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Genetics of strabismus

Mayra Martinez Sanchez1,2 and Mary C. Whitman1,2,3*

1Department of Ophthalmology, Boston Children’s Hospital, Boston, MA, United States, 2Department
of Ophthalmology, Harvard Medical School, Boston, MA, United States, 3F.M. Kirby Neurobiology
Center, Boston Children’s Hospital, Boston, MA, United States
Strabismus, or misalignment of the eyes, is the most common ocular disorder in

the pediatric population, affecting approximately 2%–4% of children. Strabismus

leads to the disruption of binocular vision, amblyopia, social and occupational

discrimination, and decreased quality of life. Although it has been recognized

since ancient times that strabismus runs in families, its inheritance patterns are

complex, and its precise genetic mechanisms have not yet been defined. Family,

population, and twin studies all support a role of genetics in the development of

strabismus. There are multiple forms of strabismus, and it is not known if they

have shared genetic mechanisms or are distinct genetic disorders, which

complicates studies of strabismus. Studies assuming that strabismus is a

Mendelian disorder have found areas of linkage and candidate genes in

particular families, but no definitive causal genes. Genome-wide association

studies searching for common variation that contributes to strabismus risk have

identified two risk loci and three copy number variants in white populations.

Causative genes have been identified in congenital cranial dysinnervation

disorders, syndromes in which eye movement is limited or paralyzed. The

causative genes lead to either improper differentiation of cranial motor

neurons or abnormal axon guidance. This article reviews the evidence for a

genetic contribution to strabismus and the recent advances that have beenmade

in the genetics of comitant strabismus, the most common form of strabismus.
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1 Introduction

Strabismus is the most common ocular disorder in children and can have lifelong

consequences, including amblyopia, loss of binocular vision, decreased quality of life (for

both children and parents), and social and occupational discrimination (1–7). Strabismus is

classified by the alignment of the eyes relative to each other. When one eye is fixating, the

other eye can deviate inwards (esotropia), outwards (exotropia), or vertically (hyper/

hypotropia). Deviations can be the same in all positions of gaze (comitant strabismus) or

vary based on eye position (incomitant strabismus). There are a group of rare syndromes

(congenital cranial dysinnervation disorders, CCDDs) with incomitant, paralytic

strabismus, which show typical Mendelian inheritance patterns, in which causative genes

have been identified (8). Those identified genes influence cranial motor neuron
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development and affected patients and model organisms have

abnormal development of the cranial nerves (9–13). This review

focuses on the evidence for genetic contributions to the more

common forms of comitant strabismus, in which both eyes are

able to move fully. It has long been recognized that strabismus runs

in families, and population, family, and twin studies all support a

genetic contribution, but inheritance patterns are complex, and no

definitive causative genes have been identified (14–20).

Genetic variants vary in both frequency (the prevalence in the

population) and penetrance (the proportion of individuals with the

genetic variant who have the disease). Mendelian disorders are

usually caused by rare variants of high penetrance, whereas

common diseases often have contributions of many common

variants, each with relatively low penetrance (21). Different study

techniques are used to identify these different types of variants, and

both types of study have been performed in strabismus, which are

detailed below.
2 Population differences

The prevalence of strabismus is approximately 2%–4% in the

pediatric population (22–24), but the prevalence varies based on

geographical regions and strabismus subtypes. A meta-analysis of

56 prevalence studies showed that the highest prevalence of

esotropia and total strabismus was in the Americas and Europe,

but that there was a higher prevalence of exotropia in Asia,

especially China, and in Australia (25). A recent study in Hong

Kong of ethnically Chinese children found a prevalence of

strabismus of 3.1%, with an exotropia to esotropia ratio of 9.75 :

1 (26). Within the United States, the Multiethnic Pediatric Eye

Disease study showed differences in the proportion of esotropia and

exotropia between ethnic groups. Non-Hispanic white children had

higher rates of esotropia than exotropia, whereas in African

American, Asian, and Hispanic children exotropia was more

common than esotropia (23, 27). The Baltimore Pediatric Eye

Disease study, in contrast, reported that both white and black

children had equal rates of esotropia and exotropia (24). Multiple

other studies have reported that there is a higher prevalence of

esotropia than exotropia in the white population (28–32),

suggesting that population genetic differences contribute to the

risk of esotropia in particular.
3 Risk factors

Strabismus has both genetic and environmental risk factors. In

addition to family history, non-ocular strabismus risk factors

include low birth weight, prematurity, maternal smoking during

pregnancy, intrauterine drug exposure, neurologic diseases, and

advanced maternal age (26, 33–38). Ocular risk factors include

hyperopia (>2 D), and moderate anisometropia (26, 39), which

likely have genetic risk factors. There is no significant difference in

the incidence of strabismus between genders (40). Interestingly,

several of these environmental risk factors have been associated

with epigenetic changes, specifically changes in methylation, in the
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newborn population. Maternal smoking, birthweight, prematurity,

and greater maternal age are all independently associated with

altered methylation (41–44). Methylation patterns affect gene

expression, suggesting that there is a possible mechanistic link

between genetic and environmental risk factors for strabismus.
4 Twin and family studies

Hippocrates first noted that strabismus tends to run in families;

he observed: “Children of parents having distorted eyes squint also

for the most part” (45). Although genetic risk clearly plays a role in

the development of strabismus (16), it is unknown whether

esotropia, exotropia, and vertical deviations result from unique

genetic risk factors, or if a common genetic risk underlies all forms

of strabismus. In most families, all affected individuals have the

same general type of strabismus (esotropia vs. exotropia), but there

are examples of families that are discordant (46–49). It is clear that

there is not one single gene that accounts for all strabismus cases.

Twin studies support there being a strong genetic contribution,

particularly for esodeviations (20). Monozygotic twins have

concordance rates for any strabismus of 54%–82%, while

dizygotic twins have concordance rates of 14%–47% (19, 50).

Several family studies have shown a high prevalence of strabismus

among family members of a proband with strabismus (15, 51–53).

Combining 12 previous family studies, Paul and Hardage (16)

reported that 30.6% of strabismus patients had a close relative

with strabismus. A more recent study reported that 18.7% of

strabismus cases had at least one affected first-degree relative (54).

The relative risk for first-degree relatives of an affected proband is

estimated to be between 3 and 5 (14, 16–19). The heritability factor

remains significant following correction for the environmental risk

factors identified above (17).
5 Linkage analysis in large
strabismus families—is strabismus a
Mendelian disorder?

In large strabismus pedigrees in which strabismus is inherited in

apparently Mendelian patterns, several studies have used linkage

analysis to identify potential loci associated with strabismus

(Table 1). A locus on 7p22.1 (STBM1) was mapped in one large

family, under a recessive model, although inheritance appeared to

be dominant (18). This locus was replicated in another family under

a dominant model (55). By combining Japanese families, linkage

was shown at 4q28.22 in a dominant model and 7q31.2 in a

recessive model (56). MGST2 and WNT2 have been proposed as

candidate genes at these loci, but specific variants have not been

reported (61). In one large family, with variable strabismus

phenotypes between family members, linkage was shown at

14q12; the top candidate variant is a non-coding 4 bp deletion

near FOXG1 (59). There have also been two studies in large

consanguineous families in which some individuals had infantile

esotropia and others had Duane retraction syndrome. The first
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study identified a recessive 6MB band on chromosome 16p13.12-

p12.3 (57); the other study identified two potential loci (3p26.3–26.2

and 6q24.2–25.1) in a family with three siblings with esotropia and

four with Duane retraction syndrome (58). In one large Chinese

family, linkage was identified at 2q22.3–2q32.1, and exome

sequencing identified a rare heterozygous variant in LRP2 within

the area of linkage. An additional rare variant in the same gene was

identified in an unrelated family (60). Exome analysis of another

Chinese family, in which the proband, both parents, and a maternal

grandfather had exotropia, identified several candidate variants, but

no functional evidence was presented for any of the variants (62).

Another study reported an exome analysis of 18 strabismus families.

In five families, a potential risk variant—defined as a rare, predicted

deleterious variant that segregated with disease—was identified. The

genes with potential risk variants are FAT3, KCNH2, CELSR1, and

TTYH1 (63). Since each of these studies has identified different

potential risk variants in different families, it is clear that there is

significant genetic heterogeneity in strabismus.
6 GWAS of strabismus—is strabismus
a common disorder?

Diseases that are common in the population often have multiple

genes that contribute, with each individual variant having a small effect

size. In search for common variations contributing to the risk of

strabismus, two genome-wide association studies (with different

inclusion criteria) have each reported one risk allele (64, 65). A

GWAS study of non-accommodative esotropia, including 826

patients of European ancestry from the USA in the discovery cohort

and 689 patients from Australia and the United Kingdom in the

replication cohort, identified one risk allele, a functional single

nucleotide polymorphism (SNP) in an intron of the WRB gene on

chromosome 21 at rs2244352, which affects the expression ofWRB and

neighboring genes (64). The area is imprinted, and the risk allele is

preferentially inherited paternally (64). A second GWAS, including

1,345 individuals with self-reported strabismus in the UK Biobank,

identified a locus on chromosome 17q25, with lead SNP within

TSPAN10 (65). The 17q25 locus extends across the NPLOC4–

TSPAN10–PDE6G gene cluster, which has been associated through
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GWAS with several other eye conditions, including macular thickness

(66), astigmatism (67), retinal microvascular size (68), and myopia

(69). Phenotyping in the UK Biobank was based on self-reporting by

participants aged between 37 and 73. Specifically, participants reported

whether they wore glasses and, if they did, were asked to select the

reason(s). Participants who chose “squint or turn in an eye since

childhood (called strabismus)” were classified as having strabismus.

This has the potential to select for accommodative esotropia (and

associated hyperopia) or to misclassify participants with strabismus as

controls if they do not wear glasses for the condition. The strabismus

group was more hyperopic than the control group, but the association

between strabismus and the 17q25 locus was independent of refractive

error. The association with this locus was replicated in a cohort of 7-

year-olds examined by an orthoptist and determined to have

strabismus. In that population of 5,200 children (of whom 145 had

strabismus), the lead variant was associated with any strabismus and

exotropia, but not with esotropia independently. The authors note,

however, that some of the exotropic children might have been

exotropic following surgery for esotropia and that the number of

exotropic children was quite small (only 28) (65). The association of

each of these alleles with strabismus was replicated in the FinnGenn

cohort, in which patients were phenotyped based on electronic health

record data. In the Finnish cohort, which comprised 3,515 cases of all

subtypes of strabismus (including convergent, divergent, paralytic, and

vertical strabismus, accommodative esotropia, intermittent

heterotropia, and others) and 173,384 controls, the WRB

polymorphism was associated with “any strabismus” and “divergent

strabismus”, and the TSPAN10 polymorphism was associated with

“any strabismus”, “convergent strabismus”, and “divergent strabismus”

(70). Overall, the data indicate that these two polymorphisms

contribute significantly to the population-attributable risk of

strabismus, but more GWAS studies, with larger sample sizes and

consistent phenotyping, are needed (71).
7 Copy number variants (CNVs)
in strabismus

Additional sources of genetic variation in the population are

copy number variants (CNVs) and structural variants. CNVs are
TABLE 1 Common strabismus loci identified by linkage analysis.

Locus Reported LOD Potential gene Phenotype Model Ethnicity Reference

7p22.1 4.51 ET Recessive European (18)

7p22.1 3.21 ET Dominant European (55)

7q31.2 4.4 WNT2 ET + XT Recessive Japanese (56)

4q28.3 3.62 MGST2 ET + XT Dominant Japanese (56)

16p13.12-p12.3 2.5 ET + Duane + double elevator palsy Recessive Saudi Arabian (57)

3p26.3–26.2 3.18 ET + Duane Recessive Saudi Arabian (58)

6q24.2–25.1 3.25 ET + Duane Recessive Saudi Arabian (58)

14q12 4.69 FOXG1 Mixed Dominant European (59)

2q22.3–2q32.1 3.54 LRP2 XT Dominant Chinese (60)
f
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duplications or deletions of large regions of DNA, whereas

structural variants are rearrangements of the DNA, such as

inversions, insertion of sequence from one chromosome to

another, or translocation between chromosomes. CNVs represent

an important source of genetic variation and are also a force that

shapes genome evolution (72, 73). Many common CNVs represent

benign polymorphisms, but rare CNVs at specific loci contribute to

disease. CNVs contribute to the genetic risk for several

neuropsychiatric disorders with complex inheritance (74),

including intellectual disability (75), autism spectrum disorder

(76, 77), major depressive disorder (78), attention-deficit

hyperactivity disorder (79), and Tourette’s syndrome (80). In

strabismus, one study has reported both a larger number of

CNVs in esotropia samples and three specific duplications that

significantly increase the risk of esotropia (81). They compared

1,614 white individuals with isolated esotropia to 3,992 ethnically

matched control individuals, all genotyped on Illumina Omni SNP

arrays, and used two hidden Markov model (hmm) CNV-calling

algorithms, PennCNV (82) and QuantiSNP (83), to identify CNVs.

Three rare, recurrent duplications were significantly (p <1 × 10–6)

more common in esotropia patients. A 23 kb duplication at 4p15.2

includes exon 1 of the uncharacterized lncRNA LOC101929161

(also known as lnc-SEL1L3–2) and shows conservation with

monkeys, but not other animals. The duplication on chromosome

2p11.2 spans the lncRNA CYTOR and microRNA miR4435,

contains several putative regulatory regions, and has areas with

conservation among mammals but not other vertebrates. The

duplication on chromosome 10q11.22 spans two lncRNAs:

LINC00842 and LOC105378577; three protein-coding genes:

ANTXRL (anthrax toxin receptor-like), ANXA8L1 (annexin A8

like 1), and NPY4R (neuropeptide Y receptor 4); and three

transcribed pseudogenes: ANTXRLP1 , FAM25BP , and

HNRNPA1P33. Each duplication substantially increased esotropia

risk [OR 11.1 (95% CI 4.6–25.2), OR 14.16 (95% CI 5.4–38.1), and

OR 8.96 (95% CI 5.4–14.9), respectively]. Further study to identify

the mechanisms by which these duplications contribute to

strabismus is ongoing.

There are many reports of copy number variants associated

with neurodevelopmental disorders that include strabismus (see

section 9). In neurotypical patients, two cases who presented with

Kallmann syndrome, X-linked ichthyosis, and strabismus, who have

partially overlapping deletions on the X chromosome, have been

reported. The deletion of ANOS1 and STS explains the Kallmann

syndrome and X-linked ichthyosis, respectively. The other four

genes deleted in both patients are NLGN4X, VCX-A, PUDP, and

PNPLA4. Neither patient had an intellectual disability or

developmental delay (84).
8 CCDDs

To date, the only causal genes for strabismus have been found in

CCDDs. Patients with ocular CCDDs have paralysis of one more

extraocular muscles, due to abnormalities of neuronal

differentiation or axon guidance of the corresponding cranial

motor nerve (85). Congenital fibrosis of the extraocular muscles
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(CFEOM) affects cranial nerves 3 and 4 and is caused by autosomal

dominant missense variants in KIF21A, TUBB3, TUBB2B or

TUBA1A or autosomal recessive variants in PHOX2A (9, 10, 12,

86, 87). Duane retraction syndrome affects cranial nerve 6, leading

to limited abduction of one or both eyes. Although most cases do

not have an identifiable genetic cause, autosomal dominant variants

in CHN1 or MAFB can cause isolated Duane syndrome (11, 88),

and variants in SALL4 cause Duane-radial ray syndrome (Duane

syndrome plus abnormalities of forearm development) (89). Duane

syndrome is also a feature of Athabascan brain dysgenesis

syndrome (ABDS)/Bosley–Salih–Alorainy syndrome (BSAS),

caused by autosomal recessive variants in HOXA1 (90, 91).

Horizontal gaze palsy with progressive scoliosis (HGPPS) involves

an inability to abduct or adduct the eyes, and results from

autosomal recessive variants in ROBO3 (92). HOXB1 variants

result in a syndrome that includes facial paresis and esotropia

with full eye movements (93). It is clear, however, that comitant

strabismus results from different mechanisms than the CCDDs,

since patients with comitant strabismus have full motility and

normal cranial motor nerve function and appearance on MRI.
9 Genetic syndromes
including strabismus

Although comitant strabismus is most often an isolated ocular

disorder, it is also a common feature of many genetic syndromes and

neurodevelopmental disorders (16, 94). The incidence of strabismus

in individuals with Down syndrome is 33% (95); strabismus has also

been reported with many other chromosomal disorders associated

with intellectual disability, including partial trisomy 7q (96, 97),

partial trisomy 10p (98), and duplication 13q (99). Individuals with

intellectual disability of any cause are significantly more likely to have

strabismus than the general population; the odds ratio is 5.46 (100).

The incidence of strabismus in individuals with autism spectrum

disorder is also increased (8%–22%) (101–104). Ye et al. (105)

compiled a list of 233 genes potentially involved in strabismus that

was based on strabismus being a feature of their associated genetic

syndrome. Analysis of these potential genes reveals their preferential

expression in the cerebellum, amygdala, and posteroventral parietal

cortex, specifically at the fetal and early developmental stages.

Strabismus is also common in ocular disorders that lead to poor

vision, including retinal dystrophies, congenital cataract, optic

nerve hypoplasia, and albinism (106–109). Poor vision

contributes to the development of strabismus in these disorders,

but it is also possible that the genetic changes that lead to retinal,

optic nerve, or lens maldevelopment or dysfunction affect the

oculomotor system.
10 Conclusion

Although strabismus has a clear heritability, its genetic

mechanisms are complex and heterogeneous. Several linked loci

and candidate genes have been identified in individual families, but,
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thus far, exome sequencing has not revealed definitive causative

variants present in significant proportions of strabismus patients.

Across the population, two loci have been identified by GWAS as

increasing the risk of strabismus, each with a fairly small effect size.

Three CNVs increase the risk of strabismus; they have large ORs but

are rare. Many neurodevelopmental disorders include strabismus;

one hypothesis is that isolated strabismus may result from altered

regulation of genes whose loss of function causes more severe

neurologic dysfunction. Altered genetic regulation may be a

common mechanism that links all the risk factors for strabismus.

CNVs may alter gene regulation by disrupting the proximity of

enhancers and silencers to promoters, the SNPs identified by

GWAS affect the regulation of nearby genes, and the

environmental risk factors affect epigenetic methylation, which in

turn affects gene regulation. Further study and improved methods

of identifying variants in regulatory regions are needed to fully

understand the genetic causes of strabismus.
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