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Special nuclear layer contacts
between starburst amacrine cells
in the mouse retina

Shang Mu1†, Nicholas L. Turner1,2, William M. Silversmith1,
Chris S. Jordan1, Nico Kemnitz1, Marissa Sorek1, Celia David1,
Devon L. Jones1, Doug Bland1, Merlin Moore1,
Amy Robinson Sterling1 and H. Sebastian Seung1,2*, on behalf of
The Eyewirers‡

1Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States, 2Computer
Science Department, Princeton University, Princeton, NJ, United States
Starburst amacrine cells are a prominent neuron type in the mammalian retina

that has been well-studied for its role in direction-selective information

processing. One specific property of these cells is that their dendrites tightly

stratify at specific depths within the inner plexiform layer (IPL), which, together

with their unique expression of choline acetyltransferase (ChAT), has made them

the most common depth marker for studying other retinal neurons in the IPL.

This stratifying property makes it unexpected that they could routinely have

dendrites reaching into the nuclear layer or that they could have somatic contact

specializations, which is exactly what we have found in this study. Specifically, an

electron microscopic image volume of sufficient size from a mouse retina

provided us with the opportunity to anatomically observe both microscopic

details and collective patterns, and our detailed cell reconstructions revealed

interesting cell-cell contacts between starburst amacrine neurons. The contact

characteristics differ between the respective On and Off starburst amacrine

subpopulations, but both occur within the soma layers, as opposed to their

regular contact laminae within the inner plexiform layer.

KEYWORDS

starburst amacrine cells (SACs), electron microscopy, retina, 3D reconstruction,
perisomatic contact
Introduction

An abundant and well-studied cell type in the mammalian retina is the starburst

amacrine cell (SAC). These are named for the characteristic starburst shape of their

dendritic trees (1, 2). They exist in two homologous subgroups: On SACs have their cell

bodies in the ganglion cell layer and primarily respond to bright light stimuli, whereas Off

SACs have their cell bodies in the inner nuclear layer and are better associated with the

transition of stimuli from light to dark. Initially identified as the acetylcholine-synthesizing
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cells in the retina (2–4), these cells have well-known identifying

molecular labels (5, 6), and their dendrites are narrowly stratified (1,

7), making SACs the most commonly used location-referencing

landmarks for studying cells in the context of the inner plexiform

layer (IPL) of the retina (8, 9).

By densely reconstructing and examining 199 starburst cells

from an electron-microscopically (EM) imaged volume of a mouse

retinal patch (10) in a similar manner to that previously reported

(11–13), we discovered interesting contact patterns.

Specifically, these contacts are located on the cell bodies of other

starburst cells from the same On or Off subgroup. This is surprising

because SACs have their dendrites tightly stratified in the IPL and

normally make synapses and contacts with each other and with

other types of cells via their dendrites within the IPL, as opposed to

in the nuclear layers (14–16). We found morphological

characteristics specific to each of the two respective subpopulations.

Previous studies on SAC dendritic connections have mostly

focused on specific cell examples in relation to their neighbors and

made localized observations on specific dendritic regions of interest

(e.g., 7, 10, 17, 18). Population-level observations, such as those on

spatial somatic arrangements, have largely compared wild-type to

transgenic strains and have not or were unable to comprehensively

inspect individual contact sites or microscopic details (6, 19). Here,

the population of SACs reconstructed at EM resolution within the

same retinal patch provides a perspective on both the global pattern

and microscopic details combined.
Results

Ascending climbing dendrites of Off SACs

We found an interesting type of contact between Off SAC cells

that involves the dendritic termination of one Off SAC and the

soma and/or proximal dendrites of another Off SAC. These

terminating dendrites veer towards the inner nuclear layer (INL)

and, in many cases, travel almost parallel to the light axis

(Figure 1A). This is unexpected because Off SAC dendrites

normally stratify at a particular depth in the inner plexiform layer

(IPL) and also terminate at that depth. The terminating dendrite

often travels in contact with a proximal dendrite of the partner Off

SAC, and if it reaches the partner cell’s soma, it typically spreads

into a lump as it terminates (Figures 1B–D; Supplementary

Figure 2). A majority of Off SAC cells (59 out of 96) in our

dataset display this type of outbound and/or inbound contact

with one or more other Off SAC cells. Within these 59 cells, 38

radiate as many as 3 contacts each (1.3 ± 0.6, mean ± s.d.) to other

cells, and 39 somas receive as many as 4 (1.3 ± 0.6, mean ± s.d.)

contact patches from other cells.

While no obvious pattern was seen (Figure 1E) in these

perisomatically contacting Off-SAC to Off-SAC branches, we do

see that the two cells in each contacting pair are rarely close to each

other in terms of their somatic locations (Figure 1F). This can be

attributed to the fact that in the flat-mount planar view, these

contacts are often located near or at the most distal end of the

dendrites. Of the 52 pairs of contacts we observed, the dendrite was
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reaching for the SAC soma nearest to the originating soma in only

one case, while all other pairs were more than 60mm apart by soma

distance (Figure 1F). In comparison, the density recovery profile

(20) representing the distribution of all Off SAC somas had already

reached a plateau at a distance of approximately 20-25mm
(Figure 1G), indicating that the closest SAC neighbor of a SAC

was almost always less than 20mm away.
Direct contacts and short processes
bridging On SAC somata

We also found interesting contacts at the somas of On SACs.

Retinal neurons from a single-cell-type population, including SACs,

were often considered to be more or less regularly spaced, forming a so-

called mosaic arrangement, and rarely touch each other at the soma (8,

20, 21). However, in a prior study of SAC populations, Whitney et al.

(19) reported a higher number of "close-neighbor pairs" in the ganglion

cell layer (On SACs) than in the inner nuclear layer (Off SACs).

Consistent with this observation, we found On SACs often paired up

next to each other in the ganglion cell layer (Figures 2A, B).

Unexpectedly, we noticed the pairs formed intertwined short twigs at

the contact between the two somas (Figure 2B). In our specimen, 37

out of the 103On SACs formed 19 adjoining pairs, with 14 pairs judged

to have directly abutting somas (Figure 2B and Supplementary Figure

1) and the remaining 5 pairs having dedicated short branch(es)

reaching between the two somas from within the ganglion cell layer

(Figure 2C). We consider two cells as a pair only if one of these two

preceding forms of contact is present, directly within the ganglion cell

layer between the two 3D-reconstructed cells. All pairs have flat-mount

center-to-center soma distances within 17mm, and those for directly

abutting pairs are all within 13mm (9 ± 2, mean ± s.d.). For reference

and comparison, our On (and Off) SAC population has soma

diameters of ~9mm measured spherically, computed from soma

volume as if each soma was a perfect sphere (soma volumes: 413 ±

30 mm3, On SACs; 389 ± 21, Off SACs; mean ± s.d. It should be noted

that there is an uncorrected 7% linear shrinkage from the tissue

preparation for EM imaging in all measurements, as detailed in the

Methods section). The soma diameter of SACs measured under light

microscopy was reported to be 10 (19, 22) to 11 mm (23). All pairs

exhibit twigs intertwined to various degrees, with the least prominent

form being short stubs protruding from the cell body, hugging, or

protruding into the other cell body (Supplementary Figure 1).

Whitney et al. (19) argued that closer neighbor pairs were

formed by cells displaced during development by fascicles of optic

axons and retinal vasculature from their original mosaic-proper

locations. However, we have seen an example pair of two On SAC

somata straddling an optic nerve fascicle, and they still have a

dedicated short process bridging them (Figure 2C). Optic nerve

fascicles can be a hindrance to forming pairs of cells abutting each

other and are therefore unlikely to be the cause of such formations.

Another pair wrapped around a blood vessel, covering about 200

degrees of the blood vessel’s cross-sectional circumference. The

blood vessel failed to cleanly separate the two somas, which

remained touching hands (data not shown). Combined with the

intertwined twig-like structures present in all pairs, these
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observations suggest that the formation of pairs may have

functional or developmental significance. The occurrence of pairs

was also reported in the rabbit in the ganglion cell layer (On SACs)

and not in the inner nuclear layer (Off SACs) (24), and similar

higher rates of occurrence in the ganglion cell layer can be observed

from published figures and images for cat retina (Figure 4 in 21) and

rabbit retina (25; Figure 7 in 26).
Frontiers in Ophthalmology 03
Discussion

Off SAC perisomatic contacts

Ray et al. (6) studied SAC development and reported that Off

SACs establish dendrite-soma contacts during radial migration and

assume transitory bi-laminar dendritic morphology that includes a
FIGURE 1

Off SAC contact pattern. (A) Tangential view of a 3D-reconstructed Off SAC. An ascending dendrite (arrow) veers off from the dendritic stratification
and into the inner nuclear layer (INL). (B–D) In each of these 3D perspective views, attached to the soma or basal dendrite of an Off SAC, we see
ascending dendrites (arrows) from other Off SACs like in (A), usually climbing along the perisomatic dendrite. (E) Spatial distribution of the somatic
origin and attachment points of these ascending dendrites in the retinal patch (flat-mount view). Each line represents the dendritic branch starting
from the originating cell’s soma (the bare end of the line) and grasping onto the targeted cell’s perisomatic membrane (the bulged end of the line as
a dot); black triangles are soma locations of all reconstructed Off SACs with soma inside the retinal patch. (F) Histogram showing the distribution of
these ascending dendrites’ dendritic reach, defined as the planar distance from the ascending dendrite’s originating soma to the soma where it
terminates. Minimum, quartiles, and maximum: 9, 81, 97, 104, and 137 mm. (G) The density recovery profile, for all Off SAC somas, regardless of
whether any ascending dendrite contact or not, is defined as the average density of somas at given distances from any given soma (20). (H) A mini
region of the plasma-membrane-stained retina sample, shown as a sectional electron micrograph near the locations pointed to in (D), overlaid with
the respective reconstructed cells’ colors matching panel (D). Scale bars: 50mm (A); 100mm (E); 3mm (H).
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soma-layer lamina with soma-layer SAC-SAC contacts upon

completion of the migration. These soma-layer contacts, however,

are mostly eliminated by day P3. It is possible that the dendrite-soma

contacts we observed are remnants of these developmental processes.

The retinal datasetwehave is fromawild-type (C57BL/6)mouseof age

P29 (10). On the other hand, the perisomatic contacts we observed

were rarely (1 out of 52, Figures 1F, E) between two close-by

neighboring Off starburst cells. These ascending dendrites are

usually far away from their originating somata and are close to, or

themselves are, the far terminating tip of the SAC dendrite carrying

them. There are therefore usually several cell bodies of other starburst

cells between the two cell bodies of the contactingpair of this kind. This

is in contrast to the soma-layer contacts that Ray et al. (6) reported,

which were exclusively between neighboring SACs.

SACs are particularly important for direction-selective

information processing in the retina. Within individual starburst

cells, different dendrites are known to function quite independently

of eachother in experiments examining light-evoked responses (17, 18,

27, 28). The occurrence of our ascending-dendrite contacts becomes

quite rare if we compare against the total number of distal dendrites

rather than the number of cells, i.e., if wewere to regard these dendrites

just like other (independently functioning) distal dendrites and if they
Frontiers in Ophthalmology 04
relay and compute just the same kind of information a regular SAC

distal dendrite relays. This rareness and perceived insignificant

contribution can call for an argument that light-invoked responses

are less likely to be the affected functional targets, except for perhaps

long-range interactions across the retina or extremely local

information where a single ascending dendrite should dominate all.

This known functional independence of individual dendrites

pertains to light stimuli (with spatial details) but does not preclude

potentially non-independent regulatory functions, for example, for

developmental purposes. The fact that these contacts are on the cell

bodies hints at a more cell-centric function than a local dendritic-

centric function.

Not all Off SAC cells were observed to have this type of contact

on them. However, with the extremely high coverage factor of

starburst cells in the retina (exceeding 30; 29), just a small portion of

these cells would already have the capacity to cover the entire retina.
On SAC short bridging processes

In Ray et al. (6), similar to Off SAC dendrite-soma contacts, On

SACs also made soma layer projections between days P0 and P3
FIGURE 2

On SAC distribution and contacts. (A) Distribution of On SAC somas (colored objects are the 3D-reconstructed full or partial somas) in a flat-mount
view of the retinal patch. (B) A pair of contacting On SACs form twigs at their soma contact (also in the background are somas of other On SACs,
often incompletely reconstructed due to dataset boundaries). (C) A pair of On SACs that were next to each other in flat-mount view (top) did not
have direct soma contact but were instead bridged by a short process between the somas (additional views in the middle and bottom panels). The
two somas were separated by an axon bundle (illustrated by a cylindrical shape overlay within the bottom left panel) of retinal ganglion cells. Scale
bars: 100mm (A); 50mm (C).
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that contacted neighboring SAC somata. The transcellular signaling

protein Megf10 was found to promote the formation of the

dendritic sublayer within the inner plexiform layer and the

elimination of arbor projections in the soma layer by P3. The

same protein additionally controlled the development of proper

mosaic spacing of somas beyond P3 (6, 23). It is possible that the

bridging processes we found were to help push neighboring somas

apart before they eventually degenerate or retract, but such a

possibility is remote given that the somata in these pairs we saw

were all immediately adjacent to each other in the flat-mount

projection view, constituting a gross violation of the frequently

acknowledged near-soma dead zone (20, 30) or mosaic rule (25, 31).

Abutting On SAC soma pairs were not specifically reported by Kay

et al. (23) but were indeed visible and frequent in Figure S3 for wild-

type mice, making our observations consistent with theirs.

Ray et al. (6) additionally observed single unbranched processes

extending from the somata, ~180˚ away from the IPL. These 180˚

arbors were reported to be sometimes still present in P5 SACs and

were considered to be fundamentally different from the tangentially

projecting soma-layer neurites in the developing retina. The

bridging processes in our P29 retina are also unbranched and in

principle could also potentially be related to this second class of

unusual processes.

With only morphological and patterning information available

from this dataset, we can only speculate about the function or origin of

these soma-layer contacts between close neighbors. Interestingly, a

recent report documented that a fraction of On SACs fire (sodium-

channel mediated) action potentials during cholinergic and

glutamatergic retinal waves in the postnatal days. Specifically, only

On SACs, and not Off SACs, were found to exhibit this spiking

property, although the proportion of the firing subset decreases with

age (32). We speculate that the shorter distance and the intertwined

twigs in ourOn SACpairs may be related to this spiking phenomenon

by way of better electrical coupling between these cells, which are

known to be mutually excitative in the postnatal days to generate the

retinal waves (33). Non-synaptic cell-to-cell communication via

nanotubules has been reported in various cell cultures (34, 35), and

can form between cultured neurons (36, 37), and was recently

reportedly found in situ between an astrocyte and a cortical neuron

(38). However, it is unclear why the twigs between our On SAC cells

would often need to be tortuous, entangled, and spatially clustered if

they were nanotubules. These twigs at the contact surface or the end of

short processes are perhaps more consistent with the morphologies of

some of the synaptic invaginations in certain specialized forms of

synapses (Supplementary Figure 1) (39, 40).

For mammalian retinal cells, there have been a few reports of

perisomatic contact specializations or synapses. These include

synapses from photoreceptor somata (41, 42), ribbon synapses from

calbindin-positive rabbit ON cone bipolar cells (43), and somato-

dendritic, somato-somatic, and dendro-somatic synapses from

amacrine cells to amacrine cells, bipolar cells, and ganglion cells of

non-specific types (44–47). Tyrosine hydroxylase positive (TH+)

amacrine cells assemble perisomatic rings on multiple retinal

amacrine cell types, including on SACs and characteristically on AII

amacrine cells (48, 49). AII amacrine cells in turn form somatic synapses

onto both sustained and transient Off-alpha ganglion cells (50). Both an
Frontiers in Ophthalmology 05
Off-alpha and an Off-beta ganglion cell from a cat retina were found to

receive amacrine cell synapses on their somata, whichwere presumed to

be inhibitory (51).Mouse On-Off direction-selective ganglion cells have

been identified to receive GABAergic somatic innervation from

amacrine cells (52–54). A recently identified sparsely branched SB3

ganglion cell (55) and a bistratified GABAergic amacrine cell (56) in a

rabbit retina received amacrine cell inputs on their somata. Lastly, it was

recently demonstrated that TH+ cells in rat retinas have both excitatory

and inhibitory synaptic receptor-expressing sites on their somatic

surfaces (57). In our image volume, another form of perisomatic

contact we have observed in a few cases was long-range traversing

beaded single branches, making contact on somata of Off SACs and

other amacrine cell types, possibly originating from TH+ cells. In the

brain, perisomatic synapses are relativelywell-knownfor theGABAergic

network, especially the perisomatic clusters and rings (baskets) formed

by basket cells (58).

Our reconstruction is known to be incomplete within the nuclear

layers due to the dataset boundary and because the automated

convolutional neural network algorithm that facilitated our

reconstruction was not especially well-trained for the deep nuclear

regions. The branches inboth cases of the SACsubpopulations are thin

and can bemissed due to staining gaps or just proofreading oversights.

For the On SACs, it is possible and likely that we missed some of the

connecting branches, especially overpassing the data boundaries at the

ganglion cell layer. For the Off SACs, it is also possible that we missed

certain contacting patches if these dendrites reach well into the inner

nuclear layer. However, the novel contacts we found are still abundant

and are not unique cases of randommutations.

While it is not entirely surprising that electron microscopic

reconstructions give finer views into the complex network of

neuronal connections, we were still amazed by these novel

contacts that had not been reported by prior studies. We believe

the reasons why these were never reported before are twofold: first,

in light microscopy, these cells need to be filled sparsely or

differentially in order for these climbing dendrites and contacts to

be seen, and staining efficiency and the signal-to-noise ratio become

limiting factors in recognizing these contacts at the far-tip. Electron

microscopy does not have these limitations but is typically done in

tiny volumes. Second, neither light nor electron microscopy was

traditionally volumetric, and these contacts only become apparent

when a fully 3D visualization is employed, which is advantageous

compared to single-section visualizations.

Due tohistorical reasons, this particular electronmicroscopy (EM)

volumeweuseddidnot have intracellular staining, andwewereunable

to identify these nuclear-layer contacts as synaptic or otherwise

(Figure 1H). Further studies of the subcellular structure and

molecular identities are warranted for these special SAC-SAC

contact sites.
Methods

EM image volume

The raw EM dataset was the e2198 volume from 10. Briefly, the

dataset was from the retina of a P29 wild-type C57BL/6 mouse, and
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the tissue was fixed and specifically stained for plasma membranes.

A 0.3 × 0.35 mm2 patch of retinal tissue was imaged by serial block-

face electron microscopy from the ganglion cell layer to the inner

nuclear layer and resulted in the e2198 EM volume with a spatial

resolution of 16.5 × 16.5 × 23 nm/voxel. After examining the

dimensions from previous two-photon calcium imaging

microscopy of the same retinal tissue in the live state (10, 13), we

found a tissue shrinkage of approximately 7% due to the

preparation for EM imaging. Consistent with all previous

publications using this EM volume, we chose to report all

dimensions without correction for this shrinkage factor. Plasma

membranes appear dark in the image volume, but intra-cellular

membranes or organelles were not visible.
Neuron reconstruction

Neurons were mostly reconstructed using the online citizen

science game Eyewire.org, as reported in previous publications (11–

13), and as part of more recent campaigns in the game. Additional

efforts were also made to search for characteristic Off SAC patches

and climbing dendrites on some somas where no incoming SAC

contact had yet been observed; when such patches or dendrites were

found, their locations were inserted into the Eyewire system as seeds

for reconstruction. A small number of these found instances were

back-traced to existing SAC reconstructions where the branches

had previously been missed or mistaken for reconstruction errors

due to their unusual course of extension. A number of them resulted

in the reconstruction of full starburst cells that had not yet been

reconstructed in the normal course of campaigns in the Eyewire

game at the time.

Soma size computations were performed in the same manner as

described in 13.
Density recovery profile of Off
SAC somas

We computed the density recovery profile (20) in (Figure 1G)

using all Off SAC somas as reference points, including those closer

to the dataset boundary.

First, we computed all pairwise flat-mount planar distances

between Off SAC somas and binned them into 5mm bins. Without

normalization, this would result in a traditional histogram plot. We

thennormalized each bin count bydividing it by the area of the rings at

the given planar distance from SAC somas in the dataset (respecting

dataset boundaries, as seen below), thereby obtaining the density

recovery profile. Each pairwise distance was counted twice due to the

symmetric relationship between the two members of each pair.

For the inclusion of somas closer to the boundary, we did not

use the method of correction factors (20), which uses mean effective

sampling areas and relies on the assumption of a relatively uniform

distribution of reference points, which would be entirely reasonable

if the number of reference points was large enough. Instead, the

concentric annuluses centered at each soma location were
Frontiers in Ophthalmology 06
intersected with the bounding rectangle of the soma centers of

these SACs, to produce the actual intersection areas which are used

for the normalization described in the previous paragraph.
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