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Role of integrins in the
development of fibrosis in the
trabecular meshwork
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Primary open angle glaucoma (POAG) is a progressive and chronic disease

exhibiting many of the features of fibrosis. The extracellular matrix (ECM) in the

trabecular meshwork (TM) undergoes extensive remodeling and enhanced

rigidity, resembling fibrotic changes. In addition, there are changes associated

with myofibroblast activation and cell contractility that further drives tissue

fibrosis and stiffening. This review discusses what is known about the integrins

in the TM and their involvement in fibrotic processes.
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Introduction

The extracellular matrix (ECM) is a dynamic network composed of structural and

nonstructural proteins that are assembled into a tissue-specific architectural 3D scaffold

that provides not only structural support for tissues but directs cell motility, survival,

proliferation, and even cell death. In the trabecular meshwork (TM) in the anterior

segment of the human eye, the ECM is primarily composed of different collagens (types I,

III, IV, V, and VI), the glycoproteins fibronectin and laminin, and the proteoglycan

hyaluronan. It also contains elastic fibers composed of fibrillin and elastin as well as

multiple matricellular proteins whose expression may be transient. These ECM proteins

can be found distributed throughout the various layers of the TM (1) (Figure 1). The uveal

and corneoscleral meshworks form the trabecular lamellae and consist of collagen beams

surrounded by a monolayer of endothelial-like TM cells on top of a basement membrane.

The juxtacanalicular tissue (JCT) consists of cells exhibiting both fibroblastic and smooth

muscle-like qualities (2, 3) loosely embedded in an ECM composed of different collagens,

elastin fibers, fibronectin, hyaluronan, and various proteoglycans. Directly adjacent to the

JCT is a monolayer of endothelial-like cells on top of a basement membrane that forms the

inner wall of Schlemm’s Canal (SC). These last two layers of the TM are considered to be

the major sites involved in regulating the outflow of aqueous humor and intraocular

pressure (IOP) (4) and are also the regions where profibrotic changes are thought to lead to

the pathogenesis of primary open angle glaucoma (POAG) (5).
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Remodeling of the ECM in the TM is considered to be

important in maintaining normal homeostasis of aqueous humor

outflow through the TM (6, 7) and IOP. However, excessive and

prolonged remodeling of the ECM in the JCT and inner wall of

Schlemm’s canal (Figure 1) leads to a restriction in the outflow of

aqueous humor that results in a buildup of fluid in the anterior

chamber and an elevation in IOP. This is believed to trigger a pro-

fibrotic like state resembling fibrosis that leads to the pathogenesis

of POAG (8, 9). Transition into this pro-fibrotic state can start with

either an age-related remodeling of the ECM that causes a general

stiffening of the TM, thickening of the beams, loss of beam cells (5)

or elevated levels of TGFb2 in aqueous humor (10, 11). These

changes which alter the mechanical properties of the TM (5, 12)

activate signaling cascades that could cause the transdifferentiation

of quiescent TM cells into myofibroblast-like cells. This process,

termed endothelial-to-mesenchymal transition (EndoMT), can be

driven by a variety of autocrine and paracrine signaling molecules
Frontiers in Ophthalmology 02
including TGFb, Wnt/b-catenin, Notch and/or inflammatory

cytokines (13). EndoMT is also driven by the expression and/or

structural stiffness of an isoform of fibronectin called EDA+ in the

ECM (14). Myofibroblasts display a greater capacity to produce

ECM proteins and contract (15, 16). The increased contractile

properties of myofibroblasts further enhances the deposition of

the ECM, notedly collagen and fibronectin thereby creating a

feedback loop that further increases the rigidity of the ECM and

pro-fibrotic activity of the tissue. These changes in the mechanical

properties of a tissue are due in part to the activity of a family of

transmembrane receptors called integrins (17, 18).
Integrins in the TM

Each integrin is a heterodimer composed of an a- and a b-
subunit (19–21) (Figure 2). In humans, there are 18 a and 8 b
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FIGURE 1

The trabecular meshwork/Schlemm’s canal (TM/SC) outflow pathway. (A) Aqueous humor (AH, green arrows) exits the anterior chamber through the
uveoscleral meshwork (UM), corneoscleral meshwork (CM) and the juxtacanalicular tissue (JCT). It then crosses the basement membrane (BM)
underlying the inner wall (IW) of Schlemm’s Canal to exit either paracellularly or transcellularly into the lumen of SC. The light and dark blue cells in
the JCT indicate that the JCT consists of cells showing both fibroblastic and smooth muscle-like properties, respectively. The beams are connected
to each other by cytoplasmic extensions between the TM cells surrounding the beams. The insert in the circle shows the profibrotic changes
associated with POAG that may include the transition of TM cells in the JCT into myofibroblasts, the expression of the EDA+ isoform of fibronectin
(FN), and the increased production of proteins in the BM of the IW wall. (B) Diagram of the whole eye showing the normal movement of aqueous
humor (dashed arrow) from the ciliary body past the lens and iris into the anterior chamber and out through the TM/SC. (C) Diagram of the whole
eye showing that profibrotic changes in the TM/SC shown in (A) would lead to a restriction in the movement of aqueous humor through the TM/SC
(smaller arrow head) and an accumulation of more aqueous humor in the anterior chamber (larger arrowhead). This would result in increased
pressure throughout the eye including in the vitreous chamber.
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FIGURE 2

Integrins and their ligands found in the TM. (A) An integrin consists of an a- and b-subunit. The heterodimer functions to form a physical link
between the extracellular matrix (ECM) and the cytoskeleton that acts as a signal transducer. The extracellular domain of the heterodimers bind to a
variety of ECM proteins and growth factors found the TM/SC while the cytoplasmic tails of the heterodimer bind a variety of kinases (i.e. FAK, Src),
adapter proteins (i.e. Talin, Hic-5) and members of the Rho family in a complex called a focal adhesion (FA). This complex of cytoplasmic proteins
helps form a link between the tails of integrins and the actin cytoskeleton. It also connects integrins to signaling pathways including the Rho GTPase
and TGFb signaling pathways. (B) Integrins and their ligands found in the TM/SC. As shown, all integrins with the exception of a5b1 integrins bind
multiple ligands. (C) The color-coded sequences in the box are the motifs that are recognized by each specific integrin in the various ligands.
Fibronectin (FN), Thrombospondin-1 (TSP-1), tenascin-C (TN-C), Osteopontin (OPN), Vascular cell adhesion molecule (VCAM), galectin-8 (GAL-8),
Vitronectin (VN), Latency-associated protein (LAP), Transforming growth factor b (TGFb), Milk fat globule-EGF factor 8 (MFG-E8), Secreted protein
acidic and rich in cysteine (SPARC), Fibrillin (FBN), Fibroblast growth factor (FGF), Connective tissue growth factor (CTGF), and Vascular endothelial
growth factor receptor (VEGFR).
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subunits which mix and match to form 24 unique receptors that

have tissue-specific biological properties and show specificity for

different ECM ligands. For instance, a5b1 integrin only binds

fibronectin whereas a4b1 integrin binds fibronectin and VCAM.

Although all integrins have been shown to mediate cell attachment

to the ECM, several integrins also have distinct biological functions.

For example, a5b1 integrin is best known for regulating fibronectin

fibrillogenesis (22, 23) and avb5 integrin regulates phagocytosis

(24, 25). A more detailed discussion of integrin structure and

function in the TM can be found in a recent review (21).

At least 20 different integrins have been identified in the cells

associated with the TM in the outflow pathway by either RNA or

protein analysis. These integrins show a broad distribution and are

found along the trabecular beams, in the JCT and in SC cells along

the inner wall demonstrating that multiple integrins are expressed

on cells throughout the TM/SC (25–27). The major integrins found

in the JCT of the TM/SC by scRNA analysis of human tissues (3)

appear to be avb5 and a9b1, whereas SC cells contain

predominantly avb3, avb1, a5b1, a9b1, and a10b1. A complete
Frontiers in Ophthalmology 03
listing of all the integrins found in this study can be found at the

Broad Institute of MIT and Harvard Single Cell Portal1.

Although integrins are best known for mediating cell

attachment to the ECM, integrins are also key partners in a

number of signaling pathways involved in fibrosis including

TGFb signaling (28), formation of a fibronectin matrix (22, 29),

myofibroblast formation (30), and activation of Rho GTPases (31).

Integrins participate in these pathways via either direct interaction

with receptors or through an association with intracellular

cytoskeleton elements assembled into a signaling complex called

focal adhesions (FAs). This latter association occurs through a

variety of cytoskeletal linker proteins and kinases (i.e., FAK, Src,

talin, paxillin, vinculin, etc.) which form a physical linkage that

directly connects intracellular and extracellular structures

(Figure 2). This puts integrins in a unique situation in that they

exhibit bidirectional signaling. Integrins can convert extracellular
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biochemical signals generated from the proteins in the ECM into

intracellular biochemical signals. They can also convert extracellular

mechanical forces derived from the pulsatile motions of the TM

(32) into intracellular biochemical signals. Both sets of intracellular

biochemical signals can drive the differentiation of cells into

myofibroblasts (30) and promote excessive ECM deposition

during fibrogenesis. Alternatively, integrins can transmit

intracellular, myosin-generated contractile forces to the outside of

the cell that alter the architecture and signaling properties of

proteins in the ECM (17, 33). These intracellular signals may

include, but are not limited to, tyrosine phosphorylation of

proteins such as paxillin and p130CAS (34–36), activation of

protein tyrosine kinases such as FAK and Src (37), and activation

of serine/threonine kinases such as Erk or Akt (38, 39). Extracellular

signals, on the other hand, could include changes in the

conformation of fibronectin (40) needed for fibrillogenesis (41).
Integrins and Rho GTPases in the TM

Among the important signaling pathways controlled by

integrins that are involved in fibrosis is the Rho GTPase pathway

(31, 42). Rho GTPase pathways involving RhoA, Rac, and Cdc42 are

essential in regulating the contractile (43, 44) and phagocytic (25)

properties of the human TM. They are also needed for the enhanced

contractile properties of myofibroblasts and the deposition of

proteins associated with fibrosis into the ECM (45, 46). Integrins

control GTPase mediated-processes by directing the localization

and activation of Rho GTPases at the membrane (47). This is done

by controlling the activity of guanine nucleotide exchange factors

(GEFs) and GTPase activating proteins (GAPs) that control Rho

GTPase activities (48). For instance, in human TM cells, activation

of avb3 integrin uses the GEF Tiam1 to trigger the activity of Rac1

which promotes the reorganization of actin and smooth muscle a-
actin (a-SMA) into crosslinked actin networks (CLANs) (49, 50).

This network is frequently observed in glaucomatous cells and

tissues and is believed to alter TM contractility (51, 52) and hence

the mechanical properties of the TM/SC. Activation of Rac1 by

avb3 integrin also leads to an inhibition of Rho-mediated

phagocytosis (25, 53). In this scenario, avb3 integrin uses the

GEFs Tiam1 and RhoG/ILK/ELMO2 rather than Trio to trigger

Rac1 activity. Once activated, Rac1 could inhibit RhoA activity by

upregulating a 190 RhoGAP (54).

RhoA, another member of the Rho GTPase family, plays a

prominent role in promoting the contractile properties of the

actomyosin network in the TM that control IOP. In human TM

cells, constitutively active RhoA causes a significant increase in the

formation of actomyosin networks, and in rodent models of ocular

hypertension it causes an increase in a-SMA expressing

myofibroblast-like cells (55–59). Thus, studies have shown that

inhibiting the Rho-associated protein kinase (ROCK), a

downstream effector of RhoA activity, is an effective treatment for

lowering IOP in POAG (58, 59).

RhoA also leads to an increase in the deposition of ECM

proteins especially fibronectin in human TM cells (55). In these

studies the activity of RhoA, as well as the TGFb/SMAD pathways,
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was controlled by the avb3 integrin, together with the subsequent

recruitment of Hic-5 to FAs (57). The activation of avb3 integrin or

overexpression of Hic-5 induced the cytoskeleton changes

attributed to RhoA activity while the knockdown of Hic-5

suppressed TGFb2-induced fibrogenic activity (57). Interestingly

these studies found that activation of RhoA and the TGFb/SMAD

pathways occurred in the absence of TGFb2. This suggests that

integrin-mediated signaling may play an essential role in the

TGFb2-mediated activation of RhoA during fibrosis. This is not

totally unexpected since studies have shown that integrin

engagement plays a critical role in growth factor signaling

including TGFb signaling (60–63) and the subsequent activation

of RhoA.
Role of a5b1 and avb3 integrins in
fibronectin matrix formation

Integrins play a critical role in fibrosis since they are responsible

for the deposition and formation of fibronectin fibrils that direct

and maintain the organization of the ECM. Fibronectin is a dimeric

glycoprotein maintained by two disulfide bonds at its C-terminus

that is composed of an array of repeating modular structures called

repeats (Figure 3A). There are 12 type I repeats (FNI), 2 type II

repeats (FNII), 15 type III repeats (FNIII) and a non-homologous

variable (V) or type III connecting segment (IIICS) region. In

addition, it can contain 2 additional alternatively spliced type III

repeats referred to as EDA and EDB repeats. These repeating

segments create functional domains that interact with multiple

binding partners within the ECM that allow fibronectin to help

mold and maintain the 3D-architecture of the ECM during fibrosis

and incorporation of other proteins into the ECM (64–69).

Fibronectin fibrillogenesis plays a critical role in fibrosis and

disruption of it attenuated fibrosis in multiple in vivo models of

fibrosis including two different mouse models of kidney fibrosis (70,

71) and a model of liver fibrosis (72). It also prevented fibrosis

during a mouse model of heart failure (73). In TM cells in culture,

inhibition of fibronectin fibril formation also inhibited the

incorporation of other matrix proteins such as type IV collagen,

fibrillin and laminin into the ECM (74). Intriguingly, inhibition of

fibronectin fibrillogenesis also appeared to promote the removal of

existing fibronectin fibrils (74) and lowered IOP in vivo (75). This

suggests that controlling this integrin mediated assembly of

fibronectin fibrils may represent a way to control fibrosis

in glaucoma.

The assembly of fibronectin into fibrils in TM cells is mediated

by several fibronectin binding integrins (22, 41). The major integrin

involved is the a5b1 integrin. a5b1 integrins promote fibril

formation by binding the secreted soluble dimer and inducing a

conformational change that exposes specific fibronectin–fibronectin

binding sites (Figure 3A). These binding sites are needed for the

assembly of fibronectin into an insoluble fibril that then acts as the

scaffold for any subsequent matrix deposition (74). Among the sites

involved in fibril formation are the amino terminus of fibronectin

(76) and the heparin II binding domain (77) and blocking their
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binding activity has been shown to prevent fibril formation. Thus,

inhibiting these interactions have proven an attractive mechanism

to control fibril formation and fibrosis.

Integrins can control this process because they regulate the

contractile forces of the actomyosin network that are used to unfold

and stretch fibronectin so that fibronectin-fibronectin binding sites

needed for fibril formation are exposed (Figure 3). In human TM

cells as in other cell types, this process usually involves the GTPase

RhoA (23, 40) which appears to be activated when the a5b1
integrin engages the fibronectin monomer. In TM cells activation

of avb3 integrin, however, enhances the assembly of fibronectin

into fibrils leading to an increase in the deposition of fibronectin

fibrils. How activation of avb3 integrin enhances the a5b1 integrin-
mediated process is unclear. Unlike the RhoA-mediated process

involving a5b1 integrin, the avb3 integrin uses a RhoA/ROCK-

independent process (23) since the process is unaffected by the

ROCK inhibitor, Y27632. Thus, it is possible that activation of avb3
integrins may be activating pathways that are independent of RhoA/

ROCK by either using the guanine nucleotide exchange factor GEF-

H1/mDia (78) or the GTPase Rac1 (49, 79) to generate the

contractile forces of the actomyosin network in the cells.

Interestingly, GEF-H1 has been shown to regulate RhoA-

dependent cell stiffening and rigidity (48) while the RhoA/ROCK

pathway has been observed to control fibrotic activity in human TM

cells in culture (56) and in vivo (57). This suggests that the two

processes together may be increasing the contractile forces

regulating fibril formation and targeting a specific GEF as well as

ROCK could be an effective treatment for preventing any

profibrotic changes during POAG (58, 59).

Intriguingly, fibronectin fibrils assembled by TM cells

expressing constitutively activated avb3 integrin also contained

higher levels of the alternatively spliced isoforms of fibronectin
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containing the EDA and EDB domains (23). These alternatively

spliced domains are usually not expressed in adult tissue unless the

ECM in the tissue is being remodeled. The inclusion of both the

EDA+ and EDB+ alternatively spliced domains in fibronectin

supports a more robust response to TGFb signaling whereas

fibrils containing only EDA+fibronectin promoted a weaker

response to TGFb (80). Inclusion of the EDA+ and EDB+

domains into fibronectin also affects the thickness, stiffness, and

degree of branching of the fibril and the pore size of the fibronectin

fibrillar network (80). The EDA domain is also involved in the

transition of cells into myofibroblasts (14). These fibrils also

exhibited an altered fibril conformation that resulted in the

exposure of a buried domain known as the L8 epitope (Figure 3)

which involves the GLN-690 in the first type III repeat (81). Hence

changes in the expression or activity of integrins in TM cells are

likely to profoundly affect the function and compliance of the ECM

as well as modulate ECM-mediated signaling events (21, 80). This

also suggests that during glucocorticoid-induced ocular

hypertension or glaucoma, where avb3 integrins are likely to be

overexpressed and active (82), the avb3 integrin may induce the

formation of fibronectin fibrils that are more similar to a fibrotic-

like ECM.
Role of integrins in contractility and
myofibroblast differentiation

In many tissue types, fibrosis involves the formation of

myofibroblasts. Myofibroblast-like cells have been observed in the

TM of young human eyes (83). These cells express a-SMA, a

marker of myofibroblasts and are randomly distributed
B

A

FIGURE 3

Fibronectin (FN) matrix assembly model. (A) Fibronectin consists of three repeating numbered modules (types I, II, III) and three alternatively spliced
sequences. The ECM proteins that use fibronectin to be incorporated into the ECM are indicated below their fibronectin binding sites. The major
integrin binding site (RGD) is in the 10th FNIII repeat and binds the integrins indicated in the figure. Tenascin-C (TNC), Collagen/gelatin (Col/Gel),
Thrombospondin (TSP), Fibrillin (FBN), Transglutaminase (TGC), Proteoglycans (PGs), Fibulin (FBLN), Transforming growth factor b (TGFb), Fibroblast
growth factor (FGF), Bone morphogenetic proteins (BMPs) and Vascular endothelial growth factor (VEGF). (B) Fibronectin, which is secreted as a
globular dimer, binds an integrin in a focal adhesion (FA) on the cell surface (step 1). Contractile forces generated by the actomyosin cytoskeleton
connected to the integrins (step 2) cause the fibronectin dimer to unfold. Fibronectin-fibronectin binding sites (purple ovals) mediate fibril formation
(step 3). These fibronectin fibrils serve as a scaffold for the incorporation of other ECM components such as collagen fibrils (step 4).
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throughout the TM. Interestingly, their prevalence decreases with

age, but their levels increase in eyes following treatments with

corticosteroids. Myofibroblasts develop pronounced a-SMA-

myosin bundles (stress fibers in cultured cells) that have increased

contractile properties and can connect with the ECM via integrins

at sites of large focal adhesions (16). Although the formation of

these a-SMA positive stress fibers is a distinguishing feature of

myofibroblasts that provides the contractile properties that play an

important role in the fibrotic process, a-SMA is not essential for the

development of a myofibroblast phenotype (16, 84).

The transformation of a cell into a myofibroblast occurs in two

stages (Figure 4). In the first stage, expression of the EDA+ isoform

of fibronectin begins the transformation of cells into myofibroblasts

by TGFb1 (14). Recent studies in mice constitutively expressing

EDA+ fibronectin support this idea and show that expression of

EDA+ fibronectin enhances the TGFb2-induced deposition of ECM
in the TM causing an age-dependent elevation in IOP (85, 86). In
Frontiers in Ophthalmology 06
fibroblasts this transformation appears to involve an interaction

between the EDA domain in fibronectin and either the a4b1, a4b7
or a9b1 integrins (87, 88). Whether one of these integrins is also

involved in the transformation of TM or SC cells into

myofibroblasts remains to be determined.

Other integrins such as av-containing integrins may help

promote the transformation of a cell into a myofibroblast by

triggering the release of TGFb1 from the surrounding ECM (28,

89). Finally in human TM cells, interactions between avb3 integrin
and connective tissue growth factor (CTGF) may play a role in the

transformation of the TGFb-induced myofibroblast phenotype

observed in TM cells (90–92). CTGF has been shown to be a

downstream mediator of TGFb1 induced myofibroblast

differentiation in NRK cells (93) and in TGFb2-induced
myofibroblast differentiation in TM cells (90). Interactions

between CTGF and avb3 integrin may be involved in the

TGFb2-induced myofibroblast differentiation, since cyclic RGD
B

A

FIGURE 4

Role of integrins in the transformation of a cell into a myofibroblast. (A) Multiple integrin mediated processes trigger the early stages of
myofibroblast formation. These processes include: (1) binding of EDA+ fibronectin to a4b1 integrin triggers expression of a-SMA, and (2) integrin
mediated mechanical transduction activates RhoA, leading to assembly of actin stress fibers and contractile forces that promote the release of TGFb
from the LAP-TGFb complex. (3) activated TGFb1 (freed from LAP) binds to the TGFbRI/II complex stimulating SMAD intracellular signaling that
promotes further expression of a-SMA, EDA+ fibronectin, and CTGF. This signaling, which triggers a feedback loop, may occur within the focal
adhesion (FA) and be mediated by the specific integrin associated with TGFbRI/II complex in the FA. (B) Activation of the integrin-mediated
processes in (A), triggers the myofibroblast phenotype. The differentiated myofibroblast and its contractile properties are then sustained by the
formation of supermature FAs containing avb3 integrin.
frontiersin.org

https://doi.org/10.3389/fopht.2023.1274797
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org


Faralli et al. 10.3389/fopht.2023.1274797
peptides that bind avb3 integrin suppressed CTGF-induced fibrosis

in animals and in TM cells in culture (92). This suggests that a

CTGF/avb3 integrin mediated signaling pathway may participate

in the transformation of a cell into a myofibroblast. In summary,

combinatorial signaling pathways involving multiple integrins may

be responsible for the profibrotic phenotype of the TM in

POAG (94).

In the second stage of myofibroblast maturation, stress fibers

containing a-SMA form and develop the contractile properties that

can lead to further increases in the release of TGFb2 from the ECM

and enhanced ECM rigidity due to the dependence of integrins in

the activation and release of TGFb stored within the ECM. The

formation and maintenance of these stress fibers as well the

contractile force generated by the activation of avb3, a5b1, and
avb5 integrins (84) within FAs (30) contributes to the continued

transformation of the myofibroblast.

Maturation of FAs in myofibroblasts starts with the activation

of a single integrin, avb3 integrin (95). Interactions between avb3
integrin (and possibly a5b1integrin) with their ECM ligand

promote the development of super mature FAs that lead to the

phosphorylation of the kinases FAK and Src and the subsequent

activation of mechanosensitive signaling molecules such as MAPK,

RhoA, and ROCK. It is the activation of these molecules that trigger

a-SMA-containing stress fiber formation. These integrin-

containing FAs also contribute to the transformation of the

myofibroblast by serving as hubs for signaling pathways for the

TGFb1 receptor complex (16, 96). For instance, the TGFb1 receptor
complex appears to laterally associate in the fibroblast membrane

with avb5 integrins which in turn promotes the activation of

extracellular LAP-TGF-b1 and release of TGFb stored in the

ECM (28, 89, 97).
av-integrins mediate activation of
TGFb and signaling

Although TGb1 is the most potent profibrotic cytokine known

and the major driving force in the differentiation of myofibroblast

phenotype (30), it does not appear to play a role in the pathogenesis

of a fibrotic like state in POAG. Rather TGFb2 appears to be

predominantly involved in TGFb induced POAG (11, 98) since

numerous studies have now shown that sustained activation of

ROCK by either TGFb, CTGF or lysophosphatidic acid (LPA) in

TM cells in culture or in vivo contributes significantly to creating

the fibrogenic properties of the TM associated with POAG (11, 56,

57, 90, 91, 99–101). Not surprisingly, inhibition of ROCK signaling

decreases ECM deposition in the TM and fibrosis but also increases

aqueous humor outflow making it a therapeutic target for the

treatment of POAG (46, 102).

In contrast to TGFb1 where it is well established that the release of
active TGFb1 can be triggered by a variety of factors including av-
containing integrins and proteases (103–105), it is still unclear how

TGFb2 is activated. TGFb2 is thought to be released by

thrombospondin-1 (105) which is overexpressed in the TM from

glaucomatous patients (106). Similar to the mechanisms governing
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the release of TGFb1, release of TGFb2 is also thought to involve a

mechanical mechanism of TGFb activation whereby integrin mediated

contractile forces on the ECM could trigger the release of active TGFb
(103, 107), thereby possibly increasing TGFb2 levels (Figure 4). This

suggests amodel whereby the combination of TGFb, integrin-mediated

contractility and changes in ECM expression could engage in a feed

forward signaling loop (108) that leads to the pathogenesis of POAG.

The enhanced ECM deposition by myofibroblasts leads to the

production of a stiffer matrix with a higher mechanical load when

compared with healthy ECM produced by fibroblasts (109). This

mechanically stiffer ECM, in turn, leads to more efficient activation

of TGFb, and the increased levels of TGFb further enhance

myofibroblast differentiation leading to a positive feedback loop that

sustains the profibrotic environment.

More recent studies in immortalized human TM cells in culture

have suggested that the activation of the avb3 integrin leads to an

increase in the expression of TGFb2 mRNA and protein (110).

Although, the mechanism behind this is still unclear, it appears that

expression of TGFb2 mRNA, like the b3 integrin subunit, may be a

secondary glucocorticoid response modulated by calcineurin (CaN)

and the transcription factor NFATc1 (82, 111). Activation of this CaN/

NFATc1 pathwaymay be dependent on the TM cell cycle (111) since it

was only activated when cells were in the proliferative state.

Finally, integrins could also play a role in TGFb signaling by

regulating the association of the two TGFb receptors TGFbRI and
TGFbRII into a complex (112) and their subsequent activation. In

human lung fibroblasts, TGFBRI is enriched in FAs, while TGFBRII is

selectively excluded. The oligomerization of the two receptors can be

mediated by avb3 integrin which selectively recruits the TGFBRII

receptor to interact with TGFbRI receptor in FAs (61). The avb3
integrin can also potentiate TGFb signaling by controlling the

activation state of TGFbRII. This is achieved through a direct

interaction between avb3 integrin and the TGFbRII receptor that

allows Src to phosphorylate and activate TGFbRII during the epithelial-
mesenchymal transition of mammary epithelial cells (113). This

interaction may explain the recent observation that a Src mediated

TGFb signaling pathway induced an elevation in IOP in a mouse

model of ocular hypertension (114). Interestingly, recruitment of the

a2b1 integrin to FAs could negatively regulate the tyrosine

phosphorylation of TGFbRII through its recruitment of the

phosphatase TCPTP into FAs (62). Thus, as with other growth

factors, integrins have the capability of modulating TGFb
signaling (Figure 4).
Conclusion

In summary, integrins play crucial roles in many important

biological steps in fibrosis from the deposition of the ECM to the

bioavailability of TGFb and the contractile properties of

myofibroblasts. Targeting integrins and the signaling pathways

that they regulate could therefore be an important long-term

antifibrotic strategy in chronic fibrotic diseases to preserve the

function of the TM and restore homeostasis. Potential approaches

to alleviate fibrosis in the TM would be to disrupt fibronectin fibril
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formation. This approach has proven successful in vivo using small

fibronectin peptides to prevent fibrosis in vitreoretinopathy (115),

but has not been pursued in the TM. Novel studies using

recombinant integrin blocking antibodies (116) may also be

another approach to reduce ECM production and/or the

contractile properties of the tissue.
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