
Frontiers in Ophthalmology

OPEN ACCESS

EDITED BY

Kenji Matsushita,
Osaka University, Japan

REVIEWED BY

Stephanie Louise Grillo,
Penn State Milton S. Hershey Medical Center,
United States
Yukihiro Shiga,
University of Montreal Hospital Research
Centre (CRCHUM), Canada

*CORRESPONDENCE

Youichi Shinozaki

shinozaki-yi@igakuken.or.jp

RECEIVED 09 October 2023

ACCEPTED 18 December 2023
PUBLISHED 08 January 2024

CITATION

Shinozaki Y, Namekata K, Guo X and Harada T
(2024) Glial cells as a promising therapeutic
target of glaucoma: beyond the IOP.
Front. Ophthalmol. 3:1310226.
doi: 10.3389/fopht.2023.1310226

COPYRIGHT

© 2024 Shinozaki, Namekata, Guo and Harada.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 08 January 2024

DOI 10.3389/fopht.2023.1310226
Glial cells as a promising
therapeutic target of glaucoma:
beyond the IOP
Youichi Shinozaki*, Kazuhiko Namekata, Xiaoli Guo
and Takayuki Harada

Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
Glial cells, a type of non-neuronal cell found in the central nervous system (CNS),

play a critical role in maintaining homeostasis and regulating CNS functions.

Recent advancements in technology have paved the way for new therapeutic

strategies in the fight against glaucoma. While intraocular pressure (IOP) is the

most well-known modifiable risk factor, a significant number of glaucoma

patients have normal IOP levels. Because glaucoma is a complex, multifactorial

disease influenced by various factors that contribute to its onset and progression,

it is imperative that we consider factors beyond IOP to effectively prevent or slow

down the disease’s advancement. In the realm of CNS neurodegenerative

diseases, glial cells have emerged as key players due to their pivotal roles in

initiating and hastening disease progression. The inhibition of dysregulated glial

function holds the potential to protect neurons and restore brain function.

Consequently, glial cells represent an enticing therapeutic candidate for

glaucoma, even though the majority of glaucoma research has historically

concentrated solely on retinal ganglion cells (RGCs). In addition to the

neuroprotection of RGCs, the proper regulation of glial cell function can also

facilitate structural and functional recovery in the retina. In this review, we offer

an overview of recent advancements in understanding the non-cell-

autonomous mechanisms underlying the pathogenesis of glaucoma.

Furthermore, state-of-the-art technologies have opened up possibilities for

regenerating the optic nerve, which was previously believed to be incapable of

regeneration. We will also delve into the potential roles of glial cells in the

regeneration of the optic nerve and the restoration of visual function.
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1 Introduction

Neurons in the mammalian central nervous system (CNS) have

long been perceived as incapable of regeneration in the adult tissue

(1). Similarly, retinal neurons have historically been considered

non-regenerative, leading to the perception that blindness resulting

from retinal neurodegenerative diseases and optic neuropathies is

untreatable. Consequently, visual impairment in glaucoma, a

leading global cause of blindness, has traditionally been thought

of as irreversible. However, decades of extensive research have

revealed that there is potential for restoring visual function even

after the onset of ocular neurodegenerative diseases. Given that

retinal ganglion cells (RGCs), responsible for transmitting visual

information to the brain, are selectively damaged in glaucoma,

therapeutic efforts have primarily focused on cell-autonomous

mechanisms. These strategies have achieved significant success in

preventing RGC death in glaucoma model animals and

regenerating the optic nerve following optic nerve injuries.

However, achieving a complete recovery of visual function

remains a formidable challenge. To attain this goal, non-cell-

autonomous mechanisms must also be considered, as numerous

extrinsic factors play a role in regulating RGC degeneration and

optic nerve regrowth. In this review, we delve into the pathogenic

mechanisms of glaucoma and explore potential molecular targets

for the restoration of visual function. We particularly focus on glial

cells, a type of non-neuronal cell within the nervous system, as

potential sources of these extrinsic factors.
2 Glaucoma

Glaucoma, progressive optic neuropathy, is the leading cause of

blindness worldwide that affects more than 70 million people (2, 3).

Despite the multifaceted nature of the disease, with numerous risk

factors influencing its onset and progression (4), elevated

intraocular pressure (IOP) is the most well-known and modifiable

factor (5, 6). The scourge of blindness in glaucoma finds its genesis

in the grievous impairment suffered by the optic nerve and RGCs.

RGC degeneration is a hallmark of glaucoma (7), while the damage

at the optic nerve head (ONH) — the part where RGC axons

coalesce to form the optic nerve (8) — precedes the onset of visual

field loss in glaucoma (9). Moreover, dendritic and synaptic

degeneration in RGCs are also initial events that play a pivotal

role in the progression of the disease (10, 11). Given the intrinsic

limitations associated with the regenerative potential of both RGCs

and optic nerves, extensive research endeavors have concentrated

on the dual objectives of averting RGC demise and forestalling optic

nerve degeneration, with the ultimate aim of reinstating visual

function. A growing body of evidence has suggested that the

regenerative capacity of the ocular tissue can be modifiable by

various factors including the intracellular signaling molecules,

extracellular factors, and environmental conditions. While

interventions targeting cell-autonomous mechanisms have yielded

substantial strides in optic nerve regeneration, the realization of

comprehensive functional recovery remains a formidable challenge.
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3 Heterogeneity in glial cells in the
ocular tissue

Glial cells, non-neuronal cell types in the nervous system, are

not confined to the brain or spinal cord but also exist in the ocular

tissue, such as the retina and optic nerve. In the retina, three types of

glial cells exist: astrocytes, Müller cells, and microglia (Figure 1A).

Astrocytes localize at the innermost surface of the retina and closely

attach to blood vessels with their processes. Müller cells are the

retina-specific astrocyte-lineage cells which are characterized by a

vertical stalk spanning through the retina. Müller cells are limited to

the retina, while astrocytes are highly enriched in the ONH and

optic nerve (ON). Oligodendrocytes (OLs) and their precursors

(oligodendrocyte precursor cells, OPCs) are present in the ON as

illustrated in Figure 1B. RGC axon remain unmyelinated in most

mammalian retina, with myelination commencing behind the

myelination-transition zone located behind the globe. The

myelination of the optic nerve facilitates the rapid transduction of

visual information from the retina to the brain. Microglia, resident

immune cells in the nervous tissues, including the retina, also

contribute to the heterogeneity. Prior investigations have

indicated that dysregulations in Müller cells and astrocytes can

lead to RGC degeneration and visual dysfunction in the absence of

elevated IOP (12, 13), underscoring their pivotal roles in the

pathogenesis of normal tension glaucoma (NTG). Glial cells

exhibit a remarkable degree of phenotypic plasticity,

demonstrating either neurotoxic or neuroprotective attributes (14,

15). While it is widely acknowledged that reactive glial cells are

frequently associated with neurotoxic functions, the appropriate

regulation of glial cells has the potential to mitigate neuronal

damage in a variety of neurodegenerative disease and CNS injury

models (16–19). For instance, microglia-derived IL-1a, TNF, and
C1q can induce the transformation of astrocytes into a neurotoxic

phenotype, leading to damage to RGCs (14). Blockades, such as

those preventing the formation of neurotoxic astrocytes, have been

shown to protect RGCs in glaucoma model mice (20). On the other

hand, microglia-derived TNFa, IL-1b, and IL-6 can induce

astrocytes become reactive and neuroprotective (15). The

neuroprotective effects of reactive astrocytes depend on STAT3

activity. Blocking the STAT3 signal in the astrocytes exacerbates

RGC damage and visual impairment in the glaucoma model (21),

emphasizing the crucial role of reactive astrocytes in protecting

RGCs in glaucoma. Moreover, astrocytes and microglia tend to alter

their phenotype in association with the disease state, exhibiting a

relatively neuroprotective phenotype during the initial stages of

neurodegenerative diseases in the brain (22, 23). In the case of the

DBA/2J mouse, an inherited glaucoma model, reactive astrocytes

have been found to confer protective effects upon RGCs during the

early stages (23). Understanding these mechanisms and the

precisely modulating glial cells represent an appealing avenue for

neuroprotection. Alongside the phenotypic changes of glial cells,

recent advancements in single-cell RNA sequencing (scRNA-seq)

have unveiled heterogeneity among glial cells, revealing distinct

subclusters that exhibit neuroprotective functions even under

pathological conditions in the brain (24). While the most recent
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scRNA-sec data from the human and mouse retinas have

successfully detected several subclasses of astrocytes, Müller cells,

and microglia (25–29), these data are derived from human diseases

or mouse models rather than specifically from glaucoma.

Furthermore, in many cases of scRNA-seq data, ocular astrocytes

and microglia are found as only a minor population and single

cluster (13). Obtaining their subclusters in the scRNA-seq data

requires cell isolation from at least several retinae (30). Given that

scRNA-seq data from brain neurodegenerative disease model

animals have detected disease-associated subclusters of glial cells

(i.e. disease-associated microglia or astrocytes) that dynamically

affect disease progression (31, 32), ocular glial cells in the human

glaucoma patients or animal models would likely exhibit similar

subclusters. Technical advancements in this field will enable us to

uncover glaucoma-associated subclusters of glial cells and their role

in glaucoma.
4 The Roles of glial cells in the
enlargement of the ONH cupping

RGCs position their cell bodies within the ganglion cell layer

(GCL), with their dendrites extending into the inner plexiform layer

(IPL) (Figure 1A). GC axons converge to form the optic nerve at the
Frontiers in Ophthalmology 03
ONH. The optic nerve exits the eye via the lamina cribrosa (LC), a

mesh-like structure through which RGC axons pass. In human

patients diagnosed with glaucoma, structural alterations in the LC

lead to an enlargement of the ONH cupping (Figure 1B), a

characteristic feature observable through ophthalmoscopy. Given

that RGC axons passing through the LC are subject to deformation

and damage due to ONH cupping, it becomes imperative to

elucidate the cellular and molecular mechanisms underlying the

pathogenesis of glaucoma. Rodents, frequently employed as

experimental or genetic models for glaucoma, have traditionally

been believed not to possess an LC structure that is rich in collagen,

as is the case in humans (33). Instead, the equivalent region in

rodents, known as the glial lamina, is highly enriched in astrocytes

expressing glial fibrillary acidic protein (GFAP) (33). Given that the

human LC also consists of astrocytes, and considering the close

proximity of these astrocytes to RGC axons, any changes in their

function are likely to exert a significant influence on the optic nerve

(Figure 1C). In addition, the LC contains microglia, which become

reactive and accumulate in response to optic nerve injuries (34). In

humans, the LC is enriched in collagen, a major component of the

extracellular matrix (ECM) (9). The enlargement of the ONH

cupping is induced by ECM remodeling, a process initiated by

degradation and production of ECM. Matrix metalloproteinases

(MMPs), highly expressed in astrocytes and microglia, plays a role
B

C

A

FIGURE 1

Glial Cells in Ocular Tissues. (A) Retinal Structure and Cellular Components: The retina comprises several neural layers. In the ganglion cell layer
(GCL), one can find the cell bodies of RGCs. Additionally, some displaced amacrine cell (AC) somas are also localized within the GCL. RGC axons
extend through the nerve fiber layer (NFL) and converge to form the optic nerve at the optic nerve head (ONH). Within the inner plexiform layer
(IPL), RGC dendrites interact with axons from ACs or bipolar cells (BCs), forming synapses. Cell bodies for Acs and BCs reside in the inner nuclear
layer (INL). Toward the outer part of the INL, horizontal cell (HC) bodies are present. In the outer plexiform layer (OPL), synapses formed by BCs,
HCs, and photoreceptors (PRs) can be observed. PR cell bodies are located in the outer nuclear layer (ONL). PRs receive support from the retinal
pigment epithelium, situated on the outer side of the PR inner/outer segments. Astrocytes are primarily found in the innermost retinal layer.
Microglia are distributed across several retinal layers, including NFL/GCL, IPL, and OPL. Müller cells, which are retina-specific astrocyte-lineage cells,
span vertically throughout the entire retinal thickness, with their cell bodies located in the INL, extending fine processes toward the synapses. (B)
ONH Cupping in Glaucoma: ONH cupping represents well-characterized structural changes in the eyes of human glaucoma patients. These
structural alterations may result in deformation and damage to RGC axons. Importantly, this change occurs in association with glial activations,
suggesting that glial cells may contribute to the enlargement of cupping. (C) RGC axons in the ONH are unmyelinated and are directly enveloped by
astrocytes and microglia. The ON is myelinated behind the optic nerve lamina region by OLs. OPCs also exist in the ON. Glial cells in normal
conditions provide support for RGC axon integrity, including the production of neuroprotective factors (e.g. BDNF, GDNF, bFGF, and FGF2 from
astrocytes and BDNF from microglia). However, in glaucoma, glial cells may undergo phenotypic changes, transitioning to neurotoxic states, which
can lead to damage to RGC axons.
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in ECM degradation (35, 36). Single nucleotide polymorphisms

(SNPs) in the MMP9 gene are associated with a higher risk of

primary open-angle glaucoma (POAG) and NTG (37).

Additionally, the production of ECM is crucial for tissue

remodeling. Mutations or SNPs in ECM genes such as

thrombospondin1 (THBS1) or fibronectin (FNDC3B) are linked

to the risk of glaucoma (38, 39), and both are produced by

astrocytes (40–42). Furthermore, since ONH cupping can be

observed in patients irrespective of their IOP levels, including

POAG and NTG, it is plausible that tissue changes and the

pathogenesis of glaucoma are more closely linked to glial

dysfunction than to elevated IOP.
5 The role of glial cells in promoting
axonal regeneration within the ONH

Axonal injury occurring at the ONH stands as one of the pivotal

events in the initiation and progression of glaucomatous pathology

(Figure 2A). The optic nerve crush (ONC) model has been

established as a well-recognized experimental paradigm for the

assessment of axonal regeneration. Earlier investigations have
Frontiers in Ophthalmology 04
unequivocally illustrated that axonal regeneration can be

augmented through the grafting of peripheral nerves (43–45).

This underscores the critical role played by extracellular factors

and/or the microenvironment in regulating the regenerative

capacity of RGC axons. In the context of spinal cord injury (SCI),

the resurgence of axonal growth is contingent upon the presence of

reactive astrocytes, while scar-forming astrocytes express molecules

conducive to axonal growth, such as laminin (46). The effects are

further potentiated by neurotrophic factors, which elicit a robust

resurgence of axonal growth through the astrocytic scar and across

lesion cores, exceeding control conditions by more than a

hundredfold (47).

Microglia also harbor the potential to support axonal growth.

The transplantation of immature microglia has been shown to

significantly enhance the recuperative process and foster axon

regeneration following SCI (48). These microglial cells manifest

the expression of various ECM proteins, notably including

fibronectin and thrombospondin (Figure 2B). Furthermore, they

exhibit the presence of endopeptidase inhibitors, which serve as

crucial regulators in the resolution of inflammation. The ECM-

mediated facilitation of axonal regrowth is also instigated by

astrocytes (46). Moreover, microglia have been observed to elicit
B C

D E

A

FIGURE 2

Potential roles of glial cells in the regeneration of RGC axon. (A) One of the most critical aspects of glaucoma is the damage to RGC axons. To
identify potential molecular targets for axonal regeneration, researchers often employ the optic nerve crush (ONC) model. (B) Tissue regenerative
microglia. Microglia involved in tissue regeneration express extracellular matrix (ECM) molecules like fibronectin (FN) and thrombospondin (THBS),
potentially facilitating the regeneration of RGC axons. (C) Microglia-induced BDNF Expression: Microglia can induce the expression of BDNF in
Müller cells, which may also accelerate axon regeneration. (D) An example of cell-autonomous enhancement of RGC axon regeneration. The
induction of the farnesylated intracellular domain of TrkB (F-iTrkB) leads to a remarkable enhancement of axonal regeneration following ONC. (E)
AAV-mediated expression of BDNF in astrocytes and Müller cells may stimulate axon regeneration and provide protection to RGCs, respectively.
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the expression of brain-derived neurotrophic factor (BDNF) in

Müller cells (49) (Figure 2C). Concurrent administration of

neurotrophic factors alongside glia-mediated support has been

demonstrated to engender a robust resurgence of axon growth

following SCI (47). Consequently, the amalgamation of intrinsic

mechanisms with glia-mediated support holds the promise of

inducing a synergistic and remarkable rejuvenation of RGC axons.
6 The role of Müller cells in the
protection of RGCs

Notably, neurotrophic factor signaling in reactive astrocytes has

been documented to exert a protective influence on RGCs during

the early stages of glaucoma (23). Among the neurotrophic factors,

BDNF and its receptor TrkB are postulated to be pivotal in

upholding the integrity of RGCs in glaucoma (50, 51). Müller

cells emerge as the primary source of neurotrophic factors, their

induction is triggered by various stimuli and insults (52–57). The

sustained expression of BDNF in Müller cells has been

demonstrated to confer protection upon RGCs following optic

nerve injury (58, 59). Recent research has spotlighted the adeno-

associated virus (AAV)-mediated enhancement of TrkB signaling in

RGCs, leading to both cryoprotection against glaucoma and a

vigorous resurgence of RGC axons (60) (Figure 2D). Collectively,

these findings posit that Müller cell-derived neurotrophic factors,

with particular emphasis on BDNF, hold paramount importance in

protecting RGCs against glaucoma. Additionally, both astrocytes

and Müller cells emerge as promising candidates for promoting the

regeneration of RGC axons (Figure 2E).
7 Synapse disassembly in the context
of glaucoma

Glaucoma has traditionally been regarded as an optic

neuropathy that results in optic nerve damage and RGC
Frontiers in Ophthalmology 05
degeneration. RGC dendrites receive inputs from bipolar and

amacrine cells, establishing synaptic connections in the IPL

(Figure 1A). Visual information from photoreceptors is relayed to

RGCs, then transmitted via the optic nerve to visual centers in the

brain. Dendritic atrophy and synapse loss in RGCs can lead to

visual deficits. It is well-established that RGCs undergo age-related

dendritic atrophy preceding the degeneration of their cell bodies

(61) (Figure 3A). Dendritic atrophy and synapse loss in RGCs

represent shared structural characteristics observed in animal

models of glaucoma and post-mortem human retinas (10, 11, 61–

67). An accumulating body of evidence suggests that dendritic

atrophy in RGCs and synapse loss within the IPL constitute early

indicators of glaucomatous pathology (67–71), alongside optic

nerve and RGC soma degeneration. Although achieving selective

control over dendritic/synaptic atrophy poses a challenge, several

studies have demonstrated that inhibiting atrophy is associated with

the protection of RGC soma (11, 64, 72). Prevention of dendritic

atrophy has been realized through various approaches, including

blockade of the complement pathway (11), intravitreal injection of

chondroitinase ABC (66) or BDNF (72). In glaucoma, synapses

within the IPL are marked by complement C1q (70), and blocking

the complement pathway has been shown to confer protection to

RGCs (11, 73). Resident microglia eliminate the synapses with C1q

and its downstream C3 (70). These extracellular signals and

molecules appear to be promising targets for glaucoma treatment.

Among them, ANX007, an anti-C1q monoclonal antibody, is

currently undergoing clinical trials for the treatment of

glaucoma (74).
8 The involvement of glial cells in
synaptic maintenance

Glial cells play crucial roles in the regulation of synapses, both

under normal physiological conditions and in pathological contexts.

For instance, glial cells serve as important regulators during the

critical period, which is a developmental stage characterized by
B CA

FIGURE 3

Glial Roles in Synapse Elimination and Formation. (A) Synaptic damage in glaucoma. Glaucoma results in the damage of RGC dendrites and retinal
synapses. (B) Müller cell association with retinal synapses. The processes of Müller cells closely interact with retinal synapses. They might release
synaptogenic factors, including cholesterol (Chol), thrombospondin (THBS), hevin, SPARC, interleukin-33 (IL-33), and regulate RGC synapses. (C)
Microglial involvement in synapse formation and elimination. Microglia are recognized for their role in inducing synapse formation through contact
and the release of factors such as BDNF and IL-10. Moreover, microglia are well-documented contributors to synapse elimination through various
molecules, including ADAM10, CX3CR1, MERTK, and P2Y6R.
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heightened synaptic plasticity within the nervous system (75, 76).

Astrocytes contribute to the formation of synapses through contact-

mediated signaling (77, 78) and the production of synaptogenic

factors, such as cholesterol (79), thrombospondin (80), hevin,

SPARC (81), IL-33 (82) and neuronal adhesion molecule (83)

(Figure 3B). While these factors were initially identified in brain

astrocytes, they should also be expressed by ocular astrocytes and

Müller cells, as evidenced by recent single-cell RNA sequencing data

in the human retina, which shows high expression of these genes in

astrocytes and Müller cells (84). Microglia also play a role in

synaptogenesis through direct contact with synapses (85–87) and

the secretion of molecules like interleukin 10 (IL-10) and BDNF

(88–90) (Figure 3C). Müller cells serve as a source of BDNF in the

retina and express or produce BDNF under various conditions and

stimuli (49, 54, 57, 91, 92). The BDNF signal plays a regulatory role

in the formation of dendrites in RGCs (93). Given that the fine

processes of Müller cells intimately associate with RGC soma (94,

95), dendrites (96), and axons (97), BDNF derived fromMüller cells

is likely to have a significant impact on the regulation of

RGC dendrites.

Glial cells also play a pivotal role in synapse elimination.

Microglia, recognized as professional phagocytes, contribute to

synapse elimination through various molecular mechanisms,

including complement, ADAM10, CX3CR1, MERTK, and P2Y6

receptors (70, 98–103) (Figure 3C). Microglia-mediated synapse

elimination serves as a crucial regulator in both the formation and

maintenance of physiological neural circuits, as well as the

disruption of pathological neural circuits. Dysfunctions in

purinergic signaling, such as P2Y6 receptors, have been implicated

in the pathogenesis of glaucoma (104–106). Additionally,

astrocytes, considered non-professional phagocytes, also

participate in synapse pruning through various factors like

MEGF10 and MERTK (107–110). In the absence of microglia,

astrocytes adopt phagocytic capabilities via TAM receptors (111).

Beyond the individual responses of these cells, astrocytes and

microglia coordinate their phagocytic functions (112). Moreover,

bidirectional communication between them dynamically governs

their functions and exerts an influence on synaptic and neuronal

conditions (14, 15, 113, 114). These findings underscore the close

relationship between glial conditions and synaptic conditions,

highlighting glial cells as promising therapeutic targets in the

context of glaucoma.
9 Oligodendrocyte dysfunction or loss
in the context of glaucoma

Glial cells surrounding the optic nerve, such as OLs and OPC,

may also play an important role in the pathogenesis of glaucoma.

Myelin, formed by OLs, accelerates signal transduction through

axons and provides essential energetic support. Deletion of the gene

encoding myelin basic protein (MBP), highly expressed in OLs,

leads to axonal swelling and degeneration (115). OLs exhibit

persistent turn over, continuously replenished by newly
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differentiated cells from OPCs. Blocking OL turnover results in

reduced myelination and axonal damage (116), highlighting the

indispensability of OLs for axon homeostasis and functions.

Traditionally, glaucoma is not categorized as a demyelinating

disease, however, emerging evidence suggests dysfunction and

potential loss of OLs in glaucoma. DBA/2J mouse model

demonstrates OL loss (117). A recent human study has indicated

increased radial diffusivity within the optic radiations, serving as a

surrogate marker for myelin damage (118). The study also observed

a delay in the conduction of multifocal visual evoked potential,

indicative of slowed conduction associated with myelin loss. In both

the optic nerve injury (118) and glaucoma (119) animal models, OL

loss and demyelination precede RGC damage. Maintaining OPC

differentiation and myelination involves cell-autonomous

mechanisms, such as thyroid hormone (120). Hypothyroidism is

suggested as a risk factor for glaucoma (121–123), supporting the

idea that impaired OL function contributes to the pathogenesis

of glaucoma.

Additionally, non-cell-autonomous mechanisms may play a

role. In the DBA/2J mouse, microglia in the myelinated region

express and up-regulate the expression of Galectin-3/Mac-2, a

phagocytosis-related gene (117), suggesting the involvement of

microglia in myelin phagocytosis and the demyelination process.

OPCs also express key phagocytotic genes and engage in axon

pruning during the developing stage of mouse cortex (124), though

the pathological consequence of OPC phagocytotic function in

glaucoma remains unclear . OPCs may contr ibute to

neuroinflammation and demyelination via low-density

lipoprotein-related receptor 1 (LRP1) (125).

Another potential mechanism involves astrocyte-mediated

cholesterol support (126). In the experimental autoimmune

encephalomyelitis (EAE), a mouse model of multiple sclerosis

(MS), astrocytes show down-regulated cholesterol synthesis and

increased immune responses. Furthermore, phagocytosis by

astrocytes may contribute to the demyelination (127, 128).

Beyond demyelination, altered energetic support by OLs may be a

crucial factor in glaucoma. In human patients with glaucoma, OL

mitochondria are small (129). In DBA/2J mouse, monocarboxylate

transporter 1 (MCT1), a lactate transporter, is down-regulated in

OLs (130), suggesting reduced energetic support by OLs

in glaucoma.

Preserving or restoring myelin could be a promising target for

glaucoma treatment. Since cholesterol synthesis is promoted during

remyelination (131), expediting cholesterol synthesis in astrocytes

and/or oligodendrocytes may prove beneficial for glaucoma.

Activation of astrocytic ABCA1 stimulates cholesterol synthesis

(126) and supports oligodendrocyte survival and myelination (132).

Astrocyte-derived CXCL1 also promotes remyelination by

stimulating CXCR2 in OLs (133). A ketogenic diet might present

an appealing approach to enhance energy availability by reversing

the decline in MCT1 (130). Considering that neuronal activity

boosts myelination (134, 135), visual stimulation could also be an

attractive method for restoring RGC axons and visual

function (136).
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10 Tools for regulating glial cells and
their potential role in
glaucoma treatment

As mentioned earlier, glial cells have the capacity to influence

the synapses, axons, and soma of RGCs, whether in a degenerative

or regenerative manner. Beyond their neuroprotective capabilities,

they hold significant potential for stimulating the regeneration of

ocular structures and functions. In this section, we discuss various

tools for controlling glial cell functions and their potential

application in future glaucoma treatments. A summary of the

advantages and disadvantages of each technique is shown

in Table 1.
10.1 Adeno-associated virus targeting glia
for gene therapy in glaucoma

The genetic approach stands as a potent method for addressing

neurodegenerative diseases, including ocular conditions (137). In

addition to gene therapy aimed at neurons, targeting non-neuronal

cells could also prove effective in treating glaucoma. Previously

approved gene therapies have operated through non-cell-

autonomous mechanisms. An exemplar is Luxturna™ (voretigene

neparvovec-rzyl), the inaugural gene therapy approved for treating

patients afflicted with inherited retinal dystrophy, a rare genetic
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disorder affecting the retina (138, 139). In this disease, blindness

arises from photoreceptor (PR) degeneration, yet Luxturna™

targets the retinal pigment epithelium (RPE). The restoration of

RPE functions provides support and protection to PRs. Such non-

cell-autonomous mechanisms could similarly be applied to

glaucoma. For cell type-specific gene therapy using AAV, specific

promoters tailored for each cell type are employed. The glial

fibrillary acidic protein (GFAP) promoter is a key promoter for

astrocytes, and the gfaABC1D promoter, exhibiting nearly 100%

specificity with 2-fold greater activity (140), is now widely adopted

for precise astrocyte-specific gene manipulation via AAV. For

achieving Müller cell specificity, there have been developments in

engineering AAV capsids. Capsid variants derived from AAV6,

such as ShH10 and ShH10Y, demonstrate efficient gene expression

in Müller cells upon intravitreal injection (141–143). Moreover, the

retinaldehyde-binding protein 1 (RLBP1) promoter has been

successful in inducing gene expression specifically in Müller cells

(143). For targeting OLs, promoters for the genes encoding

proteolipid protein (144), myelin basic protein (145), and the

myelin-associated glycoprotein (146) are used. Presently,

foundational research efforts striving to facilitate the regeneration

of RGC axons and synapses are categorized into two strategies: the

promotion of regenerative factors and the prevention of inhibitory

factors hindering regeneration. One example of the former strategy

is BDNF. As previously mentioned, glial cells serve as the primary

source of neurotrophic factors, including BDNF, and they maintain

close associations with RGC axons and dendrites. The AAV-

mediated expression of BDNF in astrocytes and Müller cells

could potentially result in efficient delivery to axons and synapses,

respectively. On the other hand, an example of the latter strategy

involves insulin-like growth factor (IGF). Insulin and IGF share

receptors and downstream signaling pathways (147) both of which

are linked to RGC protection and the regeneration of dendrites,

synapses, and axons (148–151). Notably, IGF-binding protein

(IGFBP), which binds to IGF and hampers its signaling, becomes

upregulated in astrocytes during neurodegenerative conditions and

neurodevelopmental diseases (152–154). Given that the inhibition

of astrocytic IGFBP partially restores neuronal function in the brain

(152), the suppression of IGFBP signaling in astrocytes and/or

Müller cells may prove beneficial for safeguarding and rejuvenating

RGCs by enhancing IGF signaling.

The use of targeted gene therapy in microglia presents itself as

an appealing candidate for the treatment of glaucoma. Previously,

inducing gene expression in microglia using AAV posed a

challenge, but cutting-edge techniques now enable us to achieve

such gene induction (155–157). Lin et al. initiated the evolution of

the AAV capsid protein (AAV-cMG) in conjunction with the Cre-

LoxP system, resulting in selective gene induction in microglia in

vivo (28). Okada et al. utilized a 1.7-kb putative promoter region of

the Iba1 gene for inducing gene expression in microglia/

macrophage cells (156). Young et al. achieved enhanced

selectivity for microglia/tissue-resident macrophages by inserting

a random 21-mer into the AAV9 capsid (157). It is well-established

that microglia exhibit high motility and accumulate at injury sites

following ONC (34). These inherent characteristics of microglia

allow us to utilize them as vectors for delivering molecules to the site
TABLE 1 Techniques for Glial Cell regulation: advantages
and Disadvantages.

Techniques Advantages Disadvantages

1. AAV

a. Promoter and capsid-
mediated cell specificity
b. Prolonged therapeutic
effect
c. Already employed in
clinical treatments

a'. Potential off-target
effect
b'. Impact on the innate
immune system

2. PLX

a. Mainly affects microglia in
the nervous system
b. Well-regulated temporally
c. Renewal and resetting of
endogenous microglia

a'. Potential impact on
border-associated
macrophages and a subset
of peripheral macrophages
b'. Lacks tissue selectivity
c'. Efficacy might be
altered if microglial
CSF1R expression
were modified

3.
Glial
transplantation

a. iPSC-derived cells are
applicable
b. Grafted cells exhibit
relatively long-term survival
c. No need for immune
suppression (via
transnasal transplantation)

a'. May be influenced by
the microenvironment of
the host tissue
b'. Lack tissue selectivity
(via transnasal
transplantation)
c'. Invasive (injection-
based transplantation)

4. TES

a. Already applied in clinical
treatment
b. Non-invasive
c. Stimulation is selectively
applied to the cornea

a'. Parameters should be
optimized for glaucoma b'.
Inappropriate settings
may be detrimental
to patients
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of injury. Furthermore, we can employ proinflammatory gene

promoters to activate the expression of the target gene

(Figure 4A). For instance, promoters associated with interleukins

and tumor necrosis factor a (TNFa) can be employed within this

system, given that these molecules are produced by microglia at the

lesion core (15). In cases of glaucoma and post-ONC, the ONH

sustains damage, leading to the accumulation of microglia at the

injury core. This, in turn, triggers the proinflammatory program in

AAV-treated microglia, subsequently inducing the production of

target genes (Figure 4B). Promoting remyelination emerges as an

appealing strategy for vision recovery in glaucoma. The induction of

connexin (Cx) genes, such as Cx32 and Cx47, has been associated

with a protective effect against leukodystrophy (158, 159),

indicating a potential impact on optic nerve remyelination.

Moreover, the deletion of the Chrm1gene, which encodes

muscarinic receptor 1, a negative regulator of OPC differentiation,

leads to increased myelination and axon density (116). The

limitation of this technique for the clinical application might lie

in the efficiency of AAV delivery to the target tissue and cells. For

example, achieving efficient AAV delivery to the optic nerve

remains a challenging issue.
10.2 Pharmacological tools for controlling
microglia: PLX compounds

PLX compounds, originally developed by Plexxikon Inc., serve

as potent antagonists for the colony-stimulating factor 1 receptor

(CSF1R). Oral administration of PLX3397 for either 7 or 21 days

results in a reduction in brain microglia numbers by 80-90% and

over 95%, respectively (160). Several analogs of PLX compounds,
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including PLX3397, PLX5562, and PLX647, have been developed.

Oral PLX treatment also leads to a significant decrease in the

number of retinal microglia (161, 162). This effect is reversible,

with microglia repopulating after the discontinuation of PLX

compounds (Figure 5). In the case of retinal microglia, the rate of

recovery varies among retinal layers, namely the NFL/GCL, IPL,

and OPL (163). Upon removal of PLX, microglia spontaneously

repopulate through proliferation in both the brain and retina. The

removal and repopulation of microglia induce an anti-

inflammatory response and promote brain recovery following

injury (164–167). Numerous studies have demonstrated that

microglia alter their phenotypes to become neurotoxic, and the

removal and repopulation of microglia elicit a neuroprotective effect

in models of neurodegenerative diseases, such as Alzheimer’s

disease and Parkinson’s disease (168–171). Additionally, aside

f rom bra in d i sease s , microg l i a a l so p lay a ro l e in

neurodegenerative ocular injuries and diseases (172–174). Given

that PLX treatment exhibits a protective effect on RGCs against N-

methyl-D-aspartate (NMDA)-mediated toxicity (162), this

compound may also have potential applications in the treatment

of glaucoma. Although studies have shown that axonal regeneration

after ONC is unaffected by the absence of microglia (175), this

condition conceals both the neurodegenerative and supportive

capabilities of microglia. PLX-mediated repopulation generates

‘new’ microglia with their phenotypes and functions reset, even in

pathological conditions. For example, repopulation of aged

microglia converts their cellular characteristics to a more youthful

state, rescuing age-associated deficits in synapses and brain

functions (176). Immature microglia possess the potential for

anti-inflammatory responses and tissue regeneration (48). Such a

‘microglial reset’ could also prove valuable in restoring synapses and
B

A

FIGURE 4

AAV-Mediated Cell Engineering and Target Molecule Delivery by Microglia. (A) AAV-mediated induction of neurotrophic factor genes in microglia.
AAV-mediated engineering can induce the expression of neurotrophic factor genes in microglia under pathological conditions. By employing
promoters associated with proinflammatory genes, microglia can produce neurotrophic factors like BDNF and IGF in response to pathological
conditions. (B) Microglial Response in Glaucoma or ONC: In cases of glaucoma or ONC, the injury core triggers the microglial proinflammatory
program, resulting in the induction of neurotrophic factor genes in microglia treated with AAV.
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visual function in the context of glaucoma. Of note, PLX treatment

can also be detrimental in certain situations. Microglia depletion

from glaucoma model mice using PLX compounds exacerbates

RGC damage (177, 178). Since microglia dynamically change their

phenotypes, and there might be a neuroprotective glaucoma-

associated microglial subcluster, techniques for more precise

control of microglia are required, which could also pose a

clinical limitation.
10.3 Cell transplantation

A recent study has demonstrated the feasibility of transplanting

exogenous microglia into the CNS following microglial depletion

induced by PLX compounds (179, 180). By combining the depletion

of neurotoxic microglia with the transplantation of healthy, normal

microglia, a replacement strategy can be employed (Figure 5). The

depletion process appears to be crucial, as microglia extend their

processes and establish their own territorial domains with an

approximate diameter of 50 mm in both mouse and human brains

(181). The absence of endogenous microglia permits the

exogenously transplanted microglia to infiltrate and integrate into

the nervous tissue. When combined with AAV-mediated

functionalization of microglia (Figure 4B), this approach enables

the precise delivery of specific molecules to designated sites,

enhancing the efficiency of recovery while minimizing potential

side effects. Transplantation can also be accomplished by

introducing human iPS cell-derived microglia (iPSMG) into the

mouse retina (182). Beyond microglia, intravitreal astrocyte

transplantation may prove beneficial in safeguarding RGCs

against damage induced by kainic acid (183). Additionally,

transplantation of OPCs contributes to the neuroprotection and
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regeneration of the optic nerve. OPC transplantation has been

shown to protect RGC in glaucoma model animal (184).

Furthermore, the transplantation of OPC-rich neurospheres

induces the myelination of the optic nerve (185–187). One

limitation of clinical application may involve the duration for

which the grafted cells survive in the host tissue. In the case of

the iPSMG, transnasal transplantation to the brain maintained the

grafted microglia for at least 60 days in mice (179, 180). Injected

iPSMGs in the mouse retina survived over 200 days (182). However,

it is not clear how long they would survive in the human tissue.

Another concern is whether the grafted cells maintain their healthy

phenotypes, as their phenotypes can be influenced by the

microenvironment of the host tissue.
10.4 Transcorneal electrical stimulation

TES represents a non-invasive technique that administers

electrical stimulation to the retina via the cornea. This approach

has demonstrated therapeutic efficacy in both human patients and

animal models afflicted with various injuries and diseases, including

ischemic and traumatic optic neuropathies (188), axotomy (189,

190), retinal artery occlusion (191), ischemic damage (192), and

photoreceptor degeneration (193, 194). TES has also exhibited a

protective effect on RGCs in mouse models of glaucoma (195) and

holds the potential to enhance visual function in human patients

with glaucoma (196). While the precise mechanisms underlying

TES are not fully elucidated, one of its neuroprotective mechanisms

involves actions mediated by glial cells. For instance, TES

suppresses pro-inflammatory responses by microglia (190, 197,

198) (Figure 6A). Simultaneously, TES induces the expression of

various neurotrophic factors, including fibroblast growth factor 2
FIGURE 5

PLX-Mediated Repopulation and Replacement of Microglia. Microglia undergo a shift towards neurotoxic phenotypes following injury or in
pathological conditions. PLX treatment depletes these microglia, and they subsequently repopulate once treatment is ceased. The newly generated
microglia reset their neurotoxic characteristics. However, considering that repopulated microglia could revert to a neurotoxic phenotype, the
replacement of microglia presents an additional strategy to maintain their health.
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(FGF2), BDNF, and IGF, in Müller cells (54–56) (Figure 6B). The

combination of anti-inflammatory effects and neurotrophic support

is likely the primary mechanism behind RGC protection in

glaucoma. As previously mentioned, these neurotrophic factors

contribute not only to the protection of RGCs but also to the

regeneration of dendrites, synapses, axons, and visual functions.

Ongoing research aims to refine the parameters of TES for optimal

neuroprotection and functional recovery (189, 199). TES is already

employed in human patients with retinitis pigmentosa and has

demonstrated safety and efficacy in improving visual function (200,

201). A current limitation of TES in the context of glaucoma

treatment might be the absence of defined parameters. Optimized

TES parameters will contribute to the development of a safe and

effective treatment for glaucoma.
10.5 Extracellular vesicles

The EVs encompass membrane-derived vesicles with

heterogenous groups, including exosomes and microvesicles

(202). Initially described as a means to eliminate intracellular

unneeded components to the extracellular space, subsequent

studies have revealed their capacity for intercel lular

communication via transporting various molecules, including

nucleic acids, lipids, and proteins. EVs are released from various

cells and tissues including ocular cells and tissues. Due to their high

stability and permeability to the blood-brain barrier (203), they

represent attractive tools for drug delivery and hold significant

potential as biomarkers for various diseases. In the ocular tissues, it

has been reported that both retinal microglia and Müller cells

release EVs (204–206). Considering the neuroprotective effects

demonstrated by EVs from glial progenitors after traumatic brain

injury (207), it is plausible that EVs from neuroprotective glial cells

would similarly confer neuroprotection to RGCs. Moreover,

embryonic stem cell-derived EVs, capable to delivering BDNF to

other cells (208), could be employed as a therapeutic tool in

glaucoma, for instance, by utilizing EVs derived from

neurotrophin-overexpressing glia.
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Glial cells are widely distributed throughout the nervous system,

including ocular tissues. Pathological changes in glial cells play a

pivotal role in driving RGC damage and resulting in visual deficits.

Given that neuroprotective glia produce essential neurotrophic factors

that impact both neuroprotection and neurodegeneration, glial cells

represent an appealing therapeutic target for addressing glaucoma.

With the aid of state-of-the-art techniques, we can precisely regulate

glial functions, effectively suppressing neurotoxicity while enhancing

neuroprotection and regeneration. Several glia-relatedmolecules have

already advanced to clinical trials, and we anticipate further

advancements in drug discovery research aimed at targeting glial cells.
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FIGURE 6

TES-Mediated Alterations in Glial Cells. (A) Microglial response. In pathological conditions, microglia tend to adopt pro-inflammatory phenotypes.
TES effectively suppresses microglial inflammatory responses. (B) Müller Cell Expression: TES leads to an upregulation in the expression of
neurotrophic factors, including FGF2, BDNF, and IGF, in Müller cells.
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