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Sending an axon out of the eye and into the target brain nuclei is the defining

feature of retinal ganglion cells (RGCs). The literature on RGC axon pathfinding is

vast, but it focuses mostly on decision making events such as midline crossing at

the optic chiasm or retinotopic mapping at the target nuclei. In comparison, the

exit of RGC axons out of the eye is much less explored. The first checkpoint on

the RGC axons’ path is the optic cup - optic stalk junction (OC-OS). OC-OS

development and the exit of the RGC pioneer axons out of the eye are

coordinated spatially and temporally. By the time the optic nerve head domain

is specified, the optic fissure margins are in contact and the fusion process is

ongoing, the first RGCs are born in its proximity and send pioneer axons in the

optic stalk. RGC differentiation continues in centrifugal waves. Later born RGC

axons fasciculate with the more mature axons. Growth cones at the end of the

axons respond to guidance cues to adopt a centripetal direction, maintain nerve

fiber layer restriction and to leave the optic cup. Although there is extensive

information on OC-OS development, we still have important unanswered

questions regarding its contribution to the exit of the RGC axons out of the

eye. We are still to distinguish the morphogens of the OC-OS from the axon

guidancemolecules which are expressed in the same place at the same time. The

early RGC transcription programs responsible for axon emergence and

pathfinding are also unknown. This review summarizes the molecular

mechanisms for early RGC axon guidance by contextualizing mouse knock-

out studies on OC-OS development with the recent transcriptomic studies on

developing RGCs in an attempt to contribute to the understanding of human

optic nerve developmental anomalies. The published data summarized here

suggests that the developing optic nerve head provides a physical channel (the

closing optic fissure) as well as molecular guidance cues for the pioneer RGC

axons to exit the eye.
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1 Introduction

The mammalian retina comprises five classes of neuronal cells

(1): the photoreceptors transduce light into an electrical signal and

transmit it in the outer plexiform layer to bipolar cells. At this level

lateral interactions are provided by horizontal cells. In the inner

plexiform layer (IPL), the bipolar cells connect to the retinal

ganglion cells (RGCs), which send the visual information in the

form of nerve spikes to the retinorecipient nuclei in the brain. At

IPL level, amacrine cells assist in retinal computation by a variety of

inhibitory and excitatory lateral connections with bipolar cells and

RGCs. Until now, more than 40 RGC types have been identified,

which receive various combinations of signals from the

approximately 70 types of interneurons so that they extract

distinct visualqualities (2–10). RGCs of the same type form

anatomical and functional mosaics within the retina, namely the

dendritic arbors of a given RGC type tile the retina uniformly and

their receptive fields sample the visual scene and extract specific

visual features (11–13). As a result, every point in the visual field is

reported to the brain through multiple parallel channels (14)

dedicated to different visual modalities such as contrast, color, or

motion (1, 2, 15–18) and the brain receives a number of parallel

images of the world (3). The anatomical basis of this connection is

the optic nerve, a fascicle of RGC axons linking the retina to the

brain. In the last decades, the field of developmental neuroscience

has predominantly focused on the study of cell type specification,

especially encouraged by the advent of single-cell RNA sequencing

tools (19–21). Sending an axon towards the optic disk and through

the optic nerve is a defining feature of all RGCs, regardless of the cell

type. It is one of the earliest developmental events, occurring right

after RGCs differentiate (22–25), at a time when RGC types are not

yet specified (26). Although numerous papers have reviewed RGC

axon guidance mechanisms (27–36) – most of them are focused on

population - level axon steering events such as chiasm crossing and

retinotopic mapping at the targets while the determinants of RGC

axon emergence and optic nerve formation are far less explored.

The need to more comprehensively approach this subject is

enforced by the increase in frequency of optic nerve development

anomalies in humans. A significant cause of congenital blindness,

human optic nerve developmental anomalies are a heterogeneous

group of diseases ranging from optic pits, segmental or global optic

nerve hypoplasia to optic nerve aplasia, optic disc conformation

anomalies and syndromes associating microphthalmia, colobomas,

aniridia or brain anomalies (37–43). Single-case reports or small

case series have identified a variety of genetic mutations linked to

these anomalies and recent whole-genome-sequencing studies

extend these lists considerably (44, 45). These findings can only

be valued if mechanistic roles of these genes in the development of

the optic nerve is demonstrated in animal models.

Similar to other white matter tracts in the brain, the optic nerve

develops based on a few pioneer axons which use their growth cones

to follow various guidance cues on their way to the targets (30).

They are joined by the axons of the later-born RGCs by

fasciculation (46). The first intermediate target for RGC axons is

the optic nerve head (ONH), a region located at the junction
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between the future retina (the optic cup) and optic nerve (the

optic stalk), resulting from complex morphogenetic movements of

the optic vesicle – extensively reviewed (39, 40, 47–54). The

necessity for the ONH in RGC axon development is

demonstrated by the cases of retinal organoid cultures. In the

absence of an optic stalk, retinal organoids are still differentiating

and developing many anatomical and functional aspect of in vivo

retinas, but are unable to grow RGC axons, as RGC survival is

compromised (55, 56). This limitation was recently partly overcome

by assembling retinal and thalamic organoids (57) or by culturing

optic vesicle bearing brain organoids, that maintain the continuity

between the optic vesicle and the brain (58). Identifying the ONH

signals dedicated to RGC axon pathfinding is complicated by the

coincident timing of morphogenesis of the optic cup and optic stalk,

optic fissure closure and the escape of the first RGC axons out of the

optic cup (59–61). An added challenge is to discriminate between

primary RGC axon guidance defects and axon misrouting

secondary to optic cup/stalk developmental anomalies such as

coloboma or patterning defects (62, 63). The aim of this review is

to survey the experimental results of the past decades on optic cup/

optic stalk morphogenesis and early RGC axon guidance in

conjunction with the recent RNA sequencing studies on

developing retinas/RGCs in order to characterize the interplay

between extracellular signaling molecules and intrinsic

transcriptional pathways involved in the initiation of RGC axons

pathfinding, which could be targeted in future retina/optic nerve

regeneration strategies. The information presented in this review

mostly comes from experiments done on mouse models. In case

findings are coming from other species, the experimental models

are mentioned in the text. We propose that the key to early RGC

axon guidance is the spatial and chronological correlation between

optic fissure closure and RGC differentiation initiation allowing the

closing optic fissure to serve as a permissive channel for the pioneer

axons, which are followed by the next axons by fasciculation.
2 Retina morphogenesis

The first target of the RGC axons in their way to the

retinorecipient nuclei in the brain is the optic disc. The position

of the optic disc precursor region changes during the successive

morphological rearrangements that take place during the

morphogenesis of the eye (Figure 1A).
2.1 Eye field differentiation

The origin of the nervous system is the ectoderm, where a

neuroectoderm is specified by BMP4 inhibition via follistatin,

chordin and noggin (64). The anterior neuroectoderm is further

induced by Wnt downregulation (64). As demonstrated in xenopus,

within this region an eye field will be induced by signals coming

from the adjacent mesenchymal tissues (65). Signals from the

prechordal mesoderm including cyclops (Cyc), sonic hedgehog

(Shh) and SIX3 split the eyefield in two (47, 49, 66). It further
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develops into two laterally placed optic vesicles under the influence

of Eph/Ephrin signaling at an intersection between the Wnt and

FGF pathways (40, 67).
2.2 Optic vesicle evagination

Lateral evagination of the forebrain precursor region leads for

the formation of the optic pit that evolves to an optic vesicle (47,

68). The lateral expansion of the optic vesicles brings them in the

vicinity of the lens-competent surface ectoderm. Close contact

between the two structures is ensured by the displacement of the

interposed mesenchyme and by a meshwork of collagen and cellular

processes (47). The cavity of the optic vesicle is in direct

communication with the ventricular cavity of the brain (69).

Optic vesicle formation occurs under the control of Rax, Pax6

and Tll (48). Activated by Sox2 and Otx from the anterior

neuroectoderm, Rax represses NLCAM and induces CXCR4

acting on cell shape and movement with the important

contribution of laminin (48, 70, 71).
2.3 Optic vesicle patterning

A recent single-cell RNA sequencing study (72) highlights the

cellular heterogeneity of the optic vesicle comprising seven distinct

neuroepithelial cell populations, four of which are stage-dependent

presumptive retinal precursors. The optic vesicle becomes

regionalized under the influence of eye field specific transcription

factors including Lhx2, Pax6 and Six3, upregulated by Rax (48, 73).

Anatomical orientation of optic vesicle patterning also relies on

optic neuroepithelium cilia required for Hedgehog signaling,

expressed in a proximal-high to distal-low gradient, as well as for

PCP, Wnt, TGF-b, PDGFa, RTK, mTOR and Notch signal

transduction (74).

The proximal domain of the optic vesicle will form the optic

nerve whereas its distal domain will become the neural retina (NR)

and retinal pigment epithelium (RPE) (75). These domains are
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initially delineated on a dorso-ventral axis so that the dorso-distal

optic vesicle will form the future NR and RPE, and the proximo-

ventral optic vesicle will become the ventral optic stalk (vOS) (47).

The presumptive RPE and the ventral optic stalk each are

continuous with the presumptive forebrain, but are separated

from one another by the ventricular space (69). At this stage,

RPE-NR and NR-vOS boundaries are fluid. Proximo-ventral fate

is specified by hedgehog (Hh) through activation of Pax2, Vax1 and

Vax2. In zebrafish, Hh also represses Pax6, the dorso-distal

specifier, by expression of Mid1, a regulator of Pax6

ubiquitination (76). The NRE-vOS boundary is gradually

sharpened also by Pax2-Pax6 mutual repression and Hes1 activity

in the vOS (47, 77). Future ONH cells are tripotential and need Pax2

to shut off NRE and RPE fates, to adopt glial fate and to activate

Hes1 (63). NR/RPE fates are specified by Vsx2 (or Chx10)/Mitf

expression respectively, regulated by Lhx2 and lens-derived FGF

signaling (48, 51). FGF soaked beads have the ability to convert RPE

to neural retina in chicken (78, 79). In mice, the surface ectoderm

provides FGF1 and 2 which activate VSX2, that in turn represses

Mitf (80, 81). Among the multiple FGF ligands, FGF8 coming from

the telencephalic vesicles has the main role in optic vesicle

patterning, while the others are able to compensate in its absence,

as shown in zebrafish (82). RPE differentiation requires the Wnt/

beta-catenin pathway, including Porcn function (83).
2.4 Optic cup and optic stalk
invagination – optic fissure

The optic vesicle undergoes a process of invagination between

becoming a bi-layered optic cup (inner NR and outer RPE) and

optic stalk in coordination with the invagination of the lens placode

to a lens vesicle (69). The surface ectoderm covering the lens will

become the cornea thus defining the mature appearance of the eye

(47). The edge where the inner and outer layers meet plays a role in

the invagination process and evolves into the ciliary body and the

iris (40, 47, 84). Interactions between the optic vesicle and the

surface ectoderm are essential for the invagination process (85) and
A B

FIGURE 1

(A) Schematic illustration of eye morphogenesis. (B) Schematic developmental timeline of main events in mouse retinal ganglion cells development.
grey arrow, developmental transformation; orange arrow, influence; RGC, retinal ganglion cells.
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are based on Pax6 regulated fibronectin 1 expression along with the

retinoic acid (RA) signaling pathway (86, 87). RA local

concentration is controlled by synthesizing (RALDH1/3) and

catabolizing (CYP26A1/C1) enzymes and in chick retina it is

localized complementary to FGF8 expression (88). Lhx2 is a

regulator of both optic cup and lens formation (89). Optic cup

derived RA also control the expression of periocular mesenchyme

markers such as Pitx2 and FoxC1 (51).

Optic vesicle invagination is asymmetric (35, 90), more

accelerated on the ventral side leading to the formation of a

grove, the optic fissure (91) and to a reflection of the proximo-

ventral/dorso-distal axis as the RPE enwraps the NR (47). The

region where the proximal and distal portions of the optic fissure

join will develop in to the optic nerve head (92). Formation of the

optic fissure allows the mesenchymal cells to invade the optic cup

and to form the hyaloid vasculature (93). While the vOS invaginates

and forms the tissue through which the RGC axons will travel, the

dorsal optic stalk will transform in non-neural tissue sheathing the

optic nerve (47). The optic fissure domain is characterized by Netrin

1, Pax2, Vax1, Vax2 and Raldh3 expression (50, 93). Lower levels of

Raldh3, Vax2 and Tbx5 and expansion of the Pax2 domain

associated with increased apoptosis in the ventral retina was seen

in Fz5 (a Wnt receptor) conditional knock-out mice (94). Optic

fissure formation is induced by lens-independent signals including

Pax2, Vax1, Vax2, Bmp7 (from the periocular mesenchyme), Shh

and FGF (50, 91). Optic fissure formation is disturbed by

experimental manipulations of these morphogens. Bmp7 knock-

out mice have no optic fissure, Pax2 knock-out mice bear proximal

optic fissure defects and RA induces optic fissure invagination in

zebrafish (50, 91, 95).

As the optic cup grows, the optic fissure margins get closer to

each other, displace the intertwining periocular mesenchyme and

come in contact (51, 91). Optic fissure closure begins at midway and

progresses both distally and proximally based on two distinct

processes: fusion (basement membrane elimination) and

intercalation (filling of the optic fissure space with newly

differentiated astrocytes and incoming axons), which is more

characteristic for the proximal part of the optic fissure (47, 51,

91). The hyaloid artery remains separated from the axons in the OS

by a laminin cap contact (91). Optic fissure closure requires sharp

delineation between the NR/RPE domains based on mutual

restricting Mitf and Pax2 expression, regulated by Zfp503 (96)

and FGF signaling via FGF receptors associated with Frs2a-Shp2
complex, ERK/Ras signaling (62, 97, 98) and Wnt-Fz5 signaling

(94). The actual fusion process is promoted by TGFbeta (99).

Netrin1 is directly involved in the fusion process in chicken (100).

As any morphogenetic movement based on proliferation and

sculpting, optic cup invagination and optic fissure closure are

accompanied by significant cell death. In mice, there is a

sequential wave of cell death starting from the ventral optic cup,

continuing along the fusing edges of the optic fissure and

proceeding into the optic stalk followed by an invasion of

macrophages from the surrounding mesenchyme that phagocytize
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the cell debris and are in close contact with the emerging RGC

axons (101).
2.5 Optic cup and optic stalk patterning

Patterning in the optic cup and stalk follows the general

domains established at the optic vesicle stage (102) and further

compartmentalizes the structure along three axes (dorso-ventral,

naso-temporal and proximo-distal) under the control of Hh

signaling, as demonstrated in xenopus (103). The dorso-ventral

patterning is achieved by dorsal Tbx5, Xbr1, COUPTFI/II and

ventral Pax2, Vax2 expression (47, 69) as a result of Hh versus

Bmp signaling, according to studies done in chick and frog embryos

(65, 104). In zebrafish, nasal Foxg1 and temporal Foxd1 restriction

is regulated by interaction between FGF and Hh signaling (105).

EphA receptors and EfnA proteins are expressed in complementary

nasal to temporal gradients, while EphBs/EfnBs have opposing

dorso-ventral gradient expression in the NR (27, 106). Dorso-

ventral patterning of the RPE is influenced by Zfp503 (96).

Patterning along the third axis, the proximo-distal one, entails

centro-peripheric regionalization in the optic cup, ONH

delineation and OS-OC boundary delineation. The ONH domain

expresses markers of the optic stalk (Pax2 and Vax1) and ventral

neural retina (Netrin1, Vax2 and Raldh3) under the control of

Bmp7 and Shh (93). The periphery of the OC is represented by the

ciliary margin zone expressing Msx1 and Otx1 (107). The ciliary

margin zone has a distal Bmp4 domain and a proximal CyclinD1/

Msx domain containing multipotential retinal precursor cells (108).

Optic cup periphery specification requires Wnt and Shh signaling,

transduced via Cdon, Boc, Gas1 and Lrp2 (40). The outer and inner

layers of the ciliary margins generate the outer and inner layers of

the iris and cilliary body respectively, under Pax6 signaling (109).

Sub-patterning of this region is based on FGF gradients interacting

with Wnt signaling (98, 110). The NR/RPE boundary from the

ciliary margin zone continues on the optic fissure margins (51).

The optic stalk also has two layers. In analogy to the RPE

completely surrounding the neural retina as a result of invagination

and optic fissure closure, the non-neuronal tissue derived from the

dorsal OS is completely encasing the vOS derived Vax1 positive

epithelium (111). The ventricular cavity of the brain is still

continuous with the future subretinal space (112) as a narrow

space separating the two layers in the optic stalk. As a directly

visible mark of the ongoing patterning process at the optic cup-

optic stalk boundary, melanin observable in the RPE as well as in

the wall of the distal optic stalk, which are continuous, and is

gradually eliminated from the optic stalk and restricted to the RPE

(113). The transient optic stalk melanization is concomitant with

the exit of the first RGC axons in the optic stalk, but pigmented or

previously pigmented Pax2 negative optic stalk regions are avoided

by nerve fibers (93, 113).The inner optic stalk Pax2 positive

astrocyte precursor cells extend in the retina as a cuff that

enwraps the exiting RGC axons, separating them from the
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subretinal space (68). There is a mutual influence between the RGC

axons and these cells: on one hand, the Pax2 ONH cells provide

axon guidance cues including Netrin1, NCAM or, laminin but on

the other hand once ONH fate is induced by Bmp7 from the

periocular mesenchyme, Shh secreted by the RGC axons is needed

to maintain the ONH Pax2/Netrin1 cell population, which express

Gli1 and Ptch Shh receptors (68, 93). In the absence of RGC

secreted Shh, melanin, Pax6 and Mitf appear in the optic stalk

(114). Transdifferentiation of optic stalk tissue to RPE was also seen

in FGFr1/2 or heparin sulfate deficient mice (62, 115).

The developmental sequence of optic vesicle – optic cup and

stalk morphogenesis and patterning ensures the anatomical

continuity between the neural retina, the residence of RGC cell

bodies, and the optic nerve precursor so that the RGC axons travel a

natural course to the future optic chiasm region. As Table 1

illustrates, any disruption in this sequence can disturb the early

developmental steps of the RGCs.
3 Retinal ganglion cells development

3.1 RGC differentiation

Retinal precursor cells (RPCs) are able to generate all retinal neural

cell classes and Müller glia, while astrocytes, macrophages and

microglia later migrate into the retina (120). They commit to a

specific fate as they transition from proliferative to terminal division

states (121–123). The retinal cell types are produced in a stereotypic

sequence, with RGCs, cones, horizontal and amacrine cells in a first

wave and a second wave for bipolar, glial and a part of the amacrine

cells, while rods differentiate throughout the retinal development time

frame (120). RGCs differentiate in a central-to peripheral wave starting

from the dorso-central retina, adjacent to the ONH (124, 125)

Uncommitted and lineage-restricted RPCs are located in the

neuroblast layer, at the apical side of the NR, similar to the

ventricular zone in the developing brain (126). Apolar RGC

precursors become postmitotic in the neuroblast layer and become

bipolar as their cell body translocates to the basal surface of the retina,

where the ganglion cell layer will be located (122, 127). As they

differentiate to RGCs, the apical process detaches and they become

multipolar, growing an axon and dendrites (24). RGC precursors

failing to differentiate undergo apoptosis in the ganglion cell layer

(122). A subset of non-apoptotic new-born RGCs are eliminated 24h

after birth by microglia based on complement signaling through

phagoptosis (128).

A second source of retinal cells is theMsx1 precursor cell located at

the ciliary margin zone (129). RGCs from the ciliary margin zone

differentiate later than the central ones (31). Instead of translocating

from the ventricular layer, they migrate laterally from the CyclinD1

zone directly in the ganglion cell layer (31, 108)

Still multipotential, RGC precursors are already committed to a

specific type. The cell-type specification is continued in late embryonic

and postnatal life through intrinsic transcriptional programs to reach

the 40 types of mouse RGCs (26). For example, Ret-Brn3a interactions

in postmitotic neurons can switch cell type/morphology (130).
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3.2 RGC axon pathfinding

The vitreal process of the bipolar RGC precursors transforms into

an axonal growth cone (24). RGC axons emerge very early during

differentiation, even before the cell body has translocated to the

ganglion cell layer (114) and start to express Gap43 and Tuj1 (131).

RGC axons are already seen in the optic stalk coming from bipolar

precursor cells with cell bodies at different hights in the retinal

epithelium (132).

Themost distal expansion of the axon is known as the growth cone

(132), a sensory-motor structure capable of extending retracting

processes called filopodia (thin) and lamellipodia (flat) in response to

external signals (29, 133). Lamellipodia have a branched network of F-

actin maintained by branching proteins such as Arp2/3 whereas in

filopodia F-actin bundling proteins like alpha-actinin and fascin keep

F-actin in parallel bundles (134, 135).

Growth cone steering (chemotropic turning) or growth cone

collapse under the influence of axon guidance cues implies rapid

changes in local protein levels achieved by local translation and

protein ubiquitination (136, 137). Axon pathfinding is based on

growth cone cytoskeletal reorganization, a sequence of F-actin

addition on the plus-end of microtubules, retrograde F-actin flow

and microtubule–F-actin coupling influenced by the strength of the

adhesion on the substratum, as shown in aplysia ex vivo studies

(138). Growth cones have a spread form and move fast on adhesive

substrates and adopt contracted forms and stall on less adhesive

substrates (132). Axon growth is an intermittent process,

characterized by advances and pauses (139).

Once generated, RGC axons grow centripetally (Figure 2), within

the optic nerve fiber layer and exit the eye through the ONH, enter the

optic stalk within the neuro-epithelial lining of the optic fissure and

travel along the optic stalk to the midline (24, 29, 140). Dye implant

studies in rats and ferrets and mouse electron microscopy studies have

shown that axon fibers do not preferentially occupy certain depths

within optic nerve fiber layer or the optic stalk, newly added fibers

being intermingled arbitrarly with the already present ones (112, 141,

142). In human fetuses, maturing and newly born axons are

intermingled and the only ordering is at the entrance in the optic

disc, where retina quadrant provenience is respected (143). This order

of the axons at the ONH is lost within the optic nerve, so that axon

guidance cues at the following checkpoints on their path to the targets

are needed in order to ensure final retinotopic mapping (144). The next

intermediate target is the optic chiasm, where the ipsi/contra-lateral

projection decision is made. The axons continue their path in the optic

tract and defasciculate at their final targets where they assume

retinotopic positions according to their cell type and retinal

eccentricities. These processes have been extensively studied and

reviewed and are beyond the scope of this paper (29–31, 145).
3.3 Developmental timeline of
mouse RGCs

Themain events in the developmental timeline of mouse RGCs are

summarized in Table 2 and Figure 1B.
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TABLE 1 Mouse knock-out models for early retina morphogenesis developmental defects.
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defects identified

ON hypoplasia; once at
the disc, many axons
splayed out

–

ONFL Aberrant RPE in
OS

Axons restricted to a
segment of OS away
from glial precursors

Axons stall at the base of
the hypothalamus,
chiasm agenesis

o
n the

layer

OS replaced by
retinal tissue
extending to brain
midline

Not applicable RPE differentiation is
limited, axons do not
cross the midline, cleft
palate

glion cells (RGCs) axon guidance. cKO, conditional knock-out; RPE, retinal pigment epithelium; OD,
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Genes
of
interest

Mutant mice Neural
retina

Optic
fissure

developed

Optic
fissure
closed

RGCs
born

Axons
emerged

All axons
targeted

OD

All axon
remained in

ONFL

Bmp4 RaxCre; Bmp4
cKO (116)

Absent
(RPE
instead)

Not
applicable

Not applicable Not
applicable

Not
applicable

Not
applicable

Not applicable

SoxC Atoh7Cre; Sox4
cKO; Sox11 cKO
(117)

Present Identified Fused margins Nearly
complete
loss

Not
applicable

Not
applicable

Not applicable

Bmp7 Bmp7–/– (93) Present Absent
(stopped at
optic vesicle
stage)

Not applicable Present Intraretinal
axons
identified

OD absent Axons gather eit
the vitreal surfac
the subretinal sp

FGF Six3Cre;
Fgfr1cKOFgfr2cKO
(62)

Present Identified Coloboma
(Mitf was
induced, Pax2
downregulated)

Present Intraretinal
axons
identified

No
misguided
axons

Axons were mis
in the sub-retina

Pax2 Pax2–/–
(118)

Present Identified Coloboma Present Intraretinal
axons
identified

No
misguided
axons

All axons within

Shh Thy1Cre; Shh
-/cKO
(68)

Present Identified Fused margins Present Intraretinal
axons
identified

Misguided
axons
identified

Axons enter the
retinal spaces in
regions of the re
and at the optic

Netrin Netrin-1–/–
(68)

Present Identified Margins in
contact, but
not fused
completely

Present Intraretinal
axons
identified

No
misguided
axons

Ectopic penetrat
through the full
thickness of the
peripheral retina

Vax1 Vax1–/–
(119)

Present Identified Coloboma Present Intraretinal
axons
identified

No
misguided
axons

All axons within

Vax2 Vax1–/–; Vax2–/–
(111)

Present
(double
volume)

Absent Not applicable Present Intraretinal
axons
identified

Not
applicable

Axons run in tw
parallel streams
inner surface of
duplicated RGC

The table compares the effects of different gene knock-out manipulations in mice on the key developmental events involved in retina morphogenesis and early retinal ga
optic disc; ONFL, optic nerve fiber layer; OS, optic stalk; ON, optic nerve.
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A B

FIGURE 2

Schematic illustration of RGC axons pathfinding in the E12.5 mouse optic cup and stalk. Markers for each domain of the optic cup and stalk are
listed in color code. (A) Lateral view. (B) Coronal section.
TABLE 2 Mouse retinal ganglion cell axon development timeline.

Day Events

E7 Gastrulation
Pax2 and Rax expression in the precursor fields of forebrain, ventral hypothalamus and eye.
(118, 146, 147)

E8 Cephalic flexure
Optic vesicle evagination
(118, 146, 147)

E9 Neural tube closure
Telencephalic and diencephalic vesicles get delineated.
Optic vesicle and stalk are fully formed.
Vax2 expression in ventral optic vesicle
Rax expression in optic vesicle, optic stalk and ventral diencephalon.
CD44/SSEA neurons are born
(91, 118, 147–150)

E10 Optic vesicle invagination starts
Opic fissure formation
The retinal pigment epithelium is a 1–2 cell thick layer. Melanin is produced in the dorsal margin of the optic cup.
The optic stalk starts thinning and elongating
Rax is expressed in the entire retina.
(91, 111, 113, 147–149)

E11 Opposite optic fissure margins come in contact
Pax2 expression in the optic fissure region.
Retinal precursor cells become postmitotic and translocate towards the vitreal side of the neural retina epithelium.
First RGCs express Brn3b in the dorso-central retina, close to the optic fissure and extend the first axons which exit the eye.
Shh expression in the optic chiasm precursor region junction splits in two. Pax2 expression extends in the gap so that it is continuous across the midline.
(91, 118, 132, 141, 151–155)

E12 Optic fissure closure starts near the lens.
The pigmentation of the outer retinal layer has progressed to the entire optic cup circumference. The optic nerve head starts to form.
Shh is expressed in the RGC layer central retina, extending close to the edge of RGC differentiation. RGC Brn3a and Brn3c expression is initiated.
Robo2 and slit1 are expressed in the dorso-central retina.

(Continued)
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TABLE 2 Continued

Day Events

Pioneering RGC axons reach the optic chiasm. There is no tight fasciculation.
(23, 91, 118, 132, 148, 152, 154, 156–159)

E13 Optic fissure margins are fusing.
Pigment is eliminated from the optic stalk.
RGC axons are grouped in fascicles in the retina.
Shh and Gli1 expression domain has extended to the periphery.
RGC axons cross the midline.
(24, 91, 113, 119, 120, 132, 149, 160)

E14 The neural retina is made up of two layers.
RGC birth rate is at peak. The other neuronal cell types are beginning to be generated.
Pax2 is confined to optic disc and optic stalk.
EphB2, robo1, robo2, and slit2 are evenly expressed in the RGC layer. Slit1 expression has a ventral-high/dorsal-low gradient.
Numerous RGC axons, coming from cells located in the central and midperipheral retina, have entered the optic tract. First RGC axons enter the superior
colliculus
Ipsilateral RGC axons reach the chiasm.
(113, 124, 140, 141, 154, 157, 159–163)

E15 EphB2 gradient in outer retina.
Growth cones are less numerous in the optic nerve compared to previous ages, indicating that the majority of the RGC axons have already passed this region at
this time.
Most RGC axons enter the superior colliculus.
(23, 132, 161)

E16 Hyaloid vessels are ensheeted in a laminin cell cap in the optic nerve
Astrocyte precursors appear in the optic stalk.
The distribution of ipsilaterally projecting RGCs in the retina is delineated.
EphB2 gradient in outer and inner retina.
No growth cones in the optic nerve.
Optic tract reaches its targets. Crossed accessory optic tract is formed.
Ipsilateral fibers are seen in the geniculate bodies region, but not at the superior colliculus.
(91, 124, 132, 140, 161, 164)

E17 Ipsilateral RGC differentiation is finished. The number of RGC axons in the optic nerve is maximal and begins to decrease.
Robo1 and slit 2 are restricted to the inner retina. Slit 1 is absent.
(141, 159)

E18 Medial terminal nucleus, dorsal and ventral lateral geniculate nuclei are innervated by RGC axons.
(140)

P1 Dorsal and ventral RGC axons are separated on the optic tract, while nasal and temporal axons are intermingled.
(144, 165–167)

P3 RGCs are growing dendrites.
RGC axons form synapses in the target nuclei.
(122, 168)

P4 Inner plexiform layer lamination is forming.
Superior colliculus projections are complete.
Lateral geniculate nucleus projections are sparse.
(169, 170)

P5 The optic nerve contains oligodendrocytes and immature astrocytes (164).

P7 RGC dendritic arbors maturation is nearly complete
(168, 171, 172)

P11 Inner plexiform layer lamination is defined.
(169)

P14 Superior colliculus and lateral geniculate axonal arbors are mature.
(170)
F
rontiers
The table summarizes experimental findings in wild type mice frommultiple studies exploring the developmental stages of retinal ganglion cell (RGC) axons, grouped according to the gestational
or postnatal age, which is indicated by the embryonic/postnatal day of life.
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4 Transcriptional profiles of early
mouse RGCs

The behavior of RGC axons in Atoh7−/−and Atoh7−/−;Bax−/−

mice, growing in the nerve fiber layer but failing to exit an

apparently normal ONH, suggests that intrinsic RGC

transcription programs are required for eye exit in addition to

ONH guidance (173). Brn3b and Isl1 ectopic expression from the

Atoh7 locus in Atoh7 knock-out mouse retinas rescues the axon

guidance phenotype (174) showing that Atoh7 is indirectly involved

in axon guidance by inducing Brn3b and Isl1. There is very little

knowledge on transcription factors and downstream genes involved

in RGC axon guidance, and identified phenotypes involve events

that occur later than eye exit. Delayed axon growth and abnormal

axon de-fasciculation from the optic tracts was seen in Brn3b

knock-out mice (23, 169) and ipsi-/contra-lateral projection

phenotypes were observed in Zic2, Isl2 and Sox4,11,12 mutants

(117, 175–181).

RGCs are the first differentiated cells in the neural retina and

axon emergence and pathfinding is the major developmental

process they are involved in. In this context, RNA sequencing
Frontiers in Ophthalmology 09
studies of newly born RGCs have the potential to identify the

transcriptional pathways involved in pioneer axon pathfinding.

However, due to the technical challenges such as the small size of

the retina and the small cell number there are only a few published

papers more or less directly focused on newly born RGCs (21, 26,

168, 173, 182–186). According to Shekhar et al. (26), there is a good

overlap between their developing retina single cell RNA sequencing

data and the other two studies using the same methodology, namely

Clark et al., (184) and Giudice et al., (182).

Table 3 presents a selection of genes resulted from three RNA

sequencing studies using different approaches: the first study (168)

used immunomagnetic sorting of dissociated E15 retinas to

sequence RGC RNA against retina supernatant, the second study

(182) performed single-cell RNA sequencing on E15 retinas and

identified newly born RGCs by unbiased clustering, and a third

study (183) performed bulk RNA sequencing on E11 to P28 retinas.

The genes were also looked up in microarray studies in embryonic

retinas of Atoh7 knock-out mice (185, 186), RNA sequencing in

isolated embryonic RGC growth cones (137) and public in situ

hybridization databases (Allen Brain Institute and Eurexpress). The

selection resulted from the logical intersections between lists of
TABLE 3 Genes expressed in developing retinal ganglion cells (RGCs).

Gene
name

Giudice
2019
E15.5
(182)

Sajgo,
2017 E15
RGCs
(168)

Brooks
2019
Retina
(183)

Gao, 2014
E13.5 Atoh7
dependent

(185)

Mu, 2005 Atoh7
dependent (186)

Zivraj, 2010
E16 cultured
RGC growth

cones
(137)

Allen Brain
Institute

Mouse ISH
Data Atlas

Eurexpress
Mouse ISH
Data Atlas

App
young
RGCs x

RGCs
e11.5<e13.5<e15.5 e14.5 RGCs

Cdc42
young
RGCs x weak e14.5 RGCs

Celsr3 x e12
RGCs
e11.5<e13.5>e15.5 e14.5 RGCs

Chl1
old RGCs x e14

x RGCs
e11.5<e13.5<e15.5

Cntn2
old&young
RGCs x e12&e14 x e13.5<e14.5>e16.5>e18.5

x RGCs
e11.5<e13.5<e15.5 e14.5 RGCs

Dcc
old&young
RGCs x e12&e14 x

RGCs
e11.5<e13.5>e15.5 e14.5 RGCs

Elavl4
young
RGCs x e12&e14 x e13.5>e14.5>e16.5>e18.5

Evl
young
RGCs x RGCs e13.5>e15.5

Gap43 old&young
RGCs x e14 x e13.5>e14.5>e16.5>e18.5

x RGCs e11.5
(central)<e13.5
(central)<e15.5(all) e14.5 RGCs

Igf1 old RGCs x RGCs e15.5 e14.5 RGCs

Igfbpl1
young
RGCs x e12&e14 x e13.5<e14.5>e16.5>e18.5 e11.5 weak e14.5 RGCs

Islr2
old&young
RGCs x e14 x e14.5 RGCs

(Continued)
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genes identified in relevant categories of samples in the three studies

(for complete lists and intersection strategies see Supplementary

Table 1). Cellular localization of the genes according to https://

www.ncbi.nlm.nih.gov/gene/ is presented in Supplementary

Table 2. Our selection included some proteins belonging to the

Netrin1-Dcc signal transduction pathway, namely App (Stmn2,

Kif1b), Cdc42, Trim67, Tubb3 (187–191). Manipulations of some of

the identified genes/proteins produce RGC axon guidance errors:

Cntn2 deficiency is linked with axon fasciculation and contralateral

projection defects (192); Dcc knock-out results in failure of RGC

axons to exit the eye (151); Gap43 null RGC axons have chiasm

crossing defects (193); Igf1 and Igfbpl1 contribute to RGC axon

growth by intracellular Calcium level modulation and mTOR

pathway activation (194); antibodies against Nfasc induce de-

fasciculation in chick RGC cultures (195); Nrcam is required for

chiasm crossing (196); Nrp1 conditional knock-out causes chiasm

crossing and optic tract fasciculation defects (197) and Tenm3

deficient RGC axons fail to project ipsi-laterally (198, 199). Others

genes in the list - App, Cdc42, Celsr3, Chl1, Elavl4, Evl, Islr2, Kif1b,

Kit, Kitl, Mmp24, Stmn2, Tubb3 - are associated with axon growth
Frontiers in Ophthalmology 10
or guidance defects in other regions of the nervous system or in

cultured neurons (191, 200–213).
5 Signaling – transcription
interactions in early axon pathfinding
in mouse RGCs

5.1 General principles

RGC axon pathfinding implies pioneer axon guidance and later

born axons fasciculation (214). Pioneer axons navigate in the retina

based on chemotaxis (attractive and repulsive cues forming gradients)

and haptotaxis (physical interactions with permissive substrates) (30,

91, 215, 216). The next paragraphs survey the evidence on the

regulation of RGC differentiation timing, haptotaxis and chemotaxis

conditions for the pioneer RGC axon guidance and on RGC

transcriptional programs involved in pioneer axon pathfinding and

cofasciculation (Figure 3). The molecular determinats of retina
TABLE 3 Continued

Gene
name

Giudice
2019
E15.5
(182)

Sajgo,
2017 E15
RGCs
(168)

Brooks
2019
Retina
(183)

Gao, 2014
E13.5 Atoh7
dependent

(185)

Mu, 2005 Atoh7
dependent (186)

Zivraj, 2010
E16 cultured
RGC growth

cones
(137)

Allen Brain
Institute

Mouse ISH
Data Atlas

Eurexpress
Mouse ISH
Data Atlas

Kif1b old RGCs x e14.5 RGCs

Kit
young
RGCs e11.5<e13.5 e14.5 RGCs

Kitl
old RGCs x

RGCs
e11.5<e13.5>e15.5

e14.5 RGCs
enriched

Mmp24 x e12&e14 x e14.5 RGCs

Nfasc
young
RGCs x e12&e14 RGCs e13.5>e15.5 e14.5 RGCs

Nrcam
young
RGCs x e14 RGCs e13.5<e15.5

Nrn1
young
RGCs x e12&e14 x RGCs e13.5<e15.5

Nrp1
young
RGCs x e14 x RGCs e13.5>e15.5 e14.5 RGCs

Stmn2
young
RGCs e12&e14 e13.5>e14.5>e16.5>e18.5

x
e14.5 RGCs

Syt13
young
RGCs x e12&e14 x e13.5<e14.5>e16.5>e18.5 e14.5 RGCs

Tenm3
old&young
RGCs x

RGCs ventral
e11.5>e13.5>e15.5

Trim67 x e12&e14 x x

Tubb3 x e12&e14 x e13.5>e14.5>e16.5>e18.5
RGCs
e11.5<e13.5>e15.5 e14.5 RGCs
“x” denotes that the gene was found to be expressed over the threshold by the study referred to in the column. In studies including specimens of multiple embryonic ages, the ages where gene
expression was found are indicated by the day of embryonic life. The expression level differences among embryonic ages are indicated by “>“/”<“ signs. The last two columns represent in situ
hybridization (ISH) studies and they include the embryonic age and the cells where gene expression was found.
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development known from mouse studies and their corresponding

human phenotypes are listed in Supplementary Table 3.
5.2 Regulation of RGC differentiation

Retinal cell type differentiation sequence is a result of RPC intrinsic

programs and extrinsic cues (48). RPC proliferation and multipotential

state is regulated by Vsx2, Pax6, Six3, Six6, and Sox2 (126). Notch and

Shh signaling keep RPCs in the proliferative state (217). Notch-Delta

signaling maintains the progenitor pool by lateral inhibition (49, 218)

and contributes to the transition from naïve to competent RPCs (145).

When Delta-Serrate-LAG2 ligands from adjacent cells bind to the

Notch extracellular domain, the intracellular domain together with

RBPJ and MAML1 translocates in the nucleus and activates Hes1 and

Hes5 transcription. When ligands and receptors are expressed by the

same cell, the Notch pathway is inhibited. Notch expression is activated

by Sox2 and suppressed by cell type specific factors like Atoh7, Ascl1,

Ptf1a, and Foxn4 (175, 219). Sfrp1/2 also deactivate Notch signaling via

Adam10 (220). miRNAs maintain the RPC competence window for

RGC differentiation (221, 222).

Experiments in zebrafish and chicken have shown that Shh

signaling from the midline and FGF signaling from the OS trigger

RGC differentiation (223, 224). OS derived FGF3 and FGF8 initiate

neurogenesis in the central retina (78, 224). FGF8 is negatively regulated

by retinoic acid (88). Retinoic acid catabolizing enzymes Cyp26a1 and

Cyp26c1 are expressed in an equatorial streak (225) characterized by

higher RGC density (88). Conditional FGFR1/2 double knock-out in

mouse RPCs impairs RGC differentiation onset (97). The FGF–Frs2–
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Shp2 pathway controls RPC proliferation (62, 97, 115). Ikaros is

involved in the production of early RGCs (121, 226).

Once started by FGF signaling, the RGC genesis wave

progresses to the periphery based on Shh signaling, as observed

in zebrafish (227). Brn3b regulated (168) secretion of Shh from

RGCs modulates proliferation and differentiation of RPCs (68) and

is required for the maintenance of the RPC pool (120). Neurogenin2

and Ascl1 are also responsible for the propagation of the RGC

genesis wave (175). Neurogenin2 is expressed ahead of the RGC

wave edge and regulates Atoh7 transcription in RPCs (228).

Secondary RGC genesis from the ciliary margin zone is regulated

by CyclinD2, a cell cycle facilitator (31, 108).

Pax6 activates transcription factors that commit RPC to

different fates so that in absence of Pax6 only amacrine cells are

produced (126). Downstream of Pax6, two proneural transcription

factors are Neurog2 and Atoh7, which is also under the control of

Gdf11 and follistatin (49). Atoh7 expression in RPCs determines

competence acquisition, not RGC fate commitment and its absence

nearly eliminates RGCs (229). Neurog2 and Atoh7 activate RGC

specification transcription factors including Sox4, Sox11, Neurod1,

Brn3b and Isl1 (230). The Atoh7-Brn3b pathway suppresses non-

RGC transcriptional programs and accounts for 70% of RGC

differentiation (123). Brn3b further activates Brn3a, Brn3c,

Eomesodermin, Ebfs, Onecut1, and Onecut2. Isl1 is required for

RGC specification having overlapping targets with Brn3b (168,

231). Ectopic expression of Brn3b and Isl1 from the Atoh7 locus

in Atoh7 knock-out mouse retinas rescues RGC differentiation

(174). Other than Brn3b and Isl1, NeuroD1 or SoxC can also

partly compensate for the absence of Atoh7 (175, 232). Dlx1/2
FIGURE 3

Schematic illustration of RGC axon guidance cues in the E12.5 mouse optic cup and stalk.
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are expressed at transition stages of RGC fate commitment, and are

negatively regulated by Brn3b and Isl1, and the Bmp and Vegf

pathways also contribute to RGC differentiation (175, 233).
5.3 Regulation of RGC axonogenesis

The axons grow directly from the basal aspect of the RGCs

concomitant with apical process detachment (127). Polarized

organization of cytoskeletal structures governed by instrinsic

mechanisms was identified in various neuronal populations prior

to axon emergence (27, 234). RGC axon sprouting is controlled by

integrins and cadherins (22). FGFs stimulate axon generation and

growth in xenopus RGC cultures (235). Experiments in mouse

cortex have shown that apically oriented axon genesis is linked with

the movement of the centrosome apical to the nucleus and that this

polarization is regulated by TGF-beta – LKB1 –BDNF signaling

(127, 236). The orientation is reversed in the retinal

neuroepithelium, which has a basal lamina made of laminin,

collagen IV, nidogen, agrin, condroitin sulfate proteoglycan

(CSPG) and heparan sulfate proteoglycan (HSPG) (114). Laminin

contact directly promotes axon sprouting by stimulating the

accumulation of Kifc560, an early axonal marker, and the

formation of growth cones (127). Glial polarity precedes neuronal

polarity and studies in chicken retina explants have shown that glial

endfeet promote axon formation while glial somata support

dendritic growth (215). As the axon grows, the proximal segment

loses the filopodia and takes a cylindrical shape and the ventricular

process completely disappears (24). In zebrafish, apical retraction

requires Slit1b-Robo3 signaling (237). Dominant negative N-

cadherin expression leads to premature detachment in zebrafish

(237) and blocks RGC axonogenesis in xenopus (18). Brn3b and

Brn3c activate genes involved in axon formation and in their

absence RGC neurites adopt dendrite-like features (152).
5.4 Regulation of growth cone dynamics

Growth cone steering and axon growth imply cytoskeleton

reorganization which is mainly triggered by cell adhesion

molecules (CAMs) (238, 239). Microtubule dynamic is modulated

by several signal transduction pathways mostly based on kinases

(240). Immunoglobulin superfamily CAMs involved (L1CAM,

NCAM1, ALCAM, and CNTN2) activate Erk MAP kinase to

promote axon growth in fasciculation because they are only

expressed on axons, and not on the other substrates (241). RGC

axons grow preferentially on L1CAM compared to extracellular

matrix proteins such as laminin (242). Anti-L1 Fab and anti-NCAM

Fab treatment had different effects on RGC axon growth cones in

culture: direction change and lower growth speed versus increased

elongation speed and premature growth stop respectively (243).

FGF receptor mediated activation of the phospholipase C gamma

cascade is needed for RGC axon growth in response to L1CAM in

mice (242, 244). FGF signaling is also transduced by the Ras/MAPK

and PI3K pathways (40, 115).
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Cadherins are adhesion molecules expressed in the retina that

promote axon growth by homophilic interactions. N-cadherin may

play a dual role: it promotes neurite extension by sequestrating

beta-catenin, and preventing the inhibition of adenomatous

polyposis coli (APC) protein, a positive regulator of neurite

growth. On the other hand, by binding to the cytoplasmic p120

catenin N-cadherin prevents GTPases Cdc42 and Rac1 from actin

remodeling and thus has a growth inhibitory effect that prevents

excessive axon growth at specific locations (245). In rats,

transmembranar cadherins Celsr2 and Celsr3 have opposite

effects on neuron-neuron contact triggered neurite extension

based on homophilic interactions and downstream CAMKII

(calcium/calmodulin-dependent protein kinase II) or calcineurin

induction (246).

Studies in xenopus have revealed that in response to external

cues such as a Netrin1 gradient, asymmetric cap-dependent

translation of beta-actin is activated via phosphorylation of the

translation initiation factor 4EBP, resulting in the pronounced

extension of the filopodia located in the part of the growth cone

exposed to the highest Netrin1 concentration (247).
5.5 Optic disc directionality

At the time of axon emergence, RGCs extend multiple transient

minor processes to probe the environment for guidance cues and

the ones oriented towards the attractive and away from the repellant

cues will develop into the single axon, directed to the optic

disc (243).
5.5.1 Attractive cues
The ONH domain exerts attraction on the RGC axons as

illustrated by the misrouting of RGC axons towards the margins

of the unclosed optic fissure, expressing ONH markers, in Fz5

conditional knock-out mice (94). Netrin-1 on the processes of optic

nerve head glial precursor cells is acting as a chemotactic attractant

for the axons expressing its canonical Dcc receptor (238, 248). DCC

is preferentially expressed by the newly born RGCs that are sending

their axons to the optic disc (182). A central-high/periphery-low

gradient of Shh is also an attractive guidance cue acting on Ptc-

Smoothened, Hedgehog interacting protein (HiP) and Boc

receptors expressed by the RGCs (92, 249). RGCs themselves are

a source of Shh having a dual role in axon guidance and glial cell

development (68). Blocking the FGF receptor or the signal

transduction pathway in rat retina explant cultures causes new

RGC axons to lose the optic disc directionality and to grow towards

the periphery (242).
5.5.2 Repulsive cues
The expression of the repulsive cues is complementary to that of

the attractive cues, namely a periphery-high/central-low gradient

(29). They are either secreted by the lens like Slit2 (250), or they are

produced in the basal lamina in a wave preceeding the peripheral

side of the newly born RGCs as it is the case for chondroitin
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sulphate proteoglycan (CSPG) (243, 251). Repulsive cues are

regulated by transcription factor Zic3, with a periphery-high to

central-low gradient of expression (114).
5.6 Optic nerve fiber layer restriction

5.6.1 Physical substrate
RGC axons grow in a narrow space delineated by RGC cell

bodies and the vitreal basal lamina (the inner limiting membrane)

(35). This space is occupied by the endfeet of glial precursor cells,

similar to the radial glia in the brain, which are organized in a

channel-like structures forming a network that orients the emerging

axons (216). In chicken retina cryocultures, axons preferentially

follow glial precursors endfeet compared to preexisting axons or

laminin (215).

5.6.2 Attractive cues
Contact with glial precursors endfeet and the basal lamina is

maintained on the basis of cell adhesion molecules such as NCAM

and L1CAM as well as extracellular matrix proteins including

Neurolin/DM-GRASP/BEN and NrCAM (29). In chicken retina,

growth cones respond to a CRYPa1 receptor ligand expressed on

the glial precursors endfeet by activation of rac and rho via the Trio

protein resulting in axon growth and maintained contact between

the RGC lamellipodia and the basal membrane (252). Basal

membrane laminin binds to integrin receptors on growth cones

and activate Rac and Cdc42 to promote axon extension (252).

5.6.3 Repulsive cues
RGC growth cones are prevented from entering the deeper

layers of the retina by neuroepithelial precursor cells somas, which

have a repulsive effect on RGC axons but are permissive for RGC

dendrites in cryoculture experiments (35, 253). Slit1 and Slit2 from

the RGC and inner nuclear layers also repel Robo2 expressing RGC

axons and their absence causes RGC axon misrouting in the outer

retinal layers (29, 254–256) . RGC axon fasciculation defects within

the optic nerve fiber layer, together with invasion of the INL, ONL

and subretinal space are also seen in mice missing both Sfrp1 and

Sfrp2 (257) and repulsive signals from pigmented cells in the outer

retina keep the RGC axons from entering the subretinal space

(113, 118).
5.7 Intraretinal fasciculation

Pioneer RGC axons serve as guides for the newly born axons so

that optic disc targeting and nerve fiber layer restriction are

achieved by fasciculation. Transient minor processes of newly

born RGCs contact axons of more mature RGCs (243) and form

bundles mainly based on immunoglobulin superfamily CAMs

trans-homophilic interactions (27, 46). In goldfish, such

molecules include L1, NrCAM or neurolin (258). In addition to

hemophilic interactions, L1CAM also has heterophilic interactions

with integrin receptors (259). FGF receptor blocking causes de-
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fasciculation in rat embryonic retina explant cultures (242).

Transcription factor Irx4 has been shown to play a role in RGC

axon fasciculation by down-regulating Slit1 (260). Inhibitory EphB

proteins contribute to fasciculation in the dorsal retina (261).

Several receptor-l igand pairs have been found to be

complementary expressed in newly born versus maturing RGC

and assumed to contribute to fasciculation (182).
5.8 Entering optic stalk/exiting the
optic cup

5.8.1 Physical substrate
After reaching the ONH region RGC axons pause, make a 90

degrees turn and exit the eye into the OS (262). The optic fissure

margins are in contact and the fusion process is ongoing when the

first RGC axons are exiting the eye (91). The presence of the optic

fissure is essential for RGC axon exit, as demonstrated by the

aberrant projection of axons in the vitreous or in the subretinal

space leading to optic nerve aplasia in Bmp7 knock-out mice

lacking an optic fissure and hyaloid artery (68, 93, 114, 263).

The path of the axons is not in the fissures’ lumen, which is

occupied by the hyaloid artery, but within the neuroepithelial cells

forming its walls (216). Axons are separated from the hyaloid artery

by a laminin sheet (91). In continuity with their retinal homologues,

optic stalk glial precursor cells have processes that form channel-

like networks enclosing the axons (151). The timing of appearance

and propagation of this meshwork of cellular processes is correlated

and preceding the wave of RGC differentiation (216).

A potential physical substrate in the optic stalk is represented

by the rare retinopetal fibers coming from the diencephalon (264).

In the ferret, these fibers are transient and occupy the optic stalk

before the entrance of the pioneer retinofugal axons (265).
5.8.2 Attractive cues
The formation of the channel-like extracellular spaces is

accompanied by cell death (216). NGF secreting macrophages

invade the central retina and optic stalk shortly before RGC axon

emergence to clear cell debris resulted from the apoptosis related to

optic cup morphogenesis (101). The NGF receptors TrkA and

p75NTR are expressed by RGC axons at this developmental stage

(101, 266).

For the molecules expressed in the ONH region it is difficult to

distinguish their role as OC-OS morphogens from the role as axon

guidance cues (114). ONH Pax2 positive cells form a cuff that guides

the axons to the OS keeping them isolated from the RPE domain

(153). They extend processes expressing Netrin1, an attractive cue

acting on Dcc (93). Mutant mice deficient for Netrin1 or Dcc have

optic nerve hypoplasia due to the inability of RGC axons to leave the

eye in spite of having arrived at the ONH (248). R-cadherin is also

an attractive molecule expressed by the ONH cells in chicken (267).

ONH cells identity and function are under the control of Pax2,

Vax1 and Vax2 (93). Shh secreted by early-born RGCs is also

involved in the development of the ONH Pax2 positive cells, so that

its conditional deletion from RGCs in ThyCre Shh null/floxed mice
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is associated with reduced number of axons exiting the eye and

misrouting in the subretinal space (68). The fact that a good number

of axons are still exiting the eye in these mice may indicate that to a

certain extent pioneer RGC axons are able to exit the eye without

attractive cues, only based on optic fissure vicinity (optic fissure

formation is Bmp7 dependent, unaffected in these mice). As RGCs

do not secrete Shh, the differentiation of the ONH cells is impaired

and they do not provide attractive cues for the later born RGC

axons, maybe counting for the misrouting observed. From this we

can infer that pioneer RGC axons enter the optic stalk physically

guided by the closing optic fissure and secrete Shh to make the

ONH produce attractive cues for the later born RGCs.

5.8.3 Repulsive cues
The change in growth direction at the ONH requires reverse

signaling from attraction to repulsion so that axons growing

towards the optic disc do not pass over it attracted by the cues on

its opposite edge, but stop and enter through its center in the optic

stalk. Fasciculation on other L1CAM expressing RGC axons coming

from the opposite side of the retina must also be avoided otherwise

axons are misrouted from one half of the retina to the other (27).

Expression of inhibitory molecules such as EphA4, EphBs, Bmpr1b

and NrCAM counteracts excessive fasciculation or axon stray in the

subretinal space (29, 268).

The response of RGC axons to Netrin1 can be reversed based on

the concomitant signals that regulate the intracellular level of cAMP or

on expression of different Netrin1 receptors (187, 269). Laminin1,

abundant in the basal lamina of the retinal vitreal side and closing optic

fissure margins (91), binds to beta1 integrin receptors and blocks the

cAMP increase induced by Netrin1 in RGCs thus changing Netrin1

attraction to repulsion (32, 262). By this mechanism, axons are guided

away from the vitreal cavity and the optic fissure lumen and towards

the intercellular spaces of the optic stalk neuroepithelium where

laminin is absent and Netrin1 maintains its attractive effect (Figure 3,

neuron represented in orange).
5.9 Traveling along the optic stalk

5.9.1 Physical substrate
In the optic stalk, RGC axons grow mostly in the ventral part,

between non-neuronal cells with processes enwrapping the axon

bundles (256). These cells are differentiated from vOS precursors or

migrated from the diencephalon, as is the case for oligodendrocytes

(118). Small separated bundles travelling between the neuroepithelial

cells as well as independent growth cones are seen at the early stages,

whereas later the optic stalk is occupied by compact axon fascicles with

intermingled astrocyte precursor cells (112, 270).
5.9.2 Attractive cues
Later born axons fasciculate on the more mature ones in tight

bundles (256) based on homophilic L1CAM interaction (243). Vax1

expression in the optic stalk and ventral diencephalon promotes

growth cone progression from the ONH to the chiasm region (30).

Transient retino-retinal projections were identified in multiple species
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including mice, projecting to the nasal retina (271). These misrouted

axons probably come from the chiasm region and wrongly fasciculate

with the fibers from the contralateral optic stalk.

5.9.3 Repulsive cues
While traveling through the optic stalk, RGC axons have to be

prevented from straying away in the surrounding tissues. Netrin1

expression extends from the ONH cells to the OS neuroepithelium

displaced peripherally by the incoming nerve fibers and has a

repulsive effect thus keeping the axons in the center of the OS

(248). Growth promoting Dcc receptor expression in newly born

RGCs is switched to Unc5c and DsCAM on the maturing RGCs

(whose axons are already in the optic stalk), receptors that respond

to Netrin1 signals by inducing growth cone collapse (182, 269).

Another barrier is a ring of Sema5a expression at the basal side of

the optic stalk neuro-epithelial cells with axon growth inhibition

and growth cone collapse effect (272, 273). Repulsive Slit2

expression is also detectable in the OS at the time it is invaded by

RGC axons and is thought to contribute to their restriction to the

ventral side of the OS (256, 273).
6 Discussion

This review harmonizes recent findings with classic studies on

optic cup and stalk morphogenesis and early RGC axon guidance. We

summarized the key molecular determinants of the two processes, as

proven by genetic, immunological or pharmacological manipulations

in animal models and we also extracted a list of genes expressed in

RGCs during the developmental period of early axon path finding,

whose functions in this process remains to be explored in future

studies. The reviewed data orients our current understanding of this

developmental event towards new directions which will be exposed

here along with some unanswered questions that we propose for this

research field.

As it was described in the first paragraphs of this review,

morphogenetic movements bring the precursor tissue of the optic

nerve head from the ventral diencephalic midline region to its final

position, in the center of the neural retina. Such movements have

been documented by software based cell tracking in zebrafish

embryos (274). The RGC pioneer axons will follow almost the

same path, but in the opposite sense, on the way to their next target,

the optic chiasm. Anatomical continuity on this path is maintained

throughout the morphogenesis of the optic cup and stalk by means

of the optic fissure formation. By the time the pioneer RGC axons

approach the optic stalk entrance, the fissure margins grow towards

each-other, come in contact and begin to fuse. There is a narrow slit

left at the OC-OS junction which guides the pioneer axons into the

optic stalk. OS cells have apical – basal polarity, such that certain

permissive cues are present on the lumen side, while repulsive cues

are sequestered in the lateral walls of the epithelium, restricting

penetration (273). Pioneer RGCs differentiate in the dorso-central

retina next to the ONH precursor domain. The spatial and temporal

correlation between ONH morphogenesis and pioneer RGCs

differentiation appears to be essential for the correct pathfinding

of the RGC axons.
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Common trigger signals for the two events are yet to be

identified. As a first evidence, FGF-RA signaling seems to play a

key role in linking optic cup/optic stalk boundary delineation and

optic fissure formation and closure to RGC differentiation (62, 78,

88, 97, 242). However, future work is needed in order to establish

whether RGC axon misrouting caused by disruption of FGF-RA

signaling is the result of ONH development anomalies or of

intrinsic RGC developmental defects.

The interaction between the developing ONH and the emerging

RGC axons is bidirectional. In one direction, the ONH guides RGC

axons based on chemotaxis and haptotaxis. Early born RGCs are able

to respond to the signals coming from the ONH by expressing cell

surface receptors and by activating transcription programs that

promote axon growth and axon steering events. Axons of RGCs

from Atoh7 null mice, kept alive by Bax knock-out, are unable to

target the ONH and to exit the eye in spite of receiving the correct

signals from the target (173). Recently, adult mouse Mueller glia were

reprogrammed to neurogenic state in vitro by virus mediated

expression of Atoh7 (275) and in vivo conditional expression of

Brn3b, Islet1, Ascl1 and Atoh1 resulted in RGC-like neurons with

morphological and electrophysiological RGC properties, which did not

send axons to the ONH in spite of expressing many axon growth and

guidance promoting genes (276). A potential future direction of

research would be to also reprogram optic nerve astrocytes to secrete

axon guidance molecules for the new RGC axons or to engineer the

new RGCs to penetrate the adult lamina cribrosa, by uncovering and

neutralizing the inhibitory cues. Another direction could be to simulate

the physical properties of the closing optic fissure in order to promote

haptotaxis based axon guidance. Experiments with spheroids of human

stem cell-derived motor neurons showed their capacity to

spontaneously assemble into an unidirectional fascicle when cultured

next to a narrow channel (277). Simulating developing ONH

environment locally may be also a solution for promoting RGC

axonogenesis and survival in retinal organoids. Later born axons find

their way to the ONH based on fasciculation on pioneer axons. In

zebrafish retina, late born RGC axons cannot target the OD in the

absence of early RGCs although the OD cues are present (278). This

observation has two possible explanations: the canonical one is that

pioneer axons actively find the ONH region and later born RGCs are

guided passively so that they are not able to actively respond to ONH

attractive cues but an alternative possibility would be that both pioneer

and late born axons are guided passively to the ONH and only the

position of the first RGCs next to the closing optic fissure enables them

to exit the eye. The approaching margins of the optic fissure bringing

the first axons in contact so that they can fasciculate may be enough for

their growth out of the eye. For the RGC axons arriving at the optic disc

after the optic fissure closed there is no physical path out of the eye, so

that chemotaxis and fasciculation are become essential for axon

guidance. Live imaging studies capturing the behavior of these later

born axons at the optic disc are needed to confirm this hypothesis.

Further studies involving desynchronizing optic fissure fusion and

initiation of RGC differentiation or de-localizing the initial RGC

differentiation spot could verify this later hypothesis.

In the other direction, RGCs also influence the ONH development.

The reviewed studies on Shh secretion by RGCs and its role in ONH

cells development as well as retinal precursor cell modulation indicate
Frontiers in Ophthalmology 15
that RGCs actively influence the development of their path to the brain

as well as the surrounding retina. More work in this direction should be

done in order to find all the secreted molecules involved in this

processes and their potential application in RGC regeneration strategies.

In summary, RGC axons follow a centripetal course within the

inner most layer of the retina towards the optic disc and enter the optic

stalk. In spite of the appearance of the mature optic nerve, RGC axons

are not piercing through the wall of the eye, but they are gliding on a

continuous path that is created during the morphogenesis of the optic

nerve. They are guided by chemotaxis and haptotaxis cues provided by

the developing optic cup and stalk and by fasciculation with their more

mature neighbors. A profound understanding of the developmental

events described in this review should encourage the perception of the

eye not as a peripheral sensory organ that later connects with the brain,

but as a continuous extension of the subcortical brain. The developing

ventral diencephalon projects to the surface of the head to capture light

stimuli and attracts back the RGC axons to receive the processed

visual information.
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Paşcalău and Badea 10.3389/fopht.2023.1180142
References
1. Wässle H. Parallel processing in the mammalian retina. Nat Rev Neurosci (2004)
5(10):747–57. doi: 10.1038/nrn1497

2. Rousso DL, Qiao M, Kagan RD, Yamagata M, Palmiter RD, Sanes JR. Two pairs
of ON and OFF retinal ganglion cells are defined by intersectional patterns of
transcription factor expression. Cell Rep (2016) 15(9):1930–44. doi: 10.1016/
j.celrep.2016.04.069

3. Martersteck EM, Hirokawa KE, Evarts M, Bernard A, Duan X, Li Y, et al. Diverse
central projection patterns of retinal ganglion cells. Cell Rep (2017) 18(8):2058–72.
doi: 10.1016/j.celrep.2017.01.075

4. Briggman KL, Helmstaedter M, Denk W. Wiring specificity in the direction-
selectivity circuit of the retina. Nature (2011) 471(7337):183–90. doi: 10.1038/
nature09818

5. Masland RH. The neuronal organization of the retina. Neuron (2012) 76(2):266–
80. doi: 10.1016/j.neuron.2012.10.002

6. Masland RH. The fundamental plan of the retina. Nat Neurosci (2001) 4(9):877–
86. doi: 10.1038/nn0901-877

7. Bae JA, Mu S, Kim JS, Turner NL, Tartavull I, Kemnitz N, et al. Digital museum of
retinal ganglion cells with dense anatomy and physiology. Cell (2018) 173(5):1293–
1306.e19. doi: 10.1016/j.cell.2018.04.040

8. Badea TC, Nathans J. Quantitative analysis of neuronal morphologies in the
mouse retina visualized by using a genetically directed reporter. J Comp Neurol (2004)
480(4):331–51. doi: 10.1002/cne.20304

9. Sun H, Rüttiger L, Lee BB. The spatiotemporal precision of ganglion cell signals: a
comparison of physiological and psychophysical performance with moving gratings.
Vision Res (2004) 44(1):19–33. doi: 10.1016/j.visres.2003.08.017

10. Coombs J, van der List D, Wang GY, Chalupa LM. Morphological properties of
mouse retinal ganglion cells. Neuroscience (2006) 140(1):123–36. doi: 10.1016/
j.neuroscience.2006.02.079

11. Rivlin-Etzion M, Zhou K, Wei W, Elstrott J, Nguyen PL, Barres BA, et al.
Transgenic mice reveal unexpected diversity of on-off direction-selective retinal
ganglion cell subtypes and brain structures involved in motion processing. J Neurosci
(2011) 31(24):8760–9. doi: 10.1523/JNEUROSCI.0564-11.2011

12. Berens P, Euler T. Neuronal diversity in the retina. Neuroforum (2017) 23
(2):431–6. doi: 10.1515/nf-2016-A055

13. Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T. The
functional diversity of retinal ganglion cells in the mouse.Nature (2016) 529(7586):345.
doi: 10.1038/nature16468

14. He S, DongW, Deng Q, Weng S, SunW. Seeing more clearly: recent advances in
understanding retinal circuitry. Science (2003) 302(5644):408–11. doi: 10.1126/
science.1085457

15. Gollisch T, Meister M. Eye smarter than scientists believed: neural computations
in circuits of the retina. Neuron (2010) 65(2):150–64. doi: 10.1016/j.neuron.2009.12.009

16. Ölveczky BP, Baccus SA, Meister M. Segregation of object and background
motion in the retina. Nature (2003) 423(6938):401–8. doi: 10.1038/nature01652

17. Meister M, Berry MJ. The neural code of the retina review a sample problem.
Neuron (1999) 22:435–50. doi: 10.1016/S0896-6273(00)80700-X

18. Riehl R, Johnson K, Bradley R, Grunwald GB, Cornel E, Lilienbaum A, et al.
Cadherin function is required for axon outgrowth in retinal ganglion cells in vivo.
Neuron (1996) 17(5):837–48. doi: 10.1016/S0896-6273(00)80216-0

19. Goetz J, Jessen ZF, Jacobi A, Mani A, Cooler S, Greer D, et al. Unified
classification of mouse retinal ganglion cells using function, morphology, and gene
expression. Cell Rep (2022) 40(2):111040. doi: 10.1016/j.celrep.2022.111040

20. Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I, Hong G, et al. Single-cell
profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective
genes. Neuron (2019) 104(6):1039–1055.e12. doi: 10.1016/j.neuron.2019.11.006

21. Rheaume BA, Jereen A, Bolisetty M, Sajid MS, Yang Y, Renna K, et al. Single cell
transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nat
Commun (2018) 9(1):2759. doi: 10.1038/s41467-018-05134-3

22. Lilienbaum A, Reszka AA, Horwitz AF, Holt CE. Chimeric integrins expressed
in retinal ganglion cells impair process outgrowth in vivo. Mol Cell Neurosci (1995) 6
(2):139–52. doi: 10.1006/mcne.1995.1013

23. Sajgo S, Ali S, Popescu O, Badea TC. Dynamic expression of transcription factor
Brn3b during mouse cranial nerve development. J Comp Neurol (2016) 524(5):1033–61.
doi: 10.1002/cne.23890

24. Hinds JW, Hinds PL. Early ganglion cell differentiation in the mouse retina: an
electron microscopic analysis utilizing serial sections. Dev Biol (1974) 37(2):381–416.
doi: 10.1016/0012-1606(74)90156-0

25. Silver J, Sidman RL. A mechanism for the guidance and topographic patterning of
retinal ganglion cell axons. J CompNeurol (1980) 189(1):101–11. doi: 10.1002/cne.901890106

26. Shekhar K, Whitney IE, Butrus S, Peng YR, Sanes JR. Diversification of
multipotential postmitotic mouse retinal ganglion cell precursors into discrete types.
Elife (2022) 11:e73809. doi: 10.7554/eLife.73809
Frontiers in Ophthalmology 16
27. Oster SF, Deiner M, Birgbauer E, Sretavan DW. Ganglion cell axon pathfinding
in the retina and optic nerve. Semin Cell Dev Biol (2004) 15(1):125–36. doi: 10.1016/
j.semcdb.2003.09.006

28. Herrera E, Erskine L, Morenilla-Palao C. Guidance of retinal axons in mammals.
Semin Cell Dev Biol (2019) 85:48–59. doi: 10.1016/j.semcdb.2017.11.027

29. Erskine L, Herrera E. The retinal ganglion cell axon’s journey: insights into
molecular mechanisms of axon guidance. Dev Biol (2007) 308(1):1–14. doi: 10.1016/
j.ydbio.2007.05.013

30. Erskine L, Herreral E. Connecting the retina to the brain. ASN Neuro (2015) 6
(6):1759091414562107. doi: 10.1177/1759091414562107

31. Mason C, Slavi N. Retinal ganglion cell axon wiring establishing the binocular
circuit. Annu Rev Vision Science (2020) 6:215–36. doi: 10.1146/annurev-vision-091517-

32. Mann F, Harris WA, Holt CE. New views on retinal axon development: a
navigation guide. Int J Dev Biol (2004) 48(8–9):957–64. doi: 10.1387/ijdb.041899fm

33. Sánchez-Camacho C, Bovolenta P. Emerging mechanisms in morphogen-
mediated axon guidance. BioEssays (2009) 31:1013–25. doi: 10.1002/bies.200900063

34. Rebsam A, Petros TJ, Mason CA. Switching retinogeniculate axon laterality
leads to normal targeting but abnormal eye-specific segregation that is activity
dependent. J Neurosci (2009) 29(47):14855–63. doi: 10.1523/JNEUROSCI.3462-
09.2009

35. Stuermer CAO, Bastmeyer M. The retinal axon’s pathfinding to the optic disk.
Prog Neurobiology (2000) 62:197–214. doi: 10.1016/S0301-0082(00)00012-5

36. Petros TJ, Rebsam A, Mason CA. Retinal axon growth at the optic chiasm: to
cross or not to cross. Annu Rev Neurosci (2008) 31:295–315. doi: 10.1146/
annurev.neuro.31.060407.125609

37. Taylor D. Optic nerve axons: life and death before birth. Eye (2005) 19(5):499–
527. doi: 10.1038/sj.eye.6701857

38. Borchert M. Reappraisal of the optic nerve hypoplasia syndrome. J Neuro-
Ophthalmology (2012) 32:58–67. doi: 10.1097/WNO.0b013e31824442b8

39. Bovolenta P, Martinez-Morales JR. Genetics of congenital eye malformations:
insights from chick experimental embryology. Hum Genet Springer Verlag; (2019)
138:1001–6. doi: 10.1007/s00439-018-1900-5

40. Cardozo MJ, Almuedo-Castillo M, Bovolenta P. Patterning the vertebrate retina
with morphogenetic signaling pathways. Neuroscientist. SAGE Publications Inc. (2020)
26:185–96. doi: 10.1177/1073858419874016

41. Cavalheiro S, Yagmurlu K, da Costa MDS, Nicácio JM, Rodrigues TP, Chaddad-
Neto F, et al. Surgical approaches for brainstem tumors in pediatric patients. Child’s
Nerv Syst (2015) 31(10):1815–40. doi: 10.1007/s00381-015-2799-y

42. Hocking JC, Famulski JK, Yoon KH, Widen SA, Bernstein CS, Koch S, et al.
Morphogenetic defects underlie superior coloboma, a newly identified closure disorder
of the dorsal eye. Mol Biol (2018) 14(3):e1007246. doi: 10.1371/journal.pgen.
1007246.g001
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