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MicroRNA-494 augments
fibrotic transformation of
human retinal pigment epithelial
cells and targets p27 with
cell-type specificity

Theodore Leng1,2, Georgia Kamboj1,2, Xiaoyun Sun2,
Heather Chang2, Prisha Davda2, Majesty Greer2,3

and Creed M. Stary1,2*

1Byers Eye Institute at Stanford, Stanford University School of Medicine, Palo Alto, CA, United States,
2Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine,
Stanford, CA, United States, 3Howard University College of Medicine, Washington, DC, United States
Epiretinal membranes (ERMs) are the result of fibro-cellular proliferation that

cause distortion and impairment of central vision. We hypothesized that select

microRNAs (miRs) regulate retinal fibro-proliferation and ERM formation.

Following IRB approval, a pilot study was performed in patients presenting for

retina surgery with and without clinical ERMs. Total RNA was isolated from ERM

tissue and controls from non-ERM vitreous and subjected to miR profiling via

microarray analysis. MiR-494 was identified as the only miR selectively expressed

at significantly greater levels, and in silico analysis identified p27 as a putative

fibroproliferative gene target of miR-494. In vitro testing of miR-494 and p27 in

fibrotic transformation was assessed in spontaneously immortalized human

retinal pigment epithelial (RPE) and human Müller cell lines, stimulated to

transform into a fibroproliferative state via transforming growth factor beta

(TGFb). Fibroproliferative transformation was characterized by de novo cellular

expression of alpha smooth muscle actin (aSMA). In both RPE and Müller cells,

both TGFb and miR-494 mimic decreased p27 expression. In parallel

experiments, transfection with p27 siRNA augmented TGFb-induced aSMA

expression, while only in RPE cells did co-transfection with miR-494 inhibitor

decrease aSMA levels. These results demonstrate that miR-494 augments

fibrotic transformation in both Müller cells and RPEs, however only in RPEs

does miR-494 mediate fibrotic transformation via p27. As p27 is known to

regulate cellular proliferation and differentiation, future studies should extend

clinical testing of miR-494 and/or p27 as a potential novel non-surgical therapy

for ERMs, as well as identify relevant miR-494 targets in Müller cells.
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Introduction

Epiretinal membrane (ERM) formation is a pathological,

vitreoretinal proliferative process that results in distortion and

impairment of central vision. ERMs are common, with a

maximum prevalence of 35% during the 8th decade of life (1). As

such, ERMs remain the third most common indication for pars

plana vitrectomy (2). Surgery can accelerate cataract progression

and can be complicated by retinal tears and rhegmatogenous retinal

detachment. Recurrence is common, up to 21% (2–4), therefore

given the frequency of ERM and the singular invasive treatment

option, further research into alternative treatments and prevention

is warranted.

ERM formation is thought to be the result of transformation of

retinal cells that proliferate into fibrous and contractile tissue over the

macula. Retinal microglia cells secrete transforming growth factor

beta (TGFb) inducing trans-differentiation of Müller glial cells and

retinal pigment epithelial cells (RPEs) to a myofibroblast phenotype

(5). Müller cells, normally found in the inner limiting membrane

(ILM), respond by growing processes toward the vitreous surface,

breaking through the ILM and onto the macular surface (5, 6). There,

they transform to an “activated” phenotype defined by upregulation

of intermediate filaments such as nestin, vimentin, and glial fibrillary

acidic protein (7, 8). RPEs similarly migrate through breaks in the

retina and attach to the macular surface (9) after stimulation by TGFb
to undergo myofibroblastic differentiation (10). Another

characteristic found in ERMs (5, 8) is immunoreactivity for alpha-

smooth muscle actin (aSMA). Activated, myofibroblast-like aSMA+

cells function in producing extracellular matrix and collagen, which

are key features in the transition from a cellular to a contractile

fibrotic ERM. TGFb promotes myofibroblast-like properties

including upregulation of aSMA (11), however the molecular

regulation underpinning TGFb-mediated fibroproliferative

transformation remains unknown.

MicroRNAs (miRs) are small, noncoding RNAs that modulate

gene expression by acting as regulators of their messenger RNA

(mRNA) targets (9, 10) Müller. The translational success of miR-

based therapeutics in preclinical models has led to the successful

development of pharmaceutical therapies for hepatitis C (12) and

liver cancer (13), demonstrating that identification of relevant miR

targets can be critical in the development of novel treatments for

known diseases. Dysregulation in miR biology has been established

as a central mechanism in several ocular diseases (9, 14). In the

present study, we identified miR-494 as upregulated in clinical ERM

samples relative to normal vitreous. Building on this observation,

we therefore assessed in RPEs and Müller cells whether miR-494

plays a role in TFGb-induced fibrotic transformation.

A recent study (15) in hepatocellular carcinoma demonstrated that

elevated miR-494 expression resulted in increased cell proliferation via

targeting and downregulating the cyclin-dependent kinase (CDK)

inhibitor p27. Encoded by the CDKNB1 gene, p27 is a member of

the kinase inhibitory protein (Kip) family (7) and functions as a tumor

suppressor. CDKs regulate checkpoints that coordinate cell cycle

transitions, and p27 regulates the cell cycle through inhibiting CDK

and preventing the progression from G1 to S phase, thereby inhibiting

proliferation (16). In normal retinal cells, p27 is expressed at high levels
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to inhibit cell proliferation, however in ERMs, p27 was observed to be

downregulated (17, 18). Building on these observations, in the present

study we assessed whether p27 plays a role in RPE and Müller cell

fibrotic transformation, and in parallel we tested the hypothesis that

miR-494 regulates fibrotic transformation by targeting p27.
Methods

Clinical ERM sampling and miR analysis

Human research protocols were approved by the Stanford

University Internal Review Board (IRB) and this research

conformed to the tenets of the Declaration of Helsinki. A pilot

study was performed in patients presenting for vitreoretinal surgery

with and without clinical ERMs. Samples of ERMs from patients

and separate patients with normal vitreous for controls were

collected aseptically during surgery in RNAase free 1.5 ml

collection tubes and were immediately frozen with dry ice. Total

RNA was isolated from ERM tissue and from non-ERM vitreous

using TRIzol® (ThermoFisher Scientific, Waltham, MA), and

subjected to miR profiling via NanoString™ nCounter microarray

analysis (#Hu v3, NanoString Technologies Inc., WA, USA) as we

have done previously (19). Geometric mean was used to normalize

the number of hybridized reads of each miR to spiked internal

positive controls, and to the top 100 reads mean (nSolver Analysis

Software 4.0, version 4.0.62, NanoString Technologies Inc.). The

mean of negative controls plus 3 standard deviations (3s) was used
to determine significant difference (19). Patient demographics and

exclusion criteria are presented in Table 1.
Cell cultures

The human Müller cell line Moorfields/Institute of

Ophthalmology- Müller 1 (MIO-M1) was obtained from the UCL

Institute of Ophthalmology, London, UK (20). Immortalized human

RPE cell cultures (ARPE-19) were sourced from ATCC (Manassas,

VA), and obtained as a gift from the laboratory of Dr. Jeffrey

Goldberg (Stanford University, Dept. Ophthalmology, Stanford,

CA). Cells (25-33 passage) were seeded on 24-well plates at 1.5 X

105 density in plating medium consisting of Eagle’s Minimal Essential

Medium (Gibco, Grand Island, NY), supplemented with 10% fetal

bovine serum (Hyclone, Logan, UT). Cultures were maintained at 37°

C in a 5% CO2 incubator until confluent (3-4 days in vitro). Cell

cultures were transformed into a fibroproliferative state via

incubation with 10 ng/ml recombinant human TGFb1 (#PHG9214,

Thermofisher Scientific, Waltham, MA) for 72h. In parallel

experiments Müller and RPE cultures were transfected 24h prior to

TGFb treatment with 50 pmol/well hsa-miR-494-3p mimic

(#4464066, ThermoFisher Scientific), hsa-miR-494-3p inhibitor

(#4464084, ThermoFisher Scientific) or mismatch control sequence

(#4464058, ThermoFisher Scientific), using Lipofectamine 2000

(Invitrogen, Carlsbad, CA) according to the manufacturer’s

protocol. Expression of miR-494 was confirmed by RT-qPCR,

described below. Silencing of p27 was carried out by transfection
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with small interfering RNA to CDKN1B (50 pmol/well, #AM167808,

ThermoFisher Scientific) using Lipofectamine 2000 (Invitrogen). The

efficiency of the knockdown was assessed by quantification of p27

mRNA expression evaluated 24h after transfection via RT-qPCR

(below). For all experiments 3-4 independent cultures were tested as

replicates within each experiment, and the experiment was repeated

3-4 times using cells obtained from different dissections.
Reverse transcription quantitative
polymerase chain reaction (RT-qPCR)

Total RNA was isolated from cells with TRIzol® (ThermoFisher

Scientific). Reverse transcription was performed as previously

described (21) using the TaqMan MicroRNA Reverse

Transcription Kit for miR-494 and total RNA (Applied

Biosystems, Foster City, CA). Predesigned primer/probes for PCR

were obtained from ThermoFisher Scientific for hsa-miR-494

(#02252), U6 small nuclear RNA (U6, #01973), p27 mRNA

(CDKN1B, #4400291) and glyceraldehyde 3-phosphate

dehydrogenase mRNA (GAPDH, #4331182). PCR reactions were

conducted as previously described (21) using the TaqMan® Assay

Kit (Applied Biosystems). Measurements for miR-494 were

normalized to U6 (DCt), those for p27 were normalized to

GAPDH. Comparisons were calculated as the inverse log of the

DDCT from controls (22).
Immunoblotting

Immunoblotting was performed as previously described (23). Cells

were harvested from 24 well plates with 4 wells per treatment group

combined to provide sufficient protein for analysis. Equal amounts of

protein (50mg via BCA Protein Assay, ThermoFisher Scientific) were

then loaded and separated on a 4-12% polyacrylamide gel (Invitrogen),

then electrotransferred to an Immobilon polyvinylidene fluoride

membrane (EMD Millipore Corp. Burlington, MA, USA).
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Membranes were blocked and incubated overnight with primary

antibody against aSMA (#19245, Cell Signaling Technology,

Danvers, MA) and b-actin (1:1000, 926–42,210, LI-COR Bioscience,

Lincoln, NE), washed and then incubated with 1:15,000 secondary

antibodies (LI-COR Bioscience). Immunoreactive bands were

visualized using the LI-COR Odyssey™ infrared imaging system

according to the manufacturer’s protocol. Densitometric analysis of

bands was performed blinded using Image-J software (v1.49b NIH).
Fluorescent immunohistochemistry

In situ protein imaging was performed via fluorescent

immunocytochemistry (IHC) as previously described (5). Cells

were washed once with 0.1% PBS, fixed with ice-cold 4%

paraformaldehyde for 10 min and then washed again three times

with PBS. Afterward, the cells were permeabilized with 0.1% Triton-

X in PBS for 10 min followed by blocking with 5% horse serum

(HyClone) for 1h. Primary antibody against aSMA (#19245, Cell

Signaling Technology) was diluted in blocking buffer and added to

cells and then incubated overnight at 4°C for 24h. Next, cells were

washed three times with PBS, followed by addition of secondary

antibodies (1:10000) and the nuclear dye DAPI (4′,6-diamidino-2-

phenylindole, ThermoFisher Scientific). Cells were imaged with an

automated fluorescent microscope (Etaluma Lumascope 720) at

200x magnification. All imaging was performed using a fixed

excitation intensity, exposure time, and gain, to minimize

variability. No post-imaging processing was performed. An

observer blinded to conditions quantified from 9 images per well

the fluorescence of aSMA normalized to the fluorescence of DAPI.
Statistics

Statistical difference was determined using one-way ANOVA

with Tukey’s post-hoc comparison for experiments with >2 groups

at a single time point or student’s t-test for comparison of two
TABLE 1 Patient characteristics.

Epiretinal Membrane Samples Control (Vitreous Samples)

N (%) 4 (66.7) 2 (33.3%)

Mean Age (SD) 64.5 (1) 62 (11.3)

Mean Visual Acuity (LogMAR (SD)) 0.45 (0.2) 1.1 (1.0)

Gender Female, n (%) 3 (75%) 0 (0%)

Male, n (%) 1 (25%) 2 (100%)

Race White, n (%) 3 (75%) 2 (100%)

Black or African American, n (%) 0 (0%) 0 (0%)

Asian, n (%) 1 (25%) 0 (0%)

Other, n (%) 0 (0%) 0 (0%)

Ethnicity Hispanic or Latino, n (%) 0 (0%) 2 (100%)

Not Hispanic or Latino, n (%) 4 (100%) 0 (0%)
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groups at a single time point. In all tests, P<0.05 was considered

significant. Data reported are means ± SEM.
Results

Elevated expression of miR-494-3p in
clinical ERM samples and in vitro after
TGFb stimulation

In order to identify potential miRs that could be dysregulated in

ERM formation for potential therapeutic targeting, expression profiles

from 4 ERM samples were compared with profiles from 2 vitreous

samples from eyes without ERMs. Heat map (Figure 1A) visually

identified miR-494-3p as the only miR selectively expressed at

significantly greater levels in all ERM tissues compared with control

from a panel of 828 humanmiRs, and validated as significantly elevated

(Figure 1B; p=0.002; CI: 1.23-1.66). At baseline, the human Müller cell

line expressed significantly (p<0.05) greater miR-494 than the human

RPE cell line (Figure 1C), however both cell types responded with

significantly (p<0.05) increased miR-494 expression 24h after

incubation with TGFb (Figure 1D). These results suggest that miR-

494 could be a viable therapeutic target to modulate or mitigate clinical

ERM formation.
TGFb stimulation induces aSMA
expression that can be suppressed by
miR-494 inhibition

To assess the potential mechanistic role of miR-494 in ERM

formation we utilized an established in vitro model of cellular fibrotic

transformation in human RPE andMüller cell lines. Incubation with 10
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ng/ml recombinant human TGFb1 for 72h resulted in significant

(p<0.05) increases in aSMA expression in both human RPE and

Müller cell lines (Figures 2A, B). Treatment with miR-494 inhibitor

significantly decreased miR-494 expression to <5% compared to

mismatch control sequence in both cell types. MiR-494 inhibitor

significantly (p<0.05) reduced aSMA expression in both RPE and

Müller cell lines (Figures 2C, D) suggesting a central role for miR-494

in cellular fibrotic transformation independent of cell type.
The CDK inhibitor p27 regulates fibrotic
transformation in both RPE and Müller
cell lines

In order to identify potential downstream therapeutic targets of

miR-494 we performed an in silico reverse complementarity analysis

and identified p27 as a fibroproliferative gene target of miR-494

(Figure 3A). Incubation with TGFb resulted in significantly (p<0.05)

decreased p27 mRNA expression in both human RPE and Müller cell

lines (Figure 3B). Treatment with miR-494 mimic significantly

increased levels of miR-494 expression (>2000 fold in both cell

types) and resulted in a significant reduction in p27 mRNA

expression in both cell types (Figure 3C). Transfection with p27

siRNA significantly (p<0.05) increased aSMA in both cell types

(Figures 3D, E), indicating that p27 suppression alone can induce

fibrotic transformation in both cell types.
miR-494 modulates fibrotic transformation
via targeting of p27 only in RPE cells

Finally, to investigate direct targeting of p27 by miR-494 we co-

transfected each human cell line with p27 siRNA and miR-494
B C

D

A

FIGURE 1

Expression of miR-494-3p in clinical epiretinal membrane (ERM) samples and in vitro after transforming growth factor beta (TGFb) stimulation in human
Müller cell line and human retinal pigment epithelial cell (RPE) cell lines. Heat map (A) of miR expression profiles and RT-qPCR quantification (B) of miR-494-
3p from 4 ERM samples were compared with profiles from 2 vitreous samples from eyes without ERMs. Expression of miR-494 in human Müller cell line and
human RPE cell line at baseline (C) and 72h after incubation with TGFb (D). Mean ± SEM, * p<0.05 versus RPE or TGFb versus control condition.
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inhibitor. In RPE cells, co-treatment with p27 siRNA resulted in an

additive effect with TGFb-induced aSMA expression (Figures 4A, B).

However, pre-treatment and co-incubation withmiR-494 inhibitor had

no effect on augmented aSMA expression with p27 siRNA

(Figures 4A, B). As miR-494 inhibition failed to provide a protective
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effect against fibrotic transformation with p27 inhibition, this finding

suggests that p27 is a primary mechanistic target of miR-494 in RPE

cell fibrotic transformation. Conversely, in Müller cells, pre-treatment

and co-incubation with miR-494 inhibitor with p27 siRNA resulted in

a significant decrease in TGFb-induced aSMA expression versus p27
A B

DC

FIGURE 2

Effect of alpha smooth muscle actin (aSMA) expression after TGFb stimulation with and without miR-494 inhibition in human Müller cell line and human RPE
cell lines. (A) Quantification of aSMA in human RPE and Müller cell lines by immunoblot (representative blots above) with and without 72h TGFb treatment.
(B) Representative immunofluorescent images of aSMA (red) in human RPE and Müller cell lines with and without 72h TGFb treatment and counterstained
with the nuclear dye 4′,6-diamidino-2-phenylindole (DAPI, blue). (C) Quantification of aSMA in human RPE and Müller cell lines by immunoblot
(representative blots above) after 72h TGFb treatment with and without pre-treatment and co-incubation with miR-494-3p inhibitor. (D) Representative
immunofluorescent images of aSMA (red) in human RPE and Müller cell lines counterstained with the nuclear dye DAPI (blue) after 72h TGFb treatment with
and without pre-treatment and co-incubation with miR-494-3p inhibitor. Mean ± SEM, * p<0.05 TGFb versus control condition.
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siRNA (Figures 4C, D), indicating that miR-494 inhibition could

provide protection against fibrotic transformation via alternative

mechanisms independent of p27.
Discussion

Based on the results of the present study, a proposed cell-type

specific model of miR-494-mediated fibrotic transformation in

Müller and RPE cells is presented in Figure 5. We utilized TGFb
to induce fibrotic transformation in both human Müller and RPE

cell lines to model clinical ERM formation. In both cell types,

incubation with TGFb resulted in de novo expression of aSMA, a

phenotypic marker for fibrotic transformation (24). In the present

study aSMA was selected as a fibrotic marker as it is expressed at

high levels in both RPE and Müller cells allowing for intercellular

comparisons of fibrotic change, versus alternative fibrotic markers

associated ERMs such as glial-fibrillary acidic protein or vimentin

(25) that are instead derived primarily from Müller cells. Increased

aSMA expression provides myofibroblasts with stronger contractile

activity and is more commonly seen in ERMs causing tractional

complications (5, 26). Identifying molecular targets in aSMA

induction and regulation of ERM fibrotic transformation could

provide novel non-invasive therapies for ERM.

Research demonstrating a central role for miRs in molecular

regulation of retina disease is rapidly expanding (27). Several miRs

have been found to be dysregulated in rodent models of age-related

macular degeneration such as miR-146a, miR-17, miR-125b, and miR-

155 (28), linked to cellular processes such as inflammation,

angiogenesis, apoptosis, and phagocytosis. Other miRs have been
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shown to be linked to progression of diabetic retinopathy,

functioning as markers of disease progression (29). In the present

study we identified miR-494 as significantly unregulated in human

ERM samples relative to healthy control vitreous, suggesting a role for

miR-494 in this process. The study was limited in size and scope and

should be validated in larger and more diverse cohorts, at multiple

institutions. However, to support these preliminary observations for

clinical utility of miR-494 as a target for ERMwe demonstrated in both

RPEs and Müller cells that miR-494 mimic functionally induced

aSMA expression, while miR-494 inhibitor had the opposite effect of

preventing TGFb-induced elevations in aSMA. In support of our

present observations, a recent relevant study (30) demonstrated

elevations in miR-494 contributed to cell proliferation and disease

progression in retinoblastoma (5). In other organ systems prior studies

have identified a central role for miR-494 in epithelial to mesenchymal

transition (EMT), a process similar to retinal fibrotic transformation,

including the genitourinary (31–33), gastrointestinal tract (34–36) and

pulmonary systems (37). However, the biologic effects of miRs can be

tissue-type dependent, and miR-494 has been shown to behave either

as an oncogene or a tumor suppressor depending on the organ affected

(15). For example, in colorectal cancer (38) and in non-small cell lung

cancer (5) miR-494 functions as an oncogene to promotes cell

proliferation, while in gastric carcinoma (29) and breast cancer (39)

miR-494 reduces cellular transformation and proliferation. Further

pre-clinical studies in animal models of ERM are warranted to more

accurately assess miR-494 as a functional therapeutic target.

In the present study we also identified a central role for p27 in

fibrotic transformation in both cell lines. Mitogenic factors cause

loss of p27, whereas p27 levels and/or activity increase in response

to differentiation signals. Mice with p27 knockout develop
B C

D

E

A

FIGURE 3

p27 in TGFb-induced fibrotic transformation. (A) Diagram of reverse complementary miR-494 and p27 binding sites. (B) Quantification of p27 mRNA
in human RPE and Müller cell lines with and without TGFb treatment. (C) Quantification of p27 mRNA in human RPE and Müller cell lines with and
without miR-494 mimic treatment. (D) Representative immunofluorescent images of aSMA (red) in human RPE and Müller cell lines with DAPI (blue)
after 72h TGFb treatment with and without pre-treatment and co-incubation with p27 small interfering RNA (siRNA). (E) Quantification of aSMA in
human RPE and Müller cell lines by immunoblot (representative blots left) after 72h TGFb treatment with and without pre-treatment and co-
incubation with p27 siRNA. Mean ± SEM, * p<0.05 versus control condition.
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multiorgan hyperplasia and pituitary tumors (40). Whereas p27

mRNA levels are constant throughout the cell cycle, p27 protein

levels are high in quiescent cells and decrease during G1 phase,

reaching the lowest point in S phase (41). In the present study TGFb
Frontiers in Ophthalmology 07
resulted in a reduction in p27 mRNA, suggesting disruption of

cellular p27 homeostasis and cell cycle regulation. Supporting our

observations, a prior study (17) proposed that downregulation of

p27 could be a contributing cause to Müller cell proliferation.
A B

DC

FIGURE 4

Effect of co-treatment with p27 siRNA and miR-494 inhibitor on TGFb-induced aSMA expression. (A) Quantification of aSMA in RPE cells by
immunoblot (representative blots above) after 72h TGFb treatment with and without pre-treatment and co-incubation with miR-494 inhibitor with
or without p27 siRNA co-transfection. (B) Representative immunofluorescent images of aSMA (red) in RPE cells counterstained with DAPI (blue) after
72h TGFb treatment pre-treatment and co-incubation with miR-494 inhibitor with or without p27 siRNA co-transfection. (C) Quantification of aSMA
in Müller cells by immunoblot (representative blots above) after 72h TGFb treatment with and without pre-treatment and co-incubation with miR-
494 inhibitor with or without p27 siRNA co-transfection. (D) Representative immunofluorescent images of aSMA (red) in Müller cells counterstained
with DAPI (blue) after 72h TGFb treatment pre-treatment and co-incubation with miR-494 inhibitor with or without p27 siRNA co-transfection. Mean
± SEM, * p<0.05 versus control condition. # p<0.05 between select conditions.
frontiersin.org

https://doi.org/10.3389/fopht.2023.1168650
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org


Leng et al. 10.3389/fopht.2023.1168650
Although nuclear p27 has been found to be a tumor suppressor,

cytoplasmic p27 can act as an oncogene and contribute to cancer

metastasis (42). One limitation of the present study is that we did

not account for competing effects between nuclear and cytoplasmic

fractions by determining sub-cellular changes in p27 expression.

Future studies should explore whether sub-cellular p27 targeting

could confer additional advantages over non-specific p27 targeting.

In addition to tissue-type specific effects of miR biology, miRs

also exhibit cell-type specific expression patterns and targeting,

including in the retina (9). For example, single cell RNA sequencing

has revealed that certain miR species are expressed in all retinal cell

types, while others are cell type-specific (9). In the present study we

observed a greater baseline expression of miR-494 in human Müller

cell line compared with human RPE cell line, and a differential

response between cell types to fibrotic transformation with miR-494

mimic and p27 siRNA. In order to investigate whether cell-type

specificity of miR-494 targeting of p27, co-transfection experiments

of p27 siRNA with miR-494 inhibitor revealed that only in RPE cells

is fibrotic transformation mediated by miR-494 via p27 targeting

(Figure 5). Differential gene targeting by an individual miR between

cell types could be the result of differential post-transcriptional

chemical modifications on target mRNAs, including RNA

methylation and acetylation, thereby modulating miR binding

affinity (43). Alternatively, or in combination, alterations in RNA-

binding protein expression could also account for differences in

miR biological activity and gene targeting (44). In addition to

exploring these mechanisms, additional studies should build on

our observations to also identify the relevant miR-494 targets that

regulate downstream fibrotic transformation in Müller cells.

Alternative targets of miR-494 that have been identified in other

organ systems that could potentially regulate retinal fibrotic

transformation in Müller cells include phosphatase and tensin

homolog (31), prolifin-2 (34), WD repeat and HMG-box DNA

binding protein 1 (35), syndecan 1 (36), cullin 4A (33), suppression
Frontiers in Ophthalmology 08
of cytokine signaling 6 (32), YTH N6-methyladenosine RNA

binding protein 2 (37) and ten eleven translocation 1 (45).

Independent of miR-494, we also observed that p27 played a

central role in fibrotic transformation in both cell types (Figure 5).

Future studies also investigating CDK inhibition and/or other cell

cycle regulators as putative therapeutic targets in ERM pathogenesis

are therefore warranted in the search for novel non-surgical ERM

therapies. One limitation of the present study is that experiments

were limited to human cell lines. While human in vitro studies

provide species specific and cell-type specific mechanistic

investigations, future studies could implement a recently

developed in vivo murine model of ERM formation (46) which

would provide advantages of maintaining the retinal intercellular

milieu as well as allowing for genetic manipulation.
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