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Aberration in myeloid-derived
pro-angiogenic cells in type-2
diabetes mellitus; implication for
diabetic retinopathy?
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Purpose:Diabetic retinopathy (DR) is a major microvascular complication of type

2 diabetes mellitus (T2DM). Myelomonocytic proangiogenic cells (PAC) have

been implicated in DR pathogenesis, but their functional and developmental

abnormalities are unclear. In this study we assessed PAC characteristics from

healthy controls, T2DM patients with DR (DR) and without (NoDR) in order to

determine the consequence of the diabetic condition on PAC phenotype and

function, and whether these differ between DR and NoDR patients.

Methods: PAC were generated by culturing PBMC on fibronectin coating and

then immunophenotyped using flow cytometry. Furthermore, cells were sorted

based on CD14, CD105, and CD133 expression and added to an in vitro 3-D

endothelial tubule formation assay, containing GFP-expressing human retinal

endothelial cells (REC), pericytes, and pro-angiogenic growth factors. Tubule

formation was quantified by fluorescence microscopy and image analysis.

Moreover, sorted populations were analyzed for angiogenic mediator

production using a multiplex assay.

Results: The expression of CD16, CD105 and CD31, but not CD133, was lower in

PAC from T2DM patients with or without DR. Myeloid and non-myeloid T2DM-

derived sorted populations increased REC angiogenesis in vitro as compared to

control cultures. They also showed increased S100A8 secretion, decreased

VEGF-A secretion, and similar levels of IL-8, HGF, and IL-3 as compared to

healthy control (HC)-derived cell populations.

Conclusion: T2DM PAC are phenotypically and functionally altered compared to

PAC from HC. Differences between DR and NoDR PAC are limited. We propose

that impaired T2DM PAC provide inadequate vascular support and promote

compensatory, albeit pathological, retinal neovascularization.

KEYWORDS

diabetic retinopathy, myeloid-derived pro-angiogenic cells, retinal endothelial cells, in
vitro angiogenesis, microvascular dysfunction
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Introduction

Angiogenesis, i.e. the formation of new capillaries from pre-

existing blood vessels, plays an ambiguous role in the pathogenesis

of vascular dysfunction in diabetes mellitus (DM) (1). Diabetic

retinopathy (DR) is a serious ocular complication of DM

characterized by excessive angiogenesis in the retina, especially in

the late stage of the disease. It is one of the main manifestations of

microvascular dysfunction in type 2 diabetes mellitus (T2DM) and

leads to eye hemorrhages and vision loss. Although DR is thought to

be initiated by local tissue inflammation and hypoxia (2), systemic

factors influencing immune cell function and their interaction with

endothelial cells (EC) seem to play a significant role as well.

Myeloid cells, in particular monocytes and macrophages, closely

interrelate with EC and contribute to vascular homeostasis in both

healthy and diseased situations (3). Myeloid-derived pro-angiogenic

cells (PAC), formerly termed “endothelial progenitor cells” or

circulating angiogenic cells, are believed to have a supportive effect

on vascular homeostasis (4). The monocytic origin of PAC is

confirmed by several studies (5–7), although approaches for

generating these cells in vitro from peripheral blood mononuclear

cells (PBMC) differ between studies, as do the functional and

phenotypic definitions (4, 8–10). Nonetheless, most investigators in

the field classify PAC as a subset of monocyte-derived cells with

CD14+CD16+ phenotype, which co-express hematopoietic and

endothelial markers and possess M2-macrophage-like features (11).

A deficit in the formation of these cells has been reported previously

in diabetes, in association with diabetic vascular dysfunctions (12, 13).

This, on the one hand, is in line with the macrovascular dysfunction

in diabetes, but on the other hand is seemingly contradictory to the

excessive, dysregulated angiogenesis in DR. Therefore, it is vital to

shed more light on the biology of PAC in terms of their phenotype

and angiogenic properties in DR. This might give a better

understanding of the aberrant retinal vessel formation in DR and

eventually provide targets for therapy.

In this study, we focus on the phenotype and pro-angiogenic

capacity of PAC in patients with T2DM with or without DR.

Specifically, we approach the question whether PAC from T2DM

patients with or without DR are phenotypically and functionally

different from healthy PAC, and whether these alterations correlate

to the microvascular dysfunctions in DR. To this end, we determine

the immunophenotype of PAC using flow cytometry-based

detection of monocyte marker CD14, stem/progenitor cell marker
Frontiers in Ophthalmology 02
CD133, and angiogenic markers CD105 and CD31, as identifying

parameters for genuine PAC (11). Alongside, we assess the pro-

angiogenic function of PAC in a 3-D tubule formation assay of

retinal endothelial cells (REC), and evaluate PAC for the production

of a selected panel of angiogenic mediators, with the final goal of

increasing our understanding of the biology of PAC in DR.
Materials and methods

Study design and patients

Patients with T2DM referred to the Rotterdam Eye Hospital or

the Department of Ophthalmology, Erasmus MC, were included

and, based on their clinical diagnosis, assigned to one of the

following groups: T2DM without DR (NoDR), with non-

proliferative DR (NPDR) or with proliferative DR (PDR). This

diagnosis was established according to the international disease

severity scale based on the early treatment diabetic retinopathy

study (ETDRS) classification (14). Healthy controls (HC) were

recruited from blood bank donors (Sanquin, Amsterdam, the

Netherlands) and hospital staff. HC did not have a history of

systemic inflammation or inflammatory eye disease and were not

under any specific diet or medication. In accordance with ADA-

and WHO- guidelines, diabetes was defined as a fasting plasma

glucose ≥ 7.0 mmol/L and/or a non-fasting plasma glucose level ≥

11.1 mmol/l and/or treatment with oral glucose-lowering

medication or insulin or the diagnosis of T2DM registered by a

medical specialist. Patients with type 1 diabetes mellitus or other

types of DM were excluded from the study. Written informed

consent was obtained from all participants.

T2DM patients without DR (NoDR) did not have retinal

alterations seen with ophthalmoscopy. T2DM patients with

NPDR displayed more than one of the following retinal

alterations: microaneurysms, blood, hard exudates, cotton wool

spots, venous looping or beading, and IRMAs (intraretinal

microvascular abnormalities). T2DM patients with PDR exhibited

vitreous or pre-retinal hemorrhage with neovascularization of the

disc or elsewhere. The study was approved by the local medical

ethics committee of Erasmus MC (MEC-2018-148 and MEC-2016-

202) and conducted in accordance with the ethical principles of the

Declaration of Helsinki. Demographic data of the study cohort are

summarized in Table 1.
TABLE 1 Demographic data from the participants included in the study.

Demographics T2DM + NoDR
(n = 13)

T2DM + DR
(n = 48)

Healthy control
(n = 17)

Male, n (%) 10 (77%) 28 (58%) Not available

Age range in years, mean ± SD 59 – 84, 75 ± 9.5 48 – 91, 69 ± 10 Not available

BMI (mean ± SD) 29.4 ± 4.3 29.7 ± 5.9 Not available

Disease duration in years,
mean ± SD

8 – 22,16 ± 6 9 – 40,18 ± 8 Not applicable

Insulin injection 2 (15%) 21 (45%) Not applicable
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PBMC isolation

Human peripheral blood from participants was collected in

heparin tubes and peripheral blood mononuclear cells (PBMC)

were isolated through standard Ficoll-Paque gradient

centrifugation (15). PBMC were transferred into new tubes,

washed with phosphate-buffered saline (PBS), and centrifuged

(10 min at 760 × g). Cell pellets were resuspended in RPMI

freezing medium containing 40% fetal bovine serum (FBS,

Gibco) + 10% dimethyl sulfoxide (DMSO, Sigma-Aldrich, St

Louis, MO, USA) and stored in liquid nitrogen until

further use.
In vitro PAC formation

PBMC isolated from patients and healthy donors were thawed

and resuspended in M199, Earle’s Salts medium (Gibco™, cat #

11150059) supplemented with 2% FBS and then plated on fibronectin-

coated 12-well culture plates (2 × 106 cells/ml per well) or 48-well

culture plates (0.4 × 106 cells/200 µl per well) for cell sorting and flow

cytometric phenotype analysis, respectively. After 4 days of culture,

cell morphology was examined at 20× magnification using an

Axiovert 100 light microscope (Zeiss, Oberkochen, Germany). Next,

the culture supernatant was discarded and the adhered cells were

harvested using 30 minutes of incubation with cold PBS + 1 mM

EDTA. Harvested cells were washed with staining buffer

(MACSima™ running buffer, Miltenyi Biotec, Bergisch Gladbach,

Germany) and exposed to optimally titrated anti-human monoclonal

fluorescent antibodies at 4°C in a dark environment, according to the

manufacturer’s instructions. The following antibodies were used:

CD14-PE-Cy7 (61D3, eBioscience™), CD16 (FcgRIII)-APC-Cy7
(3G8 (RUO), BD Pharmingen™), CD105 (endoglin)-APC (166707,

R&D systems), CD133-PE (170411, R&D systems), CD163-PerCP

(GHI/61, eBioscience™), CD31 (PECAM-1)-PerCP (WM59,

BioLegend), anti-HLA-DR (MHC class II)-FITC (G46-6, BD

Pharmingen™) and CD206-FITC (15-2, MRC1; BioLegend). For

cell sorting, the cells were stained with fluorescent CD14, CD105,

and CD133 antibodies. After 20 minutes of incubation, the cells were

washed and resuspended in 200 µl staining buffer.
PAC detection

Surface marker expression was measured using a FACScanto™II

cell analyzer (BD Biosciences, Piscataway, NJ, USA). Viable cells were

gated and data were analyzed using FlowJo software (Tree Star,

Ashland, OR, USA). At least 10,000 events were acquired per sample

(gating strategy is available in Figure S1). Cell sorting was performed

using a FACSAria-III machine. Based on CD14, CD105, and CD133

expression we sorted the following cell populations (1): all cells (total

live singlets as total PBMC-derived population), (2) non-myeloid

CD14- (CD14-CD105-CD133-), (3) myeloid CD14+DN

(CD14+CD105-CD133-) and (4) myeloid CD14+DP (PAC,
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CD14+CD105+CD133+) both directly on top of the wells of the

tubule assay plate (500 cells/well) and in separate FACS tubes (105

cells/tube) for further overnight culture (Figure S2).
3-D in vitro tubule formation assay

To explore the effect of PAC on REC vessel formation we made

use of a three-dimensional retinal tubule formation assay as

described previously (16). Briefly, GFP-expressing human REC

(cat # ACBRI 181, Cell Systems, Troisdorf, Germany) were co-

cultured with human brain vascular pericytes (cat # SCC1200-KIT,

Sciencell research, San Diego, USA) in a collagen matrix (bovine

collagen type-1, Gibco™, cat # A1064401) in the presence of three

pro-angiogenic growth factors (interleukin (IL)-3, stem cell factor

(SCF), and stromal cell-derived factor-1a (SDF-1a); R&D Systems,

Abingdon, UK; each at 25 or 200 ng/ml as indicated in the text.

After 24 hours, successful sprouting of EC was typically observed

and then sorted PAC subpopulations were added on top of the wells

in four replicates. The tubule formation of the REC was imaged 4

days after the initiation of the culture, hence 3 days after adding the

sorted PAC populations, using 20x magnification of an inverted

fluorescence microscope (Olympus SC30, Shinjuku, Japan), and the

total surface area was quantified by FIJI software (version

1.51n) (16).
Pro-angiogenic factor measurement

To assess the production capacity of pro-angiogenic factors,

sorted subpopulations derived from the PAC cultures were kept

overnight in 2% BSA-containing RPMI medium (105 cells/100 µl) in

a round bottom 96-well culture plate. Production of the pro-

angiogenic factors FABP4, HGF, IL-3, IL-8, S100A8, SCF, SDF-

1a and, VEGF-A was measured using a Luminex multiplex bead

immunoassay (R&D systems, Abdingdon, UK), according to the

manufacturer’s instruction. The data acquisition was performed on

a BioPlex MAGPIX machine and data were analyzed applying Bio-

Plex Manager MP software (Bio-Rad, Hercules, California, USA).
Statistics

All statistical analyses were performed using GraphPad Prism

(version 5.04). To identify significant differences between different

experimental conditions, student T-test, non-parametric Mann

Whitney U T-test, or one-way ANOVA followed by a post-hoc

Bonferroni or Tukey multiple comparison test were used,

depending on normality of the obtained data. A P value < 0.05

was considered to indicate a statistically significant difference. All

data are presented as means ± standard error of the mean (SEM). A

principal component analysis (PCA) biplot was created using the

prcomp() function in R Studio version 4.2.1, and the ggbiplot2

package was applied to visualize the results.
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Results

Monocytes from patients with T2DM show
altered PAC formation compared to
healthy controls

We generated monocyte-derived PAC with the characteristic

spindle-shape morphology from 33 T2DM patients and 14 controls

(black arrow in Figure 1A). Although the frequencies of monocyte-

derived cells were comparable between the groups following culture

(Figure 1B), formation of spindle-shaped cells was reduced

apparently in both T2DM patients with and without DR, in

comparison with healthy controls.

Altered PAC development in T2DM was confirmed

phenotypically by Principle Component Analysis (PCA) based on

expression of six surface markers (CD14, CD16, CD105, CD31,

CD133 and HLA-DR). This clearly separated T2DM PAC fromHC,

and with more distance of the NoDR than the DR group from HC

(Figure 1C). This could be primarily attributed to decreased

expression of CD16 (P = 0.01) as well as of endothelial markers

CD105 (P < 0.0001) and CD31 (P = 0.01) that was significantly

lower among CD14+ monocyte-derived cells in patients with

T2DM compared to controls (Figure 1D). There was, however, no

clear distinction between PAC from NoDR, NPDR and PDR

patients (Figure S3). Expression of PAC marker CD133, M2-

macrophage markers CD163 and CD206, as well as HLA-DR did

not differ between PAC from T2DM patients and HC PAC.

Accordingly, we conclude from these data that PAC generated
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from patients with T2DM have an altered phenotype compared to

those generated from non-diabetic controls.
Monocyte-derived PAC from T2DM
patients and HC differentially affect
in vitro angiogenesis

The pro-angiogenic capacity of myeloid-derived PAC from HC

and T2DM patients with or without DR was examined in an in vitro

3-D tubule formation model specifically adapted to assess REC

angiogenesis (16). To that end, three subpopulations of cells were

sorted from T2DM patient- and HC-PAC cultures (Figure S2)

based on their differential expression of CD14, CD105, and CD133.

Also the total PBMC-derived population, comprising both

lymphoid and monocyte-related cells, was sorted and assessed.

These flow-sorted PBMC culture-derived populations (i.e. CD14–

CD105–CD133– (CD14–), CD14+CD105–CD133– (CD14+DN) and

CD14+CD105+CD133+ (CD14+DP – PAC)) were added to

sprouting REC – pericyte co-cultures, and stimulated with low

concentrations of angiogenic growth factors (lo-GF) (Figure 2). As a

control for optimal angiogenesis, REC cultures were stimulated with

high concentrations of growth factors (hi-GF) without exogenous

cells. This showed an approximate 2.5 –fold increase in tubule

formation. From the three sorted populations harvested from

PBMC cultures, all T2DM-derived myeloid populations (i.e.

CD14+CD105–CD133– (CD14+DN) and CD14+CD105+CD133+

(CD14+DP PAC)), increased REC in vitro tubule formation as
A B

DC

FIGURE 1

PAC from patients with DR display an altered phenotype compared to controls. PBMC were isolated from healthy controls (HC, n = 14), patients with
T2DM without retinopathy (NoDR, n = 9), and patients with T2DM with retinopathy (DR, n = 24). Monocytes were stimulated for 4 days to
differentiate into PAC. (A) Bright field microscopy of spindle-shaped PAC (arrow) from HC, NoDR and DR patient PBMC, 150× magnification. (B)
Percentage CD14+CD16+ cells, indicating frequency of monocyte-derived cells after culture. (C) Principal component analysis (PCA) biplot based on
median fluorescent intensities (MFI) of CD14, CD16, CD105, CD31, CD133, and HLA-DR as measured on PAC from HC, NoDR and DR patients. Small
dots represent each donor, large dots show the average. (D) Individual marker profiles of PAC. Values were corrected for auto-fluorescence by
subtracting the backbone control, and normalized to the average of expression by HC PAC. Error bars represent means ± standard error of the
mean (SEM). Significance was calculated using one-way ANOVA and Bonferroni post-hoc test correction for multiple comparisons. ns, non-
significant, *p < 0.05, ***p < 0.001, ****p < 0.0001.
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compared to control lo-GF cultures without cells added, although

addition of CD14+DP cells from NoDR patients did not reach

statistical significance (Figure 2). Considering myeloid-derived cells

from HC, we only found cells with a genuine PAC phenotype

(CD14+DP) to stimulate tubule formation significantly. Further, we

observed no significant difference between NoDR and DR patients

in the pro-angiogenic function of myeloid-derived cells. Together,

these data suggest that myeloid-derived populations from T2DM

patients’ PBMC cultures promote angiogenesis by REC in vitro to a

greater extent than myeloid-derived cells from healthy controls,

although the relatively high degree of variation and small sample

size did not reveal significance in a direct comparison between

the groups.
Disturbed angiogenic mediator production
by myeloid-derived cells from patients with
T2DM, in particular with DR

Next, we assessed whether the pro-angiogenic properties of

cultured PBMC populations are reflected in differential

proangiogenic mediator production (Figure 3). After another 24h

culture of flow-sorted cells, we detected measurable concentrations

of S100A8, VEGF-A, IL-8, HGF and IL-3 in culture supernatant
Frontiers in Ophthalmology 05
(FABP4, SCF, and SDF-1a were not detected). Myeloid-derived

cells, i.e. CD14+DN and CD14+DP were the predominant

producers of these cytokines. In particular, we detected a

significant increase in the levels of S100A8 in cultures of T2DM

patient cells, regardless of disease group and/or cell population

(i.e., in both CD14+ and CD14– populations (P < 0.001)) (Figure 3).

We further identified that both CD14+ myeloid populations

isolated from T2DM patients produced less VEGF-A (P < 0.01

for CD14+DN and P < 0.05 for CD14+DP) compared to HC.

Similarly, CD14+DN cells from patients with diabetes produced

significantly less IL-8 (P < 0.05 for comparison to NoDR; P < 0.001

for DR patients), while HGF and IL-3 secretion was only

significantly less in the DR group (P < 0.001, and P < 0.01,

respectively). It is remarkable that production of IL-8, HGF and

IL-3 by CD14+DP PAC appeared rather well retained in T2DM

patients, while production by CD14+DN myeloid cells is strongly

affected, in particular in DR patients. Notably, in cultures of

CD14+DP and CD14+DN cells from HC as well as T2DM

patients, cytokine secretion is detected in most but not in all

samples. No major differences were observed between NoDR and

DR samples in cytokine production by myeloid cells. Together,

these data show a shift in angiogenic factor production by myeloid-

derived cells in T2DM patients with a decrease in VEGF-A, and a

strong increase in the inflammatory mediator S100A8.
A

B

FIGURE 2

PAC culture-derived cells from patients with T2DM with and without DR enhance in vitro angiogenesis. PBMC isolated from HC (n = 9), NoDR
(n = 9), and DR patients (n = 17) were cultured to differentiate into PAC. The total cell culture population (All), or flow-sorted subsets (CD14–CD105–

CD133– (CD14–), CD14+CD105–CD133– (CD14+DN), or CD14+CD105+CD133+ (CD14+DP, PAC)) (500 cells) were introduced into a gelatin-based 3-
D in vitro tubule formation assay of retinal endothelial cells (REC) and pericytes supplemented with low concentrations of pro-angiogenic growth
factors (lo-GF). After 4 days, REC tubule formation was visualized by fluorescence microscopy. (A) Representative images from co-cultures
stimulated with different sorted cell subsets from a DR patient. ‘Control’ indicates the angiogenesis observed in a lo-GF culture. (B) Quantification of
angiogenesis represented as total REC surface area percentage. Each experiment included culture quality controls with high growth factor
concentration (hi-GF) and lo-GF, and tested different cell subsets from HC and patients in lo-GF condition. Dots show data from individual cultures
(average of at least 4 technical replicates) in separate experiments normalized to the average of lo-GF control. Error bars represent means ±
standard error of the mean (SEM). Significance was calculated compared to the lo-GF control using Mann Whitney U T-test. *p < 0.05, **p < 0.01.
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Discussion

DR is characterized by retinal vessel abnormalities, indicative of

disturbed endothelial homeostasis (17). The proper functionality of

myeloid-derived PAC is very important for vascular integrity (13).

Here we demonstrate that PAC generated from peripheral blood

monocytes from patients with T2DM with or without DR are
Frontiers in Ophthalmology 06
phenotypically altered compared to PAC from HC. Moreover,

distinct populations of cells isolated from PAC cultures from

patients with T2DM stimulated in vitro retinal vessel formation

more strongly than those obtained from HC. This altered

functionality was reflected in a modified angiogenic factor

secretion profile, in particular, characterized by strongly elevated

secretion of the inflammatory mediator S100A8. In general, only
FIGURE 3

Myeloid-derived cells from patients with DR display the greatest imbalance in pro-angiogenic cytokine production compared to HC. PBMC isolated
from HC (n = 14), NoDR (n = 6), and DR patients (n = 14) were cultured to differentiate into PAC. Four populations were isolated by flow cytometry:
total live cells (All), lymphoid CD14–CD105–CD133– (CD14–), and myeloid CD14+ CD105–CD133– (CD14+ DN), and CD14+ CD105 + CD133 + (CD14+

DP, PAC) cells. From each population 10E5 cells were cultured for 24 hours and conditioned media were tested for cytokine production using a
multiplex assay. The experiments were performed in two technical replicates for each patient. Values above/below the limit of detection are
assigned at the highest/lowest limit of detection of the kit. Error bars represent means ± standard error of the mean (SEM). Significance was
calculated compared to the control using one-way ANOVA followed by post-hoc Tukey multiple comparison test. ns, non-significant, *p < 0.05, **p
< 0.01, ***p < 0.001.
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minor differences existed between PAC culture-derived cells from

T2DM patients with or without DR.

Our data show that PAC differentiated from PBMC from patients

with T2DM with or without DR are immunophenotypically different

from PAC obtained from HC. More specifically, this is evidenced by

reduced expression of CD16, CD105, and CD31. We interpret this as

an indication of deviated PAC differentiation under diabetic

conditions, which might contribute to vessel pathology in T2DM.

Our findings of aberrant PAC differentiation are in line with previous

studies that showed diminished proliferative capacity by T2DM PAC

as well as a reduced frequency of circulating pro-angiogenic

monocytes expressing CD14 or CD163 (18, 19). Together with a

shift fromM2 to M1 phenotype in patients with T2DM, these studies

suggest an increased inflammatory profile of monocyte-derived PAC

in diabetes (18–20). Van Ark et al. reported a reduced number of

PAC in patients with diabetes irrespective of the presence or absence

of macrovascular complications (21), but Tecilazich et al, found no

change in the PAC count in uncomplicated diabetes (22), which is

similar to the finding in our study. The reason why PAC

differentiation is poor in diabetes is not known yet, however, its

reduced proliferation in diabetic conditions is correlated with HbA1c

levels and might be attributed to the loss of tight glucose control (18).

Altered PAC differentiation and functionality in T2DM is

further supported by our data demonstrating increased in vitro

tubule formation of REC supplemented with PAC generated from

patients with DR. In addition, all CD14+ cells derived from patients

with T2DM with or without DR, and also CD14- cells from patients

with T2DM without DR stimulated REC angiogenesis. This

suggests that, in diabetic conditions, not only PAC but also other

immune cells such as lymphocytes are primed in a pro-

angiogenic manner.

To further evaluate the angiogenic capacity of PAC, we

measured the secretion of a number of angiogenic factors in

PAC generated from patients and HC and found that this is

altered in T2DM PAC. Most remarkably, we found the pro-

inflammatory and pro-angiogenic factor S100A8 to be

significantly higher expressed by all PAC culture-derived cell

populations from T2DM patients with and without DR. S100A8

is a myeloid-related damage-associated molecular pattern and its

increased production illustrates the imbalanced inflammatory

and angiogenic response in T2DM. Increased expression of

S100A8 has been previously reported in macrophages in

inflamed tissues, and also in patients with T1DM and T2DM,

particularly in those with retinopathy and nephropathy (23–26).

Interestingly, S100A8 expression recently has been linked to DR

progression (25). IL-1b can induce the expression of S100A8, and

IL-6 and TNF-alpha correlate positively with S100A8 expression

and diabetic vascular dysfunction (27, 28). It has been shown that

in hypoxic conditions, HIF-1a-induced expression of S100A8 in

monocytes stimulates angiogenesis (29). Although S100A8 is well

known for its pro-angiogenic capacity (30, 31), a previous study

reported that S100A8, at concentrations secreted by CD34-/

CD31+ PAC inhibits HUVEC tubule formation in vitro through

TLR4 activation (32). This contradiction might be due to the

hormetic effects of the protein at low and high concentrations as

suggested by the same study. We also found that T2DM PAC
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secrete significantly less VEGF-A, but similar amounts of the pro-

angiogenic cytokines HGF, IL-3, and IL-8 compared to PAC from

HC. All of these cytokines contribute to capillary sprouting and

vascular density (33). Release of pro-angiogenic cytokines such as

G-CSF, HGF, IL-8, PlGF, TGF-b, and VEGF as well as a few anti-

angiogenic factors by PAC of myeloid origin has been previously

reported (34–36).

Increased pro-angiogenic properties of PAC have been

extensively studied before (4, 37, 38), nonetheless, the angiogenic

function of PAC in diabetes is poorly understood. Several studies

indicated impaired functionality of PAC in diabetes including

proliferation, adhesion, and incorporation into vascular structures

(18, 39). The increased pro-angiogenic capacity of our T2DM PAC

might be related to the heterogeneity in EC types as we, for the first

time, applied REC, which are the most affected cells in retinopathy,

and may respond differently to ischemic events compared to other

EC types.

One limitation of our study is that the HC were not age-

matched to the patient groups. However, the PAC functional

parameters measured in our study did not seem to be age-related

among our patients. Another limitation of our study is measuring

only a biased, small number of angiogenic mediators.

Nonetheless, using REC in the functional assays, and detailed

functional testing of cells with PAC activity are the strengths of

the present study.

In conclusion, considering the important role of PAC in both

vessel homeostasis and wound repair, it is tempting to speculate

that healthy PAC support healthy neovascularization by balancing

pro- and anti-angiogenic mediators, while this balance is disrupted

in PAC under hyperglycemic and hypoxic conditions. This

hypothesis correlates to the in vivo situation, as many patients

with T2DM have defective blood vessel formation after ischemic

events, but develop retinal neovascularization (18). Moreover, our

data support the view that PAC are disturbed in T2DM and as such

provide inadequate vascular support and promote compensatory,

albeit pathological, retinal neovascularization. We did not find

major differences between PAC derived from T2DM patients with

or without DR, suggesting that microvascular conditions in NoDR

are at risk, but compensated, while in DR these are decompensated

and lead to pathology. Our results do not indicate specific switches

in monocytes/macrophages or PAC functionality between these

conditions. The question of how phenotypically deviant T2DM

PAC with low expression of endothelial markers can have increased

pro-angiogenic activity is intriguing. A plausible explanation would

be that other factors than the few that are measured here might have

a dominant effect. Further studies will be necessary to focus on a

comprehensive evaluation of pro- and anti-angiogenic cytokines

released by myeloid-related PAC generated from patients with

T2DM and in relation to DR.
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SUPPLEMENTARY FIGURE 1

Gating strategy for flow cytometric analysis of myeloid-derived pro-

angiogenic cells (PAC). (A) Forward scatter (FSC) x side scatter (SSC)
gating to obtain mononuclear cells based on size and granularity and

exclude debris. (B) cell aggregate exclusion. (C) gate for CD14+

monocyte-derived cells. (D-H) The representative marker expressions are

plotted against the CD14 expression. Identical gates were used for auto-

fluorescence compensation.

SUPPLEMENTARY FIGURE 2

Gating strategy for sorting cell subsets from PAC cultures. (A) Forward scatter
(FSC) x side scatter (SSC) gating to obtain mononuclear cells based on size

and granularity (P1). (B) Cell aggregate exclusion (P2). (C) Outline of gating
strategy for myeloid and lymphoid cells. (D) gates for CD14+ cell subsets

based on CD105 and CD133. CD14+DN refers to CD14+CD105–CD133– and

CD14+DP refers to CD14+CD105+CD133+ (myeloid-derived pro-angiogenic
cells; PAC).

SUPPLEMENTARY FIGURE 3

There is no clear phenotypic distinction between myeloid-derived PAC from

patients with T2DM without retinopathy (NoDR), patients with T2DM with

non-proliferative diabetic retinopathy (NPDR) and patients with T2DM with
proliferative diabetic retinopathy (PDR). Principal component analysis (PCA)

based on median fluorescent intensities (MFI) of all markers as measured on
PAC from HC (n = 11), patients with NoDR (n = 9) patients with T2DM wih

NPDR (n = 17), and patients with PDR (n = 7). The PCA plot shows the
multivariate variation among the control (green), NoDR (blue), NPDR (purple)

and PDR (red) groups. Small dots represent each donor, and the large dots

show the average of each group. The first two principal axes explained 32.7%
and 28.3% of the variance.

SUPPLEMENTARY TABLE 1

Interpretation of the cell surface markers detected on PAC.
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