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Syntaxin 3 is haplosufficient for
long-term photoreceptor
survival in the mouse retina
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Biallelic loss-of-function mutations in the syntaxin 3 gene have been linked to a

severe retinal dystrophy in humans that presents in early childhood. In mouse

models, biallelic inactivation of the syntaxin 3 gene in photoreceptors rapidly

leads to their death. What is not known is whether a monoallelic syntaxin 3 loss-

of-function mutation might cause photoreceptor loss with advancing age. To

address this question, we compared the outer nuclear layer of older adult mice (≈

20 months of age) that were heterozygous for syntaxin 3 with those of similarly-

aged control mice. We found that the photoreceptor layer maintains its thickness

in mice that are heterozygous for syntaxin 3 relative to controls and that

photoreceptor somatic counts are comparable. In addition, dendritic sprouting

of the rod bipolar cell dendrites into the outer nuclear layer, which occurs

following the loss of functional rod targets, was similar between genotypes. Thus,

syntaxin 3 appears to be haplosufficient for photoreceptor survival, even with

advancing age.
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Introduction

Syntaxin 3 is a N-ethylmaleimide-sensitive factor attachment protein receptor

(SNARE) protein that catalyzes fusion between vesicles and their target membranes (1).

In the retina, syntaxin 3 is expressed exclusively by photoreceptors and bipolar cells (2–5),

where it is required for neurotransmitter release (4, 6, 7). Recently, biallelic loss-of-function

mutations in the human retinal-specific syntaxin 3 spliceform, syntaxin 3B (STX3B), have

been linked to an early-onset severe retinal dystrophy in young children (8). Furthermore,

biallelic postnatal inactivation of the syntaxin 3 gene (Stx3) in mouse photoreceptors has

shown to result in the rapid degeneration of photoreceptors and a dramatic thinning of the

outer nuclear layer (ONL) of the retina (8, 9). Thus, in addition to catalyzing the exocytic

release of neurotransmitter release that underlies chemical synaptic transmission at
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photoreceptor and bipolar cell synaptic terminals (4, 6, 7), Stx3 also

has an essential role that is necessary for photoreceptor survival.

A cellular hallmark of many inherited disorders of vision is the

progressive loss of photoreceptors with age. Given the rapidly

devastating consequences of biallelic STX3/stx3 loss-of-function in

both humans and mice, we wondered whether monoallelic Stx3

loss-of-function might lead to retinal degeneration later in life. As a

first step towards addressing this possibility, we examined the outer

nuclear layer of older adult mice that were heterozygous for Stx3

with those of age-matched controls. Analysis of outer nuclear layer

thickness, number of photoreceptor somata and sprouting of

bipolar cell dendrites into the outer nuclear layer (ONL) indicated

that inactivation of a single allele of Stx3 does not drive age-related

photoreceptor loss in the mouse retina.
Materials and methods

Animals

Animal procedures conformed to National Institutes of Health

guidelines and were approved by the Animal Welfare Committee of

the University of Texas Health Science Center at Houston. Male and

female mice globally heterozygous for Stx3 (e.g. Stx3+/- and Stx3f/-)

and control mice (e.g. Stx3wt, Stx3f/f, Stx3f/+) with a C57Bl6/J

background were obtained by the breeding of mouse lines that we

developed and characterized previously (8, 10). In contrast to the

embryonic lethality of global Stx3 inactivation in mice, mice that are

heterozygous for Stx3 are viable and fertile (10). Genotyping was

performed by PCR using DNA isolated from tail snips (10, 11) and

independently confirmed at least once. Founder lines were negative

for the retinal degeneration mutations Rd1 and Rd8 (8). Mice were

kept under standard housing conditions with unlimited access to

food and water and with a 12 h light/dark cycle and euthanized by

cervical dislocation followed by decapitation at 14-26 months of

age. The mean age and age range was comparable between groups

(control: 22 ± 1 months (range 14-26 months), n=15; Stx3 het: 20 ±

2 months (range 17-26 months), n=7; p = 0.6922).
Tissue preparation and immunolabeling

Following euthanasia, eyes were enucleated and lenses removed.

The eyes were fixed in 4% para-formaldehyde in 0.1M sodium

phosphate buffer (RT, 1h). After fixation, eyes were rinsed and

cryoprotected in 30% sucrose (PBS, overnight, 4°C), embedded in

OCT embedding medium (Tissue-Tek, Torrance, CA), fast-frozen,

and sectioned into 14-16 µm cryostat sections. Sections from the

central retina were collected on Superfrost Plus Gold microscope

slides (Fisherbrand, Pittsburgh, PA) and stored at − 20°C until use.

For immunolabeling, sections were thawed and incubated in

blocking solution (5% normal donkey serum and 0.3% Triton X-

100 in PBS) for 1 h, and primary antibodies were applied overnight

at room temperature. After washing, secondary antibodies were

applied for 2 h at room temperature. Sections were rinsed and

cover-slipped in ProLong Gold antifade mounting medium with
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DAPI (Invitrogen, Eugene, OR). The retinal distribution of Stx3B

was visualized with monoclonal antibody 12E5 raised against stx3

(MilliporeSigma, Burlington, MA, United States) (12), which we

characterized further in Campbell et al., 2020, Supplementary

Figure 1 (13). Rabbit monoclonal PKC alpha (ab32376, Abcam,

Cambridge, UK) was used to label rod bipolar cells and their

dendritic processes (14, 15). Secondary Cy3 conjugated donkey

anti-mouse IgG (MilliporeSigma, Burlington, MA, United States),

and Alexa Fluor 488 donkey anti-rabbit IgG (Jackson

ImmunoResearch, West Grove, PA) were used for visualization.

All antibodies were used at a 1:200 dilution.
Imaging and image analysis

Image acquisition and data analysis were conducted in similar

manner to that described previously (13). Rod spherules and cone

pedicles in retinal sections were identified by their characteristic

appearance and respective locations within the outer plexiform

layer (OPL) and by immunolabeling for Stx3 (2, 3, 13, 16). Images

(Z-stacks) were acquired on a Zeiss 800 confocal microscope (Carl

Zeiss Microscopy GmbH, Oberkochen, Germany). Analysis of

images was performed blinded to genotype. Measurement of

outer nuclear layer thickness and photoreceptor somata number

was performed in ImageJ (17). The thickness (mm) of the outer

nuclear layer (ONL) was measured in maximum intensity

projections using the Image J straight tool. Photoreceptor nuclei

were quantified in an 800 µm2 region of the ONL using the “grid”

function of Image J and counted using the “multi-point” tool.

Measurement of rod bipolar cell dendrite length was performed

in Fiji/ImageJ2 (17, 18). Dendritic lengths were calculated in

maximum intensity projections using the free hand line tool.

Dendrites were traced from the border between the outer

plexiform layer and outer nuclear layer to their terminal ends in

the outer nuclear layer. For each measure, 1-4 histological sections

were analyzed per mouse and results averaged together to produce a

single value per animal for each measure. Data were compiled in

Excel (Microsoft, Redmond, WA, United States), and statistical

analyses were performed in Prism 7 (GraphPad Software, Inc., San

Diego, CA, United States) using the Mann Whitney Test. Figure

images are displayed as maximum intensity projections. Results are

represented as mean ± SEM, where “n” represents the number

of mice.
Results

In this study, we asked whether having only a single functional

Stx3 allele might be a risk factor for age-related photoreceptor

death. To address this question, we examined and compared the

retinae of older adult mice that were heterozygous for Stx3 with

those of similarly-aged controls (control: 22 ± 1 months, n=15; Stx3

het: 20 ± 2 months, n=7; p = 0.6922). In the representative confocal

images shown in Figure 1A and in the compiled data from multiple

animals (Figure 1B), ONL thickness was not diminished in mice

that were heterozygous for Stx3 when compared to controls
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(control: 63 ± 2 µm, n=15; Stx3 het: 73 ± 3 µm, n=7; p = 0.0164).

Furthermore, there was no difference in the number of

photoreceptor somata per unit area between groups (Figures 1A,

C; control: 70.5 ± 2.9, n=15; Stx3 het: 73.2 ± 2.8, n=7; p = 0.6173).

Together, these results indicate that the outer nuclear layer (ONL)

in mice heterozygous for Stx3 is comparable to that of control

mice (Figure 1).

When rod photoreceptors die and/or their ribbon-style

synapses become non-functional, rod bipolar cells extend their

dendrites beyond the outer plexiform layer (OPL) and into the

ONL (19–23). We therefore measured and compared the length of

PKC-labeled rod bipolar cell dendrites as a proxy of rod

photoreceptor loss in older adult mice heterozygous for Stx3 and

in similarly-aged control mice. Results show that dendritic lengths

were virtually identical amongst the two groups, with each group

having a similar percentage of dendritic length distributions that

included the occasional longer ONL sprout (Figure 2). Taken

together, these results demonstrate that one functional Stx3 allele

is sufficient to maintain long-term photoreceptor viability.
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Discussion

Syntaxin 3 is the only plasma membrane syntaxin known to be

expressed by photoreceptors (2, 3, 24). In humans, biallelic loss-of-

function mutations in syntaxin 3A, a syntaxin 3 splice form

expressed widely throughout the body outside of the retina, gives

rise to a devastating gastrointestinal disorder that presents in

infancy (8, 25, 26). If the mutations are located in exons that are

conserved between syntaxin 3A and the retinal-specific syntaxin 3

spliceform, syntaxin 3B (5, 8), the children additionally exhibited an

early onset severe retinal dystrophy (8). In mice, the global

inactivation of Stx3 is embryonic lethal (10), while inactivation of

Stx3 selectively in photoreceptors produced a rapid loss of

photoreceptors and a dramatic reduction in ONL thickness (8, 9).

Thus, in addition to its role in synaptic transmission at retinal

ribbon-style synapses (4, 6, 7), syntaxin 3 is also required for

photoreceptor survival.

In this study, we examined the effects of deletion of a single Stx3

allele on the outer retina. We found no difference in the thickness of
B C

A

FIGURE 1

Outer nuclear layer (ONL) thickness and photoreceptor number are not reduced by Stx3 heterozygosity in the aged mouse retina. (A) A representative pair of
confocal images from an older adult mouse heterozygous for Stx3 and an older adult control mouse show that the ONL was preserved in the Stx3 het
mouse and comparable to that of the control. Stx3 (red), PKC (green), and DAPI (nuclear marker, blue). Scale bar 10µm. IS Inner segments, ONL outer
nuclear layer, OPL outer plexiform layer. (B) The average thickness of the ONL was similar between groups, although it was slightly larger in the Stx3 het
mice (p: 0.0164). (C) The number of nuclei in an 800 µm2 area of the ONL was not different between groups (p: 0.6173). For (B, C), Stx3 hets, n= 7 mice and
for controls, n=15 mice. * denotes p value <0.05 and ns denotes p value is not significant.
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the outer nuclear layer between older adult controls and older adult

mice that were heterozygous for Stx3. In addition, we did not

observe a decrease in the number of photoreceptor somata per unit

measure or an increase in the sprouting of rod bipolar cell dendrites.

The latter might be expected if rods had died or retracted their

spherules at a higher rate in older adult Stx3 heterozygous mice

relative to age-matched controls or if the Stx3 heterozygous rod to

rod bipolar cell synapses were non-functional (19, 21–23). We did

note that most of the rod bipolar cell dendrites in older adult Stx3

heterozygous mice appropriately contacted rod terminals,

suggesting that the primary reason for a lack of exuberant

dendritic sprouting is that the dendritic targets, the rod terminals,

demarcated by Stx3 immunolabeling, were still present and located

close to the OPL/ONL border.

One of the motivations for conducting this study was to predict

whether loss-of-function mutations in one STX3 allele might

increase the risk of photoreceptor loss in human subjects later in

life. Our results suggest that Stx3 is haplosufficient for

photoreceptor survival, even at older ages. However, the situation

could be very different if, rather than a loss-of-function mutation,

there were a monoallelic dominant negative mutation. Indeed,

SNAREopathies have been reported in which dominant

mutations in one gene negatively affect the functionality of the

wild-type transcript (27). Interestingly, of the identified human

STX3 mutations associated with visual impairment to-date, all have

been biallelic loss-of-function mutations (8). Thus, for these

patients, the introduction of a wild-type gene could be sufficient

to rescue the remaining photoreceptors and prevent further

photoreceptor loss.
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FIGURE 2

Rod bipolar cell dendritic length is not altered by Stx3 heterozygosity in the older adult mouse retina. (A) A representative pair of confocal images
through the outer plexiform layer (OPL) of an older adult heterozygous Stx3 mouse and an older adult control mouse were labeled with antibodies
against Stx3 (red) and PKC (green), show similar dendritic lengths. Scale bar 20 µm. OPL outer plexiform layer. (B) The amplitude distributions (by
percentage) of dendritic lengths of rod bipolar cells in older adult mice heterozygous for Stx3 and aged control mice were virtually identical and not
statistically different. Stx3 hets, n= 7 mice and for controls, n=15 mice.
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