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Some astronauts on International Space Station missions experience

neuroophthalmological pathologies as part of spaceflight associated neuro-

ocular syndrome (SANS). Strict head-down tilt bed rest (HDTBR) is a

spaceflight analog that replicates SANS findings and those who had 3–4 risk

alleles (G and C alleles from the methionine synthase reductase [MTRR] A66G

and serine hydroxymethyltransferase [SHMT1] C1420T, respectively) as

compared to 1-2 risk alleles, had a greater increase in total retinal thickness

(TRT). The objective of this study was to identify factors that contribute to the

individual variability of the development of SANS in a 60 d HDTBR at the German

Aerospace Center’s:envihab facility, Cologne Germany. 22 of 24 subjects who

participated in the HDTBR study provided blood samples for genetic analysis.

Total retinal thickness and optic cup volumeweremeasured before and after bed

rest. Subjects with 3–4 versus 0-2 risk alleles had greater DTRT during and after

bed rest, and themodel improved with the addition of baseline optic cup volume.

This bed rest study confirms that variants of MTRR and SHMT1 are associated

with ocular pathologies. Subjects with more risk alleles had the greatest HDTBR-

induced DTRT, reaffirming that genetics predispose some individuals to

developing SANS. Preflight optic cup volume and genetics better predict DTRT
than either one alone. Whether nutritional supplements can override the genetic

influences on biochemistry, physiology, and pathophysiology remains to be

tested. These findings have significant implications for both aerospace and

terrestrial medicine.
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1 Introduction

Some astronauts on International Space Station missions

develop ophthalmic pathologies characterized as part of

spaceflight associated neuro-ocular syndrome (SANS). The cause

of SANS remains unknown, but environmental, dietary, anatomical,

and genetics may be contributing factors (1–3).

Circulating folate and vitamin B12-dependent one-carbon

metabolic pathway intermediates were higher in SANS-affected

astronauts, even before flight. While these intermediates were

higher, serum folate was lower during flight in these astronauts

(4), suggesting the cause of SANS could be a functional B

vitamin insufficiency.

Astronauts with specific single nucleotide polymorphisms

(SNPs) in one-carbon pathway genes, namely, the G allele for

methionine synthase reductase (MTRR) A66G and the C allele

for serine hydroxymethyltransferase (SHMT1) C1420T had a

higher incidence of SANS pathologies (e.g., optic disc edema,

globe flattening, choroidal folds) (5, 6). The degree of optic disc

edema in subjects exposed to head-down tilt bed rest (HDTBR) in a

0.5% CO2 environment was higher in subjects with more G and C

alleles (i.e., risk alleles) for MTRR 66 and SHMT1 1420, suggesting

an association (7).

In astronauts, anatomical differences including smaller preflight

optic cup volume have also been associated with greater inflight

increases in peripapillary total retinal thickness (TRT) (3). Here we

report results from a 60-d HDTBR investigation that explored the

role of one-carbon pathway genes and baseline optic cup volume on

the development of optic disc edema.
2 Methods

“Artificial Gravity Bed Rest with European Space Agency”

(AGBRESA), a 60-d, 6° strict HDTBR study was conducted at the

German Aerospace Center (DLR): envihab facility. 24 subjects (16

men, 8 women) participated. Study design and TRT findings have

been published (8–18). None of the data reported here, i.e., the

relationship of optic disc edema to one-carbon pathway genetics or

optic cup volumes, have been previously published.

The DTRT was previously reported in these subjects (18).

Because there was no difference between groups exposed to either

continuous (30 min) or intermittent (6 x 5 min with a rest of 5 min

in between) artificial gravity daily or controls, all subjects were

pooled in the present analyses. The studies were approved by the

NASA Institutional Review Board and the Medical Association of

the North Rhine (Aerztekammer Nordrhein). Written informed

consent was obtained from all subjects.
2.1 Genetic analyses

Blood samples were collected from 22 subjects at the 1-yr follow

up session. Blood samples were frozen at -80°C until analyses. DNA

extraction and SNP analyses for variants MTRR A66G (rs1801394)
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and SHMT1 C1420T (rs1979277) were performed as previously

described (7).
2.2 TRT, RNFL, and chorioretinal folds

Optical coherence tomography (OCT, Spectralis Flex Module

OCT2, Heidelberg, Germany) images were obtained from subjects

in the supine position 6 d before, during, and up to 12 d after

HDTBR. OCT images and TRT, retinal nerve fiber layer (RNFL)

thickness, and folds quantification have been reported (18).
2.3 Blood biochemistry

Blood samples for biochemistry were collected and analyzed as

previously described (8).
2.4 Statistical approach

As done previously (7), we categorized high and low risk based

on the number of risk alleles in 2 SNPs of interest within the MTRR

66 and SHMT1 1420 genes. DTRT was compared between genetics

groupings. Briefly, DTRT was analyzed through a mixed effects

model defined in terms of the interaction of genetic grouping and

time as categorical fixed effects. Nested subject and eye random

effects addressed the repeated measures within individual eyes

clustered within subjects. Robust standard errors addressed non-

homogenous variance between genetic groupings. Differences were

estimated and tested through expected marginal means. Further,

DTRT was compared with the previous bedrest study by adding

Study (AGBRESA or VaPER) to the interaction term of the model.

Optic cup volume was similarly modeled but the Gamma

distribution was used to model the response since cup volume is

positively bound.

Given the limited sample size, and need to quantify and

interpret any effects, a Bayesian mixed model approach was also

implemented. Gamma and exponential distributions were

considered but resulting diagnostics were unacceptable. Therefore,

we used a normal distribution for the cup volume variable within

the Bayesian analysis. Diffuse inverse gamma priors were used for

the nested subject and eye random effects and scale parameters, and

a standard normal distribution for the fixed effects coefficients. The

primary inference of interest for this approach was quantifying the

posterior probability that the higher risk allele grouping had smaller

mean cup volumes. We also analyzed the occurrence of folds

through Bayesian logistic regression to quantify a similar

probability, the posterior probability that the more risk allele

group is associated with higher odds of developing folds. Bayesian

and Frequentist mixed models were fit in SAS v9.4 with the

GLIMMIX and BGLIMM procedures.

To determine whether genetic grouping modified the

relationship between smaller pre-HDT cup volume and HDT-

related DTRT, we conducted a likelihood ratio test between two

models fit using maximum likelihood within R. The baseline model
frontiersin.org

https://doi.org/10.3389/fopht.2023.1279831
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org


Zwart et al. 10.3389/fopht.2023.1279831
considered pre-HDT cup volume as the covariate, and DTRT as the

dependent variable. The comparative model added genetic grouping

as both an intercept, as well as slope (interaction with pre-HDT cup

volume) modifier. Models were fit using maximum likelihood using

the lme function within the lmer package. The anova function

compared the two models to test for model improvements with

inclusion of genetic grouping.
3 Results

The magnitude of DTRT in the region 250 µm from Bruch’s

membrane opening was significantly greater in the group with 3-4

risk alleles (Figure 1, upper panels). That is, DTRT grouped by

genetic category (0–2 vs 3–4 risk alleles) was significantly different

after 31 d of HDTBR and persisted 12 d after HDTBR. RNFL did

not increase during HDTBR in either genetic category.

Subjects with 0-2 risk alleles had larger baseline optic cup

volume than subjects with 3-4 risk alleles (Figure 2, p<0.001).

There is an interaction between genetic group and cup volume,

indicating that having 3-4 risk alleles along with having smaller

optic cup size is associated with a larger DTRT than the 0-2 risk

allele group (p<0.001).

The subjects with 3–4 risk alleles in the previous 30-d HDTBR +

0.5% CO2 study, which was conducted in the same facility with the
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same standardizations (7, 8, 19), had a greater DTRT after 30 days of

HDTBR (Figure 1, upper left panel) than the AGBRESA subjects

with 3–4 risk alleles (Figure 1, upper right panel). The subjects with

1–2 risk alleles had similar DTRT in both studies.

In the group with 0-2 risk alleles, 2 of 11 (18%) had

chorioretinal folds, whereas 4 of 5 (80%) had chorioretinal folds

in the group with 3-4 risk alleles (p<0.001, Table 1). The estimate of

the probability that the 3-4 allele group has a higher probability of

total folds than the 0-2 allele group is 94%.

There were no differences in serum or red blood cell folate,

vitamin B12, homocysteine, or vitamin B6 between subjects with 0-2

and 3-4 risk alleles (data not shown). Folate and vitamin B12 status

were higher after 60 d of HDTBR similarly across genetic

groups (p<0.001).
4 Discussion

These findings confirm that HDTBR subjects with more risk

alleles have a greater DTRT (4, 5). The statistical model to predict

DTRT improved when both genetics and optic cup volume were

included. Although the increases in TRT are less for the AGBRESA

study than the previous 30-d HDTBR study (7), the changes were

significant in both studies; i.e., more G alleles for MTRR A66G and
FIGURE 1

The top graphs depict mean (± 95% CI) change in peripapillary total retinal thickness in Artificial Gravity Bed Rest with European Space Agency
(AGBRESA) subjects (right panel) with 3–4 (n=9) or 0–2 (n=13) risk alleles, after 2, 15, 31, 45, and 58 days of head-down tilt bed rest (HDTBR) and 6
and 13 days of recovery (R+6–7). Previously published 30-d HDTBR study data where subjects were exposed to 0.5% CO2 are included for
comparison (7) (left panels). The mean thicknesses of the peripapillary retinal nerve fiber layer are presented in the bottom panels. Shading indicates
the HDTBR phase of the study. #Significantly different from subjects with 0–2 risk alleles (P <.05); *Significantly different from baseline total retinal
thickness (P <.001); ##3–4 risk allele group significantly different from 3–4 risk allele group in the 30-d HDTBR + 0.5% CO2 bed rest study (p = 0.01).
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C alleles for SHMT1 C1420T correlated with greater DTRT during

both studies.

We previously developed a multi-hit hypothesis describing how

altered one-carbon pathway function could lead to SANS (20, 21).

This study reinforces that there are likely multiple factors

promoting optic disc edema during HDTBR in at risk individuals.

We propose that genetic profile and optic cup volume are two such

factors that together contribute to some of the variability in SANS

presentation. Baseline optic cup volume has previously been shown

to be a predictive factor for DTRT during spaceflight (3) but had not

yet been assessed in bed rest or when combined with genetics. Here,

we found that using both variables together improved the predictive

model for the development of SANS findings, supporting the

“multi-hit” aspect of the hypothesis. The relationship between

SNP profile combined with anatomical variability of the optic cup

needs further exploration, but the data reported here provide an

explanation for further investigating how SNP profile may interact

with the anatomical differences present at the optic cup that results
Frontiers in Ophthalmology 04
in differences in DTRT despite all individuals having been exposed

to the same headward fluid shift.

In this study, SNP category did not yield differences in serum

vitamin biochemistry. Circulating vitamin status is not necessarily

indicative of cerebral status, given they are required to not only be

transported through the blood-brain barrier, but these vitamins are

concentrated in the brain (22).

One of the main limitations of this study is the small sample

size; however, the results support findings from a previous bed rest

study (7). Also, the cause for the greater DTRT in the subjects with

3-4 risk alleles in the CO2 bed rest study compared to those with 3-4

risk alleles in the AGBRESA study is not known. While the

participants in the CO2 study were exposed to 30 d of 0.5% CO2,

they showed no change in arterialized and end-tidal PCO2 levels,

cerebrovascular response to CO2, or hypercapnic ventilatory

response (9, 10). Thus, without these other physiologic responses

to increased ambient CO2 levels, it is difficult to assert that the

differences in DTRT between the two studies are due to the CO2

exposure. Perhaps these differences are due to differences in subject

selection (e.g., subjects all have different optic cup anatomy at

baseline). Regardless, the same SNPs were associated with degree of

optic disc edema in both bed rest studies.

We report here findings that further support a predisposition

for some individuals to develop SANS. Work is ongoing to

determine whether providing required cofactors (i.e., B

vitamins) in the one-carbon metabolic network will improve

ocular outcomes in at risk astronauts. Having a better

understanding of the relationship between nutritional

biochemistry, genetics, and optic cup volume may help to

predict those at risk for SANS, and will improve our ability to

provide targeted countermeasures for crew embarking on future

exploration-class missions.
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FIGURE 2

Baseline optic cup volume grouped by genetic risk allele category.
Each data point represents a single eye. Optic cup volume was
significantly different between genetic groupings where subjects
were divided into those with 0-2 or 3-4 risk alleles for MTRR 66 and
SHMT1 1420 (p<0.001).
TABLE 1 Number of subjects with and without peripapillary, retinal, or
choroidal folds after 60 d of HDTBR.

0-2 Alleles 3-4 alleles

Total n without folds 11 5

Total n with any folds 2 4

Peripapillary folds 1 3

Retinal folds 1 2

Choroidal folds 0 2
The estimated posterior probability that subjects with 3-4 alleles have higher risk than those
with 0-2 is 94%.
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