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The endothelin receptor
antagonist macitentan
ameliorates endothelin-
mediated vasoconstriction
and promotes the survival of
retinal ganglion cells in rats
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Glaucoma is a chronic and progressive eye disease, commonly associated with

elevated intraocular pressure (IOP) and characterized by optic nerve

degeneration, cupping of the optic disc, and loss of retinal ganglion cells

(RGCs). The pathological changes in glaucoma are triggered by multiple

mechanisms and both mechanical effects and vascular factors are thought to

contribute to the etiology of glaucoma. Various studies have shown that

endothelin-1 (ET-1), a vasoactive peptide, acting through its G protein coupled

receptors, ETA and ETB, plays a pathophysiologic role in glaucoma. However, the

mechanisms by which ET-1 contribute to neurodegeneration remain to be

completely understood. Our laboratory and others demonstrated that

macitentan (MAC), a pan endothelin receptor antagonist, has neuroprotective

effects in rodent models of IOP elevation. The current study aimed to determine

if oral administration of a dual endothelin antagonist, macitentan, could promote

neuroprotection in an acute model of intravitreal administration of ET-1. We

demonstrate that vasoconstriction following the intravitreal administration of ET-

1 was attenuated by dietary administration of the ETA/ETB dual receptor

antagonist, macitentan (5 mg/kg body weight) in retired breeder Brown

Norway rats. ET-1 intravitreal injection produced a 40% loss of RGCs, which

was significantly lower in macitentan-treated rats. We also evaluated the

expression levels of glial fibrillary acidic protein (GFAP) at 24 h and 7 days post
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intravitreal administration of ET-1 in Brown Norway rats as well as following ET-1

treatment in cultured human optic nerve head astrocytes. We observed that at

the 24 h time point the expression levels of GFAP was upregulated (indicative of

glial activation) following intravitreal ET-1 administration in both retina and optic

nerve head regions. However, following macitentan administration for 7 days

after intravitreal ET-1 administration, we observed an upregulation of GFAP

expression, compared to untreated rats injected intravitreally with ET-1 alone.

Macitentan treatment in ET-1 administered rats showed protection of RGC

somas but was not able to preserve axonal integrity and functionality. The

endothelin receptor antagonist, macitentan, has neuroprotective effects in the

retinas of Brown Norway rats acting through different mechanisms, including

enhancement of RGC survival and reduction of ET-1 mediated vasoconstriction.
KEYWORDS

glaucoma, endothelins, vasoconstriction, macitentan, neuroprotection
1 Introduction

Endothelins are a family of potent 21-amino-acid vasoactive

peptides which play important roles in normal physiology by

maintaining vascular tone in various organ systems (1, 2)

Figure 1A. In humans, there are three isoforms of endothelins

encoded by separate genes: endothelin-1 (ET-1), endothelin-2 (ET-

2), and endothelin-3 (ET-3), which binds to G-protein coupled

receptors, ETA and ETB, to produce diverse effects in multiple cell

types (3). Several studies have shown that endothelins contribute to

the pathophysiology of glaucoma (4–7). ET-1 levels are elevated in

the aqueous humor of primary open-angle glaucoma (POAG)

patients (8, 9) and also in animal models of glaucoma (5, 6, 10).

In particular, endothelin B (ETB) receptors have been shown to play

a key role in neurodegeneration in animal models of glaucoma (6,

11, 12), Figure 1B. Our laboratory also demonstrated the

upregulation of the ETA receptor in a rat model of ocular

hypertension (13). While the role of the ETA receptor in

neurodegeneration is not completely understood, studies have

shown that blocking both endothelin receptors (ETA and ETB)

provides neuroprotection in an inheritable mouse model of

glaucoma (14).

Apart from intraocular pressure (IOP) elevation, vascular

dysregulation is also thought to contribute to the glaucoma

pathophysiology (15–17). ET−1 promotes vasoconstriction by its

actions on both endothelin receptors ETA and ETB. Hence, one

potential mechanism responsible for ET-1’s actions could involve a

vascular component, manifested as decreased blood flow to the

retina and optic nerve head. In our recent study using a chronic

model of IOP elevation, we demonstrated that oral administration

of the dual endothelin receptor antagonist, macitentan (5 mg/kg
Cell; ETA, Endothelin A

roretinography.

02
body weight), had neuroprotective effects on RGCs and their axons

(18). In glaucoma, there are IOP-dependent as well as IOP-

independent factors that contribute to the neurodegeneration of

RGCs and their axons (19–22). Although there are models of acute

angle closure glaucoma to study the mechanisms of ischemia-

reperfusion injury at the optic nerve head and retina, studying the

vascular changes mediated by ET-1 will provide additional insight

into vascular mechanisms contributing to neurodegeneration in

glaucoma. Since ET-1 is known to be a potent vasoconstrictor, we

wanted to determine if a dual endothelin antagonist macitentan

could attenuate retinal vasoconstriction and promote RGC

neuroprotection following an intravitreal administration of an

acute dose of ET-1 (2 nmole/eye).

Neuroinflammation is one of the contr ibutors to

neurodegeneration in glaucoma, which is initiated through the

activation of various glial cells, including astrocytes and microglia

in the retina and optic nerve head. Endothelins have been shown to

promote astrocyte proliferation and reactive gliosis, which could

result in glial scarring and axon loss (23–25). Depending upon the

glaucomatous insult and its duration, glial activation may promote

either neuroprotective or neurodegenerative effects in various

models of glaucoma (26). We also studied the effect of dietary

administration of the endothelin receptor antagonist macitentan on

the expression of some genes indicative of neuroinflammation by

assessing their expression levels in the retina.
2 Methods

2.1 Animals

Animal studies were performed in accordance with the

Association for Research in Vision and Ophthalmology (ARVO)

resolution for the Use of Animals in Ophthalmic and Vision

Research and approved by the University of North Texas Health
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Science Center (UNTHSC) Institutional Animal Care and Use

Committee (IACUC). Retired breeder male and female Brown

Norway rats (8- to 11-months-old) were obtained from Charles

River (Wilmington, MA).
2.2 Macitentan treatment

Macitentan was a kind gift from Actelion Pharmaceuticals US,

Inc. (CA, USA). Macitentan treatment (5 mg/kg body weight/day)

was initiated three days prior to the intravitreal injections of ET-1 or

vehicle and was continued for an additional 7 days post-intravitreal

injection (for a total of 10 days) (Figure 1C). To ensure even

consumption, macitentan was administered orally by mixing the

drug into DietGel® Recovery (Clear H20, Westbrook, ME).

Untreated rats were fed with DietGel® alone. Rats were

monitored to ensure complete consumption of the medication.
2.3 Intravitreal injections of ET-1 or vehicle

Endothelin-1 (Bachem, Torrance, CA, USA) was dissolved

either in 0.25% acetic acid ((adjusted to pH 7.0 with sodium

hydroxide) or in water to a final concentration of 500 µM.

Intravitreal injections were performed using a Hamilton syringe

with a 32-gauge needle. The rats were either anesthetized by

intraperitoneally injecting an anesthetic cocktail of ketamine (55

mg/kg)/xylazine (5.5 mg/kg)/acepromazine (1.1 mg/kg) or by using

isoflurane. A single drop of 0.5% proparacaine hydrochloride

(Alcon Laboratories, Inc., Fort Worth, TX, USA) and 1%

tropicamide were applied to both eyes. Intravitreal injection of 4

µl of 500 µM ET-1 (2 nmole) or 4 µl or vehicle was carried out in

one eye of Brown Norway rats (with continuous observation of the

needle in the center of the vitreous cavity to avoid lens injury). The

injections were performed through the sclera, approximately 1 mm
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behind the limbus, and solutions were slowly (~30 s) injected into

the vitreous chamber of the eye. To prevent the injected solution

from escaping the eye, the needle tip was held on the injected site in

the eye for 30 seconds and then gradually withdrawn. A triple

antibiotic (neomycin/polymyxin B/bacitracin) was topically applied

at the site of injection to prevent infections and allow healing

to occur.
2.4 IOP measurements

To assess the changes in intraocular pressure (IOP) following

intravitreal administration of either ET-1 or vehicle, IOP

measurements were carried out on conscious rats using a

TonoLab tonometer (iCare, Finland). Rats were handheld gently,

but firmly, while IOP measurements were performed at various

time points (0 min, 30 min, 2 h, 4 h, 24 h, and 7 days). For each eye,

ten IOP readings were recorded and averaged to yield each IOP

value, and the IOP exposure was computed in mmHg-days.
2.5 Fundus photography and fundus
fluorescein angiography

In another set of experiments, Brown Norway rats were

anesthetized with a cocktail of ketamine (55 mg/kg)/xylazine (5.5

mg/kg)/acepromazine (1.1 mg/kg), and pupils were dilated using

eye drops comprising of a mixture of 0.5% tropicamide and 0.5%

phenylephrine hydrochloride. The cornea surface was anesthetized

with 0.5% proparacaine hydrochloride and was kept moist with

GenTeal Tears lubricant eye gel (Alcon Laboratories Inc., Fort

Worth, TX). AK-FLUO (10% sodium fluorescein, Akorn Inc.,

Lake Forest, IL) was injected intraperitoneally at 1.5 µl/g of body

weight. ET-1 was intravitreally injected 3 minutes following

administration of fluorescein, and imaging of the retina was
A B

C

FIGURE 1

Hypothetical mechanisms of action of endothelin 1 (ET-1). (A) Vascular effects of ET-1. (B) Effects of ET-1 on the retinal ganglion cells.
(C) Experimental scheme.
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carried out. Micron IV retinal imaging microscope (Phoenix

Research Laboratories, Pleasanton, California) was used to

capture the fundus and fluorescein angiography images. Serial

images were captured at different time points, including 5, 10, 15,

20, 25- and 30 minutes following ET-1 injection. The body

temperature was maintained at 37°C using a heating pad.

Following recovery from anesthesia, animals were provided food

and water ad libitum.
2.6 Vessel diameter analysis

The rats were either untreated or treated with macitentan and

imaged in the Micron IV retinal imaging microscope both prior to

ET-1 injection (0 min time point) as well as 10 minutes following

the ET-1 injection (10 min time point). Photographs were imported

to FIJI software and analyzed through the Vessel Analysis plugin.

The boundary of the analyzed region was set using the instrument

parameters and the diameter measurement option was chosen. The

diameters of the analyzed picture were set as 3.2 mm (800 pixels).

Each detectable vein was then manually marked. The Vessel

Analysis software allowed for a selection of the area to be drawn

around the portion of the vein closer to the optic nerve, which was

considered E1 (approximately one-third of the distance between the

optic nerve head and periphery of the retina), and the portion of the

vein farther away from the optic nerve, which was considered E2

(approximately two-thirds of the distance between the optic nerve

head and periphery of the retina). This process was repeated in the

same manner for all of the images of the experimental eyes.
2.7 Vessel density analysis

The vascular length density and the vascular density were

measured using the FIJI Vessel Analysis plugin and an area of the

image was selected to focus on the veins without incorporating the

blank areas. The region of interest tool was used and a circle with

the dimensions of 400×400 pixels was used on all of the images

generated from the rat eyes. The vascular length and vascular

density were then given and recorded for the veins in the image

and calculated as a percentage of the area.
2.8 Pattern electroretinography

Rats were anesthetized by intraperitoneal injection (100 mL/100
g body wt) of a ketamine (VEDCO)/xylazine (VEDCO)/

acepromazine (Lloyd Laboratories) cocktail with final

concentrations of 55.6 mg/mL/5.6 mg/mL/11.1 mg/mL,

respectively. Pattern ERG analysis was carried out using the

Jörvec instrument (Intelligent Hearing Systems, Miami, FL) (18).

Briefly, rats were placed onto a heated platform adapted for rats,

which allowed unobstructed views of the visual stimulus monitors.

Rats were maintained at 37°C for the duration of the procedure.

Reference and ground electrodes were placed subcutaneously in the

scalp and base of the tail, respectively. GenTeal eye lubricant/
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artificial tears (Alcon labs) were applied to both eyes to prevent

drying and corneal electrodes were positioned at the lower fornix in

contact with the eye globe. LED monitors were used to display

contrast-reversing horizontal bars at a spatial frequency of 0.095

cycles/degree and a luminance of 500cd/m2. Pattern ERG

waveforms for each run consisted of 372 sweeps which were then

averaged, processed, and analyzed further to determine PERG

amplitude and latency using the PERG software (Jorvec).
2.9 Retinal flat mount immunostaining

Following the treatments, animals were euthanized and their

eyes were enucleated. The eye cups were fixed overnight at 4°C in

4% paraformaldehyde (PFA) and retinal flat mounts were prepared.

To prevent non-specific binding with the secondary antibody,

blocking was carried out overnight at 4°C using 5% normal

donkey serum and 5% BSA in PBS. Retinal flat mounts were

incubated in primary antibody solution, goat anti-Brn3a (1:200;

Santa Cruz) for 72 hours at 4°C. Subsequently, secondary antibody

incubation was carried out using a 1:1000 dilution of Alexa 647

conjugated donkey anti-goat antibody (Life Technologies, Carlsbad,

CA) overnight at 4°C. The retinal flat mounts were mounted on

slides using Prolong Gold anti-fade (Life Technologies). All images

were taken with 4x magnification in a Cytation 5 cell imaging

multimode reader microscope (BioTek, Winooski, VT).
2.10 Semi-automatic retinal ganglion
cell counting

The fluorescence images of immunostained retinal flat mounts

were uploaded to ImageJ, a free photo editor designed for biology

research (Rasband, 1997-2018). The images were then converted to

8-bit greyscale to reduce background noise and processed with the

automatic nuclei counter plugin “ICTN,” which automatically

counts high contrast points within the image. To maintain

consistency in cell counts, the ICTN settings were set to detect

cells of a specific width, distance apart, and contrast threshold (8, 6,

and 1.5, respectively). The cells not detected by the ICTN program

were then counted manually by a masked observer and summed as

total RGC counts.
2.11 Assessment of axonal integrity in optic
nerve sections

Axonal degeneration was examined using paraphenylenediamine

(PPD) staining, which stains the myelin around the axons. Briefly,

following various treatments, rats were humanely euthanized by

intraperitoneal administration of Fatal-Plus (pentobarbital: 120 mg/

kg body weight), and their eyes were enucleated, after which the optic

nerves were excised posterior to the globe. The optic nerves were then

immediately fixed in 2% paraformaldehyde, 2.5% glutaraldehyde in 0.1

M sodium cacodylate buffer and processed further. Optic nerve cross-

sections were obtained using an ultramicrotome and stained with 1%
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PPD. Images of PPD stained sections were taken in a Zeiss LSM 510

META confocal microscope using an oil immersion magnification ×

100. Images were taken at a few points in the center, as well as the

peripheral region of each quadrant of every optic nerve section. The

analysis was performed using Image J software for the axon counts

(18). The axon counts were compared between the different treatment

groups to assess neurodegenerative/neuroprotective effects.
2.12 Immunohistochemistry

After various treatments, animals were humanely euthanized by

intraperitoneal administration of Fatal-Plus (pentobarbital: 120 mg/

kg body weight), following which their eyes were enucleated and

immediately fixed in 4% paraformaldehyde (PFA) by making a

small incision at the limbal region and placed on a shaker at room

temperature for 30 minutes. After the incubation, the posterior part

of the globe was completely separated from the anterior segment

and lens. Incubation in 4% PFA was continued at room temperature

on a shaker for about 3 hours. The fixed retinas were subsequently

washed, immersed overnight in 70% ethanol, and thereafter

embedded in paraffin and sectioned. Sagittal retinal sections

through the optic nerve head were obtained, deparaffinized using

xylene, and rehydrated with a graded descending series of ethanol

concentrations (100%, 95%, 90%, 80%, and 50% ethanol) and finally

with PBS. Permeabilization with 0.1% sodium citrate and 0.1%

Triton X-100 was carried out for eight minutes to facilitate the

subsequent entry of antibodies. To prevent nonspecific binding of

the secondary antibody, the sections were incubated with blocking

buffer (5% normal donkey serum and 5% BSA in PBS) for

approximately two to three hours. After blocking, the sections

were incubated with the respective primary antibodies overnight

at 4°C. The primary antibody used for the experiment was GFAP –

Chicken (1:500, Abcam – ab4674). After primary antibody

incubation, the sections were washed three times with PBS and

incubated with appropriate secondary antibodies for one to two

hours at room temperature. The secondary antibody used in the

experiment was donkey anti-chicken Alexa 647 (1:1000 dilution,

A10036; Life Technologies, Carlsbad, CA, USA. To assess the

nonspecific binding of secondary antibodies, “blank” sections (in

which the primary antibody incubation was omitted) were used

after incubation only with the secondary antibody. Retinal sections

were mounted with Prolong Gold anti-fade (Life Technologies).

Images were taken in the Cytation 5 microscope (BioTek, Winooski,

VT) and analyzed using Image J.
2.13 Primary optic nerve head astrocytes

Rat primary optic nerve head astrocytes were isolated from

adult 8 to 10-week-old female Sprague-Dawley rats and cultured

using an astrocyte-selective medium, AM-a medium (ScienCell

Research Laboratories, Inc., CA, USA, Catalog #1801) with 2%

FBS (27). When cells reached 80% confluence, the culture medium

was changed to serum-free astrocyte medium. Pretreatment of the

cells was carried out by treatment with 1 mM macitentan or 0.1%
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DMSO (vehicle) for 30 min. After the pretreatment, the cells were

treated with ET-1 at a final concentration of 100 nM for 24 hours.

At the end of the treatment, the cells were harvested using the

TRIZOL reagent and the total cellular RNA was extracted following

the manufacturer’s instruction. The quantity and quality of total

RNA were monitored by Nanodrop 2000 (Fisher Scientific). cDNA

was synthesized using BioRad iScript Reverse Transcription

Supermix (#1708840), and qPCR was performed to detect the

expression of GFAP and fibronectin using BioRad SsoAdvance

Universal SYBR Green Supermix (#1725271). Expression of the

housekeeping gene cyclophilin served as an internal control. The

following primers were used for the qPCR analyses:

Rat GFAP (Sense): 5’-AAATTGCTGGAGGGCGAAGA

Rat GFAP (Anti-sense): 5’-CCGCATCTCCACCGTCTTTA

Rat Fibronectin (Sense): 5’-AAACCGGGAAGAGCAAGAGG

Rat Fibronectin (Anti-sense): 5’-CCTAGGTAGGTCCGTTCCCA

Rat Cyclophilin A (Sense): 5’- CGGAGAGAAATTTGAGGATGA

RatCyclophilinA (Anti-sense): 5’-CATCCAGCCACTCAGTCTTG
2.14 Statistical analysis

GraphPad prism (GraphPad Software, La Jolla, CA) was used for

statistical analyses. The data were expressed as the mean ± standard

error (SEM) of three or more independent experiments. Statistical

significance for most experiments was evaluated by Two-way ANOVA

followed by Tukey’s multiple comparisons test. To determine statistical

significance of vessel diameter unpaired t-test at p ≤ 0.02 was used.
3 Results

3.1 Vasoconstrictive effects of intravitreally
injected ET-1 are reduced in rats treated
with macitentan in the diet

ET-1 could act through vascular mechanisms by its ability to

promote vasoconstriction and/or through its direct actions on

RGCs to produce cell death (Figures 1A, B). Figure 1C depicts the

experimental scheme that was employed for the current study. To

test the ability of the dual ETA/ETB antagonist macitentan on ET-1

mediated vascular changes in the eye, we treated male and female

Brown Norway rats with either the dietary gel alone or dietary gel

containing macitentan (5 mg/kg), starting 3 days prior to the ET-1

intravitreal injection. On the day of the experiment (day “0”), the

rats were intraperitoneally injected with sodium fluorescein to

visualize retinal vasculature. Three minutes following the

intraperitoneal injection of sodium fluorescein, rats were

intravitreally injected either with the 4 µl of vehicle or with 4 µl

of 500 µM ET-1. Images were captured at various time points,

including 0, 5, 10, 15, 20, 25, and 30 min following the intravitreal

injections. We observed profound vasoconstriction (particularly in

the retinal arteries) in ET-1 injected untreated eyes (Figure 2A),

which was reflected by a significant decrease in vessel diameter and

vascular density, particularly at 10 minutes following ET-1

administration (Figures 2B-D).
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3.2 Effect on vascular density

A detailed analysis was performed on the vasoconstrictive effects at

the 10 min time point following ET-1 administration. The mean

vascular density at the zero time point for various treatments was as

follows. Vehicle-injected rats: 43.9 ± 0.95, untreated ET-1 injected rats:

38.7 ± 1, andmacitentan-treated ET-1 injected rats: 43.9 ± 0.8. Between

these groups, we did not find any statistical difference at the zero-time

point. After 10 minutes following intravitreal administration, the

vascular densities for vehicle-treated rats were 40.7 ± 0.76, untreated

ET-1 administered rats were 25.4 ± 1, and macitentan-treated ET-1

administered rats were 37.7 ± 2.8. A statistically significant difference (p

< 0.05) was observed in ET-1 treated rats at the 10 min time interval

when compared to vehicle and macitentan treated ET-1 administered

rats at the baseline (0 min time point) (Figures 2B-D).
3.3 Effect on retinal vessel diameter

The vasoconstrictive effects were analyzed at two eccentricities

(E1- central region near the optic nerve head in the retina and E2-

peripheral region of the retina) by assessing the changes in vessel

diameter. At the E1 eccentricity, we found statistically significant

changes in the retinal vessel diameter between ET-1 injected

untreated and ET-1 injected macitentan treated groups at the 10-

minute time interval using unpaired t-test (p ≤ 0.02). At the E2

eccentricity, we observed a statistically significant decrease in the

vessel diameter in ET-1 untreated animals at the 10 min time

interval (0.029 mm ± 0.003) when compared to vehicle injected

(p=0.007) and macitentan-treated ET-1 administered (p=0.02)

animals at zero time point using Two-way ANOVA (Figure 3).
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Overall, based on these observations, rats treated with the ETA/

ETB antagonist macitentan exhibited significantly lesser

vasoconstriction, which was reflected in higher vessel diameter and

vascular density, compared to the untreated rats injected with ET-1.

The significant constriction was evident as early as 5 min following

ET-1 injection and lasted up to 30 minutes. On the other hand,

vasoconstriction was delayed (particularly evident at the site of

injection), and appreciably lesser vasoconstriction was observed at

10 min in rats administered macitentan in dietary gels compared to

that in untreated rats. These findings suggest that blocking both

endothelin receptors partially prevents vasoconstriction or

appreciably delays its onset. Rats injected with ET-1 and fed with

dietary gel alone showed no sign of recovery from vasoconstriction

up to 30 min (Supplementary Figure S1). There were no changes in

vasoconstriction in rats injected with the vehicle at any of the tested

time points (for both groups: dietary gel or macitentan administered).
3.4 Effect on IOP following intravitreal
administration of ET-1

IOP’s were measured at different time points prior to and post-

intravitreal administration of either vehicle or ET-1. In animals

following the ET-1 administration (in both untreated as well as

macitentan-treated), we observed a significant transient increase in

the IOP at the 2 h time point when compared with vehicle-

administered animals. The IOPs in the ET-1 injected eyes showed

a declining trend at 4 h and the trend continued till the 24 h time

point. After 7 days post-treatment, the IOP’s returned to their

baseline (Figure 4).
D

A B

C

FIGURE 2

Retinal vasculature fluorescein angiography and vascular density analysis in Brown Norway rats. Rats were either treated or untreated with macitentan
(endothelin receptor antagonist) for three days before intravitreal injection of ET-1. (A) The retinal vasculature was imaged with the Micron IV microscope
prior to ET-1 injection (baseline) and subsequently at 5, 10 and 15 minutes. Arrowheads indicate the blood vessels which had the most prominent
vasoconstriction (B) The retinal vasculature imaged with the Micron IV microscope prior to ET-1 injection and subsequently at 10 minutes. The processed
images are the representative images for the Micron IV. Black color represents blood vessels, imaged prior to and post injection with ET-1 in rats that were
either treated or untreated with macitentan.The field of view is equal to 3.6 mm (C, D) The vascular density and vascular density length were then measured
using FIJI Vessel Analysis plugin and presented as percent of total area Mean ± SEM, n= 3-5 rats per treatment, where (*) = p ≤ 0.05, (**) = p ≤ 0.005, (***) =
p ≤ 0.0005 and (****) = p < 0.0001 using two-way ANOVA (Tukey’s multiple comparisons test).
frontiersin.org

https://doi.org/10.3389/fopht.2023.1185755
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org


Kodati et al. 10.3389/fopht.2023.1185755
3.5 ET-1 intravitreal injection produced
RGC loss which was significantly
attenuated in macitentan-treated rats

To determine if ET-1 treatment promoted RGC loss and assess

the effect of macitentan treatment on RGC survival, macitentan

treatment was continued for one week following ET-1 or vehicle

injection to one eye of the rats. Following the treatments, rats were

euthanized and retinal flat mounts were prepared as described in

Figure 1C. Labeling of retinal ganglion cells was performed on

retinal flat mounts as described previously with minor

modifications using an antibody to the RGC marker Brn3a, which

labels surviving RGCs (28) (Figure 5A). As seen in Figure 5A, RGCs

have good morphology and are brightly stained using the Brn3a

antibody. In contrast, retinas treated with ET-1 show a prominent

decrease in Brn3a immunostaining, indicative of both a decrease in

Brn3a expression and RGC loss. Dietary macitentan treatment

significantly protected against ET-1 mediated RGC loss in rats.

Figure 5B illustrates the average number of RGCs per retina.

Vehicle-injected and untreated have RGC counts of 4076 ± 446

and vehicle-injected macitentan treated has RGC counts of 3886 ±

410 cells per mm2. ET-1 injection significantly reduced the number

of RGCs by 40% (2454 ± 326) and macitentan treatment

significantly (p<0.05) and almost completely reduced the cell loss

to 4% (3928 ± 356) compared to vehicle-injected and untreated.
3.6 Assessment of RGC functionality
following intravitreal injections

In a previous study involving the chronic model of ocular

hypertension (Morrison model), we observed a significant increase

in RGC survival and an improvement in RGC functionality when the

rats were treated with macitentan (5 mg/kg) in the diet. To determine
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if macitentan will have similar neuroprotective effects following acute

ET-1 administration in the eye, we assessed RGC function by

performing PERG following intravitreal injection of either ET-1 or

its vehicle in rats that were either untreated or treated with

macitentan. PERG recordings were taken before the start of the

experiment and post-treatment for 7 days.

After the intravitreal injection of the vehicle, in rats that were

either treated or untreated with macitentan (5 mg/kg body wt/day),

we observed a modest decline (not significant) in the PERG

amplitude of the vehicle groups: vehicle and gel treated (at zero-

day/baseline: 9.14 ± 2.6 mV and at 7 days post-injection: 7 ± 3.7 mV);
vehicle and macitentan treated (at zero-day/baseline: 8.2 ± 2.3 mV
and at 7 days post-injection: 7.4 ± 3.5 mV). The ET-1 administered

animals showed a significant decline in the amplitude at 7 days

compared to day 0, which was not protected by the macitentan

treatment: ET-1 and gel treated (at zero-day/baseline 7.9 ± 2.2 mV
and at 7 days post-injection 3.3 ± 1.8 mV: p=0.015); ET-1 and

macitentan treated (at zero-day/baseline 8 ± 2.6 mV and at 7 days

post-injection 2.8 ± 1.7 mV: p=0.002). No significant difference was

found in the recorded latency times between untreated and

macitentan-treated following the intravitreal injections with either

vehicle or ET-1 (Figure 6).
3.7 Effect of macitentan on axonal integrity
following intravitreal administration

We also assessed the integrity of optic nerve axons in animals

treated with or without macitentan following intravitreal

administration of either vehicle or ET-1. Seven days post-

treatments, rats were euthanized and optic nerve sections stained

with PPD were analyzed by confocal microscopy (Figure 7). When

compared with vehicle and untreated animals, ET-1 administered

animals showed significant disruption of the optic nerve axonal
A B C

FIGURE 3

Retinal vessel diameter analysis in Brown Norway rats. Rats were either treated or untreated with macitentan for three days before intravitreal
injection of ET-1. (A) The vessel diameter was then measured using FIJI Vessel Analysis plugin at two distances from the optic nerve head at
eccentricity 1 (E1, B) and eccentricity 2 (E2, C) and presented as Mean of mm ± SEM. n= 3-4 rats per treatment where (#) = p<0.05, (ns) = no
statistical difference for the unpaired t-test. Where (*) = p ≤ 0.05 and (**) = p ≤ 0.005 comparisons using two-way ANOVA (Tukey’s multiple
comparisons test).
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bundles, intense staining of myelin, and glial scar formation. Based on

the axon counts, there was a significant decline in axon counts

following intravitreal administration of ET-1, compared to those in

vehicle-injected rats (p=0.002). Animals treated with macitentan did

not show any protective effect, nor any trend toward the maintenance

of axonal integrity when compared between the vehicle and ET-1

administered animals (p=0.003). These findings indicate that in an

acute model of ET-1 administration, macitentan could have

protective effects on the RGC somas but not on their axons.
3.8 ET-1 treatment produced an
upregulation of GFAP in rat retinas as well
as primary cultures of optic nerve
head astrocytes

Astrocytes play a pivotal role in maintaining the structural

integrity and ion balance in the cellular environment of retinal
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neurons, however, following neuronal injury, astrocyte activation,

and astrogliosis exacerbate neurodegeneration. To determine if ET-

1 could produce activation of astrocytes (since they are in the

vicinity of RGCs), we tested retina sections from Brown Norway

rats, 24 hours post-intravitreal injection of 2 nmole of ET-1. As seen

in Figure 8A, increased immunostaining for GFAP (indicative of

astrocyte activation) was observed in the nerve fiber layer as well as

in the optic nerve head of the rats injected with ET-1, compared to

vehicle-injected rats.

Similar to findings in the in vivo experiments, cultured

primary optic nerve head astrocytes treated with ET-1 (100 nM,

24 hours) showed a similar 3-fold increase in mRNA levels of

GFAP, as determined by a q-PCR analysis. Treatment with the

ETA/ETB dual antagonist, macitentan, completely blocked the ET-

1 mediated increase in GFAP mRNA expression. In addition, we

also observed a 2-fold increase in mRNA expression offibronectin,

which was prevented by treatment with macitentan. Taken

together, ET-1 acting through its receptors has the ability to
A B

FIGURE 4

IOP profiles of Brown Norway rats subjected to intravitreal injection either untreated or treated with macitentan. (A) IOP measurements in each
group are represented by a separate color (Vehicle injected Untreated [black], vehicle injected-macitentan treated [pink], and ET-1 injected untreated
[purple], ET-1 injected Macitentan treated [green]). (B) IOP values were significantly higher at 2h time points in ET-1 injected animals compared to
the vehicle injected animals. The decrease in IOP was observed in ET-1 injected rats at 4 h, 24 h and 7-day time points. Values at each time point
represent mean IOP ± SEM; n=3-7 for treatment groups, where (*) = p ≤ 0.05, (***) = p ≤ 0.0005 and (****) = p < 0.0001 using two-way ANOVA
(Tukey’s multiple comparisons test).
A B

FIGURE 5

Treatment with macitentan significantly reduces ET-1 mediated RGC loss in Brown Norway rats (A) Brown Norway rats were untreated or treated
with macitentan (Mac) for 3 days following which they were intravitreally injected with ET-1 or vehicle. Macitentan (or control gel) treatments were
continued for additional 7 days. Rats were then sacrificed and retinal flat mounts were isolated. The panel shows representative images of retinal flat
mounts immunostained with an antibody to the RGC marker Brn3a. Scale bar represents 1000 µm (B) A plot illustrating average number of Brn3a-
positive RGCs per field of view (4-8 images per each retina were acquired, n=4-7 rats per group). Scale bar: 1000 mm. Bars represent mean ± SEM. *
p<0.05, using two-way ANOVA multiple comparison procedures (Tukey’s Method).
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promote the activation of astrocytes resulting in a pro-fibrotic

phenotype, which could have damaging effects on RGCs and their

axons (Figure 8B).
3.9 Effect of macitentan on
neuroinflammation following intravitreal
administration of ET-1

In order to determine the effect of macitentan on astrocytic

activation in the retina, we carried out the immunohistochemistry
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using the GFAP on retinal sections obtained from the experiment

described in Figure 1C. Following intravitreal injection of the

vehicle and seven days post-treatment with macitentan, we did

not observe any difference in the GFAP expression levels when

compared between untreated and macitentan treatment after

vehicle administration. Similarly, there was no significant

difference between untreated ET-1 injected and vehicle-injected

(both untreated and macitentan-treated) animals. However, we

found a statistically significant difference in expression levels of

GFAP with macitentan treated and ET-1 administered animals

when compared with all other treatment groups (Figures 8C, D).
A B

FIGURE 6

Assessment of retinal ganglion cell (RGC) function in Brown Norway rats following intravitreal injection either with vehicle or ET-1. Pattern
electroretinography (ERG) measurements in Vehicle untreated, Vehicle macitentan, ET-1 untreated and ET-1 macitentan-treated retired breeder
Brown Norway rats were recorded at prior (Baseline) and post treatment (7 days after intravitreal injection) conditions. (A) A significant loss of pattern
ERG (PERG) amplitude was observed in animals injected with the ET-1 either treated with gel or macitentan after post treatment compared to their
baseline. Comparison between various groups post treatment were only indicated as shown in the analysis (B) No difference in the PERG latency
between all treatment groups. (*) = p ≤ 0.05, (**) = p ≤ 0.005, (***) = p ≤ 0.0005 and (****) = p < 0.0001 indicates statistical significance using two-
way ANOVA (Tukey’s multiple comparisons test), n=7-8 animals per treatment group. Bars represent mean ± SEM.
A B

FIGURE 7

Integrity of optic nerve axons following intravitreal injection either with vehicle and ET-1 and with or without macitentan treatment. Following treatment,
rats were euthanized, and optic nerve sections obtained were subjected to PPD staining to assess optic nerve degeneration. Axonal degeneration
accompanied by gliosis and glial scar were observed in ET-1 injected untreated rats compared to vehicle injected rat eyes. (A) ET-1 injected macitentan-
treated rats did not show any protection of their axons, compared to those of ET-1 injected untreated rats. (B) The mean counts of healthy axons were
significantly reduced in ET-1 injected animals compared to vehicle injected animals. Bars represent mean ± SEM. (**p<0.005, ***p<0.0005) (Two-way
ANOVA followed by Tukey’s multiple comparisons test). Scale bar: 20 mm. n=5-7 per treatment group. ns, not significant.
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4 Discussion

Members of the endothelin family of vasoactive peptides

(including ET-1, ET-2, and ET-3) have been shown to be key

players promoting neurodegeneration in glaucoma (4, 29–31).

Endothelins could act through both vascular (through its

vasoconstrictive effects) and cellular mechanisms (by promoting

apoptotic changes in RGCs) to promote degeneration in glaucoma.

Vascular mechanisms are difficult to assess in glaucoma patients

due to the inter-individual variations in vascular architecture and

perfusion of the optic nerve head. Polak et al. (2003) found a

decrease in blood flow both in the optic nerve head as well as the

choroidal circulation in healthy human subjects following

intravenous administration of ET-1, which was blocked by co-

administration of an ETA receptor antagonist (32). Several previous

studies have shown that continuous perfusion of ET-1 at the

optic nerve head could produce a decline in optic nerve head

blood in rats, rabbits, and monkeys (7, 33, 34). However, most of

these studies did not assess cellular loss of RGCs and additionally

did not test the effect of the administration of an endothelin

receptor antagonist.

Intravitreal administration of ET-1 into rat eyes could promote

loss of RGCs acting through endothelin receptors (11, 23). Using

ETB-receptor deficient rats, a causative role of the ETB receptor in

ET-1mediated loss of RGCs was demonstrated. However, the ability

of an endothelin receptor antagonist to protect RGCs was not

demonstrated in rats. A recent publication by Marola et al. (2022)

reported similar findings of ET-1 mediated vasoconstriction leading

to RGC loss (mediated by vascular ETA receptors). However, the

authors did not find a direct effect of ET-1 on the viability of RGCs

(35). Kiel (2000) found that administration of ET-1 in rabbits
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decreased choroidal blood flow which was blocked by the non-

selective antagonist A-182086, while the ETA antagonist (FR-

139317) enhanced the dilation and blocked the constriction (36).

These findings raised the possibility of using endothelin receptor

antagonists as a neuroprotective agent in glaucoma.

ET-1 has a relatively short half-life (<5 min) in the circulation

(37). Hence, the plasma levels of ET-1 may not be reflective of its

actual peak concentrations both in the circulation as well as in the

aqueous humor. Nevertheless, many publications have demonstrated

an increase in ET-1 concentrations in the aqueous humor as well as

plasma of glaucoma patients, compared to age-matched control

subjects. In our in vivo studies, the ET-1 concentrations we used

was based on the work done by Stokely et al. (2002) who found a

significant decline in fast axonal transport associated with

mitochondrial subcomponents following intravitreal administration

of 2 mole ET-1 and Lau et al. (2006) who found a significant loss of

RGCs following intravitreal administration of 2.5 nmole of ET-1 (38,

39). For studies using mice optic nerve head astrocytes, we had to use

100 nM ET-1. Most studies in culture are unable to detect ET-1

mediated cellular effects at concentrations below 10 to 100 nM ET-1,

hence we used a concentration of 100 nM ET-1 in cell culture studies

using primary human optic nerve head astrocytes.

Chauhan and colleagues perfused ET-1 through osmotic mini-

pumps at the retrobulbar region of the rat eye, for various time

durations from 21 to 84 days and found a time-dependent loss of

RGCs and damage to their axons (7). Similar to our findings, Lau

and colleagues observed 25 to 44% RGC loss (at 1 and 4 weeks

respectively) after intravitreal administration of ET-1 (39, 40). This

suggests that irrespective of the site of administration, ET-1 could

produce neurodegeneration of RGCs and their axons. The precise

mechanisms underlying ET-1 mediated neurodegeneration of
D
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FIGURE 8

Expression levels of GFAP following intravitreal injections in Brown Norway rats. (A) Immunohistochemical analysis of GFAP expression in retinas and
optic nerves of Brown Norway rats 24 hours following intravitreal injection of either vehicle or ET-1. Scale bar represents 100 mm (B) Quantitative PCR
analysis of mRNA expression of GFAP and Fibronectin in rat primary optic nerve head astrocytes isolated from adult Sprague-Dawley rats following
24-hour treatment with either the vehicle, ET-1, macitentan or a combination of ET-1 and macitentan. The graph represents the mean ± SD of one
representative experiment. The same experiment was repeated 3 times and similar trend was observed. (C) Untreated and macitentan treated rat retinal
sections following intravitreal injections with either vehicle or ET-1 post 7 days of the treatment. Images were taken using the Leica DMi8 confocal
microscope following immunohistochemical analysis of GFAP. Scale bar represents 75 mm. (D) Graph representing the quantification of the normalized
integrated densities in the ganglion cell layer. GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer; DAPI indicated cell nuclei. Bars
represent mean ± SEM. (*p<0.05) (Two-way ANOVA followed by Tukey’s multiple comparisons test). n=6 per treatment group.
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RGCs are not completely understood. Studies from cardiovascular

research have provided some insight into mechanisms by which

activation of endothelin receptors could produce cellular damage,

some of which may be relevant to neurodegeneration. For instance,

perfusion of sarafotoxin (an ETB receptor agonist) was found to

greatly elevate superoxide production in the sensory ganglia as well

as in glial cells (41). ET-1 acting through its receptors has been

shown to decrease glutamate uptake by brain astrocytes (42). ET-1

acting through the ETB receptor produced efflux of glutamate from

cultured brain astrocytes, suggestive of its ability to promote

excitotoxic effects (43). Previous work from our lab demonstrated

that IOP-mediated RGC loss and optic nerve degeneration were

significantly attenuated in ETB receptor-deficient rats (12).

McGrady showed that ETA receptors are also elevated in the

retinas of rats with elevated IOP and have the ability to

upregulate ETB expression (13).

In the current study, we have chosen a pan-endothelin receptor

antagonist, macitentan, an FDA approved drug to administer orally

at 5mg/kg body weight. Compared to other endothelin receptor

antagonists such as bosentan and ambrisentan, macitentan has

higher affinity, longer receptor occupancy time, and longer half-

life (44, 45). Macitentan was effective in lowering mean arterial

pressure at a median effective dose (ED50) of 1 mg/kg body weight

(46). From our recent study, using the chronic model of ocular

hypertension, we demonstrated the protective effects of macitentan

as this lower dose. Hence, we decided to use a dose of 5 mg/kg body

weight. We observed a transient increase in IOP elevation at the 2 h

time point following ET-1 intravitreal injection compared to the

vehicle injections. The short-term elevation of IOP following

intravitreal injection has been observed in rabbits (47) and could

be due to ET-1 mediated contraction of the trabecular meshwork

(48). A long-term reduction in IOP up to 7 days was reported by

MacCumber et al. (1990) in rabbits (49). This could be due to a

reduction in aqueous humor formation through its effects on Na

+/K+-ATPase (50) and contraction of the ciliary muscle to facilitate

aqueous humor drainage. The ET-1 mediated elevation of IOP at

the 2 h time point was not attenuated by the oral administration of

macitentan (Figure 4). The reason for this finding is not clear and

could be related to the differential effects of ET-1 on the contraction

of ciliary muscle and the trabecular meshwork or due to the acute

effects of the bolus administration of ET-1 which is not affected by

dietary administration of the endothelin antagonist.

Macitentan treatment was able to enhance RGC survival

following ET-1 intravitreal injection. However, its functionality

could not be rescued. This points to the drastic effects of acute

ET-1 administration and the ensuing RGC injury (similar to that

reported by Lau et al., 2006) (39) which cannot be rescued by a

dietary administration of the endothelin antagonist. ET-1 treatment

compromised axonal integrity (reflected by the demyelination of

axons and reactive gliosis in Figure 7) and significantly reduced

axon counts in the optic nerve. Macitentan treatment was not able

to protect against the ET-1 mediated optic nerve axonal

degeneration in this acute model. However, in a previous study

we were able to protect against the loss of RGCs and their function

in a chronic model of ocular hypertension (18). There could be

differences in the compartmentalization of gene expression in soma
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and axons, which could be based on the extent of glaucomatous

insult and the animal model of glaucoma being studied. For

instance, in a study by Marola et al., 2022, over expression of Bcl-

xL protected RGC somas but not the axons in the acute model of

optic nerve crush (51). In another study, the over expression of Bcl-

xL protected RGC somas and axons in the chronic ocular

hypertension model in DBA/2J mice (52). Libby et al. (2005)

demonstrated that following optic nerve crush in Bax-/- mice,

RGCs are protected from neurodegeneration, however axon loss

continues to occur (53). Thus, the somas and axons of RGCs could

differ in the susceptibility to glaucomatous insults as well as their

survival abilities following neuroprotective treatments.

In the current study, we found that ET-1 intravitreal injection at

the 24-hour time point produces activation of rat optic nerve head

astrocytes in vivo, which was indicated by an increase in GFAP

immunostaining in the optic nerve head. Though we observed an

upregulation of the GFAP expression levels at the 24 h time point

both following ET-1 intravitreal administration as well as following

ET-1 treatment in cultured ONH astrocytes, we did not observe an

increase in GFAP protein levels 7 days post-intravitreal injection with

ET-1 in Brown Norway rats. Similarly, in cultured ONH astrocytes,

we found an increase in fibronectin mRNA expression following ET-

1 treatment at the 24 h time point and this was appreciably reduced

by co-treatment with macitentan. Studies have shown the ability of

fibronectin to promote activation of microglia and macrophages into

a pro-inflammatory phenotype (54), hence our current findings may

point to the ability of macitentan to block these glial changes.

Interestingly, in the ET-1 injected rats, following treatment with

macitentan for 7 days, we found a significant increase in GFAP

immunostaining in the nerve fiber layer retina compared to that in

untreated rats. Mice subjected to a photothrombosis model of stroke,

demonstrated a delay/impairment in neurological restoration in

GFAP-/-Vim-/- mice indicating the importance of GFAP and

vimentin in functional recovery and axonal remodeling following

stroke (55). Along similar lines, Toops et al. (2012) found that glial

cells in retinal explants overexpressing GFAP had more robust

neurite outgrowth compared to that of the GFAP-/- mice (56).

Additionally, previous studies have shown activated glia are able to

promote neurite outgrowth in retinal cultures (57). Perhaps, the acute

axonal injury produced by a bolus administration of ET-1 could not

be rescued by the upregulation of GFAP at the 7 days timepoint. The

involvement of glia in macitentan-mediated neuroprotective effects is

not completely clear and will be the subject of future studies.

Howell and colleagues demonstrated that bosentan (dual

antagonist of ETA and ETB receptor) treatment promoted

neuroprotection of optic nerve axons in the congenital DBA/2J

model of glaucoma in mice (14). However, the authors did not

assess the effects of bosentan on vascular changes in the retina

following endothelin administration. Macitentan has higher potency

and efficacy (due to higher receptor occupancy times) as an endothelin

receptor antagonist, compared to bosentan (46, 58).). Even though in

our present study we have not been assessed tissue levels of macitentan

following treatment of animals with macitentan, several studies have

shown cytoprotective/neuroprotective effects in various tissues

following oral administration of macitentan. For instance, Sen et al.

(2012) found the elevation of mRNA expression of extracellular matrix
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components, namely, fibronectin and collagen a-1(IV) in the retina of

diabetic rats, which were significantly attenuated by oral treatment

with macitentan (25 mg/kg body wt). Similar damaging effects of

endothelin on other organs including the heart, and kidney were also

ameliorated by oral administration of macitentan (25 mg/kg body wt)

by its ability to prevent increased production of vasoactive and

fibrogenic factors following 2- and 4-months of diabetes. In

addition, macitentan treatment prevented diabetes-induced VEGF

upregulation in these organs (59) and was effective in lowering mean

arterial pressure at a median effective dose (ED50) of 1 mg/kg body

weight (46). Howell et al. (2014) found appreciable axoprotection in

80% of 10-month-old DBA/2J mice treated withmacitentan (30mg/kg

body wt). In addition, the authors used bosentan (100 mg/kg body wt)

in C1q knockout DBA/2J mice to show appreciable neuroprotection of

optic nerve axons in 80% of 12-month-old animals. However, Howell

et al. (2014) did not assess RGC survival, which is reported in this study

(60). Based upon all these studies, it is plausible that orally

administered macitentan reaches various tissues at pharmacologically

effective doses and produces various cellular protective effects through

blockade of endothelin receptors.

In summary, the novel aspects of this study include the use of

macitentan (5 mg/kg) to generate protective effects including

amelioration of retinal vasoconstriction, enhancement of RGC

survival, as well as reduction of optic nerve head astrocyte activation

in an acute model of ET-1 mediated neurodegeneration. Studies have

shown that the use of a similar dose in humans did not produce any

major adverse effects. Minor side-effects including headache and back

pain during this treatment were also observed in the placebo group

(61). Findings from the current study have major implications for the

use of orally administered macitentan (which is FDA approved for use

in pulmonary hypertension) as a neuroprotective adjunct therapy to

IOP-lowering drugs for the treatment of glaucoma. Additionally, our

current findings indicate that macitentan has the potential to combat

vasoconstrictive effects observed in related clinical conditions,

including acute angle closure glaucoma, central retinal artery/vein

occlusion, and related ischemic disorders of the retina.
5 Conclusions
Fron
1. Vasoconstrictive effects following intravitreal ET-1

injection were greatly reduced in rats administered

macitentan in the diet prior to the ET-1 administration.

2. ET-1 intravitreal injection produced a 40% loss of RGCs

which was significantly reduced in macitentan-treated rats.

RGC counts following ET-1 injection and macitentan

treatment were similar to that observed in control retinas.

3. Macitentan has some neuroprotective effects in the retinas

of Brown Norway rats that possibly occur through different

mechanisms, including reduction of ET-1 mediated

vasoconstriction, and enhancement of RGC survival.

However, RGC functional impairments and axonal injury

were not ameliorated in this acute model of ET-1

administration.
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