,0) reference point from which retinal eccentricity of a

given region of interest is computed (47). Though we observe

an offset in PCD and CDC location at all window sizes, if

choosing PCD or CDC as an anchor point this offset would

remain a fixed value at all retinal eccentricities. However, as

cone (and rod) density changes with eccentricity (6, 35), this
FIGURE 5

Example PCD and CDC 95% confidence ellipses from four participants (JC_11354, JC_11321, JC_11613, and JC_11631). Individual PCD and CDC 95%
confidence ellipses are shown (blue and orange, respectively). Shown in panel (A) is JC_11354 who has an average PCD of 184,048 cones/mm²;
average PCD ellipse area of 132.91μm2; and average CDC ellipse area of 20.13μm2. Shown in panel (B) is JC_11321 who has an average PCD of
153,724 cones/mm²; average PCD ellipse area of 226.70μm2; and average CDC ellipse area of 69.65μm2. Shown in panel (C) is JC_11613 who has an
average PCD of 224,457 cones/mm²; average PCD ellipse area of 788.26μm2; and average CDC ellipse area of 110.78μm2. Shown in panel (D) is
JC_11631 who has an average PCD of 200,331 cones/mm²; average PCD ellipse area of 1625.52μm2; and average CDC ellipse area of 60.70μm2.
The center of each panel aligns with the center of the 300 x 300μm AOSLO montage, though note the 50μm scale bar (white line in panel D)
indicating that these are zoomed in to reveal the small differences between ellipses. The area of the PCD 95% confidence ellipse is larger than the
area of the CDC 95% confidence ellipse, with one exception (JC_11830; see text).
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fixed offset in the location assigned to a given region of interest

could result in variably misleading conclusions about the health

of the underlying mosaic. Our findings support the use of CDC

as a more reliable anchor for such applications, even where

resolution of the most densely packed cones is possible and

PCD measures are desired for different purposes.
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Data availability statement

The raw data (foveal montages, cone coordinate files, density

matrices) supporting the conclusions of this article will be made

available upon request to the corresponding author (jcarroll@

mcw.edu), without undue reservation.
B

A

FIGURE 6

Effect of sampling window size on PCD and CDC location offset. (A) At a given window size, we determined the Euclidian distance between the
location of the PCD and the location of the CDC for each participant. Each violin in the plot illustrates the distribution of PCD-CDC location offsets
across all 44 participants (dashed line = median, solid lines = upper and lower quartile in each violin). Though the PCD and CDC locations occurred
at different points within a given montage, no significant relationship was found between average PCD-CDC location offset and sampling window
size (p=0.89). (B) Shown are examples highlighting the variable inter-individual variability in the relationship between PCD-CDC location offset and
sampling window size. Some remain relatively constant (JC_0077), some showed convergence of the PCD and CDC location with increasing
sampling window (JC_11409), some showed divergence (JC_10591), while others showed inconsistent trends (JC_10549).
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