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Optic pathway gliomas (OPG) are primary tumors of the optic nerve, chiasm,

and/or tract that can be associated with neurofibromatosis type 1 (NF1). OPG

generally have a benign histopathology, but a variable clinical course.

Observation is generally recommended at initial diagnosis if vision is stable or

normal for age, however, treatment may include chemotherapy, radiotherapy,

or surgery in select cases. This manuscript reviews the literature on OPG with

an emphasis on recent developments in treatment.
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Introduction

Optic pathway glioma (OPG) is a primary tumor of the optic pathway (e.g., one or

both optic nerves, the optic chiasm, the optic tracts, and/or optic radiations) primarily

found in pediatric patients. Contiguous spread to the hypothalamus can occur in OPG (1,

2). A significant amount of OPG patients have Neurofibromatosis type 1 (NF1) which

often influences the severity and course of tumor growth. Although observation for

clinical or radiographic progression is generally recommended initially for OPG

(especially with NF1), some patients require therapy if there is progressive or

significant visual loss. For many years, treatments have included chemotherapy and

radiation therapy, but newer immunotherapies have emerged for OPG. This manuscript

reviews the current status of these novel and emerging therapies in the treatment of OPG.
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Methods

A PubMed English language literature search was performed

using the following search terms for the years 2010-2022: optic

pathway glioma (OPG) and treatment, management,

chemotherapy, immunotherapy, radiotherapy, stereotactic

radiosurgery, stereotactic radiotherapy, tumor markers, tumor

mitogen-activated protein kinase (MAPK) inhibitor, mitogen-

activated protein kinase kinase (MEK) inhibitor, b-rapidly

accelerated fibrosarcoma kinase (BRAF) inhibitor, and

bevacizumab chemotherapy. Selected articles prior to 2010

were included for completeness or for background purposes. A

total of 85 articles were included. Case reports, letters to the

editor, and photo-essays were only included if the article added

significant new information to the literature review. Duplicate

citations were also excluded.
Case

A 9-year-old boy with neurofibromatosis type 1 (NF1)

presented to the ophthalmology clinic for his first eye exam

after being lost to follow up since infancy with vision in the

right eye (OD) of 20/25 and normal left eye (OS) vision. There

was a relative afferent pupillary defect (RAPD) and mild optic

nerve atrophy of the OD. Humphrey visual field (HVF)

revealed a superior arcuate and paracentral defect OD but

was normal OS. Optical coherence tomography (OCT)

confirmed secondary loss of optic nerve fibers and a

reduction in retinal nerve fiber layer thickness to 71 microns

OD and 98 microns in OS (Figure 1). Magnetic resonance

imaging (MRI) of the brain and orbit with contrast showed

enlargement of the optic nerves with mild enhancement of the

intraorbital portion of the optic nerve OD consistent with

bilateral optic nerve gliomas without intracranial extension.

See Images 1-3.
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The patient was initially observed for 3 months as the onset

of the vision loss was unclear and could have been long-standing,

but on close interval follow-up the vision decreased (visual

acuity 20/30 and HVF with increased mean deviation and

arcuate scotoma OD) and repeat MRI showed increased

enhancement of the right optic nerve mass. After consultation

with the parents, he was treated with vincristine and carboplatin-

based chemotherapy. One year after treatment, the MRI was

stable and vision decreased to 20/40 OD. Serial imaging showed

optic nerve glioma on the right eye had increased in size. A

biopsy of the mass revealed BRAF mutation and he was started

on selumetinib. On repeat MRIs over the next 1.5 years, glioma

remained stable with no further growth while on selumetinib.

His vision improved to 20/30 OD and left eye remained 20/20.

OCT RNFL showed progressive thinning in both eyes.
OPG presentation

The clinical presentation of OPG is dependent on location

(e.g., one or both optic nerves, the optic chiasm, the optic tracts,

and/or the optic radiations) as well as adjacent structures (e.g.,

hydrocephalus, hypothalamus). Although many cases of OPG

are asymptomatic (3–5), especially in patients with NF1 (6),

OPG can be vision or even life threatening (e.g., secondary

obstructive hydrocephalus, endocrinopathy, diencephalic or

hypothalamic involvement).

The anatomic location of the tumor is the major determining

factor for the presenting symptoms and signs of OPG. Patients

with an OPG confined to the optic nerve present with ipsilateral

visual loss, a relative afferent pupillary defect, and a pale or

swollen optic nerve (6, 7). Patients with intraorbital OPG may

also have proptosis and/or strabismus. Intracranial OPG can

present with hypothalamic endocrinopathy, spasmus nutans,

obstructive hydrocephalus, or diencephalic syndrome (3, 4, 8,

9). The most common clinical presentation however is painless,
FIGURE 1

OCT measurement of RNFL thickness.
frontiersin.org

https://doi.org/10.3389/fopht.2022.992673
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org


Maheshwari et al. 10.3389/fopht.2022.992673
progressive unilateral or bilateral visual loss (4) but diplopia

(ophthalmoplegia), ptosis, nystagmus (spasmus nutans), or

proptosis may also occur (5, 10). The screening protocol for

pediatric patients presenting with potential OPG symptoms

typically involves subsequent neuroimaging (including CT or

MRI) and/or biopsy of the lesion.

Patients with NF1 related OPG have significant differences

in presentation and prognosis compared to those without NF1

(“sporadic OPG”) and are more often asymptomatic. Patients

with NF1 related OPGs who are symptomatic may present with

higher frequency with proptosis and lower frequency with

nystagmus and hydrocephalus (11). As a result, pediatric

patients diagnosed with a NF1 gene mutation are advised to

have complete eye examinations annually when under 10 years

of age, and at least every 2 years until 18 years of age (12, 13).

Age-appropriate visual acuity testing is essential for NF1-

associated OPG surveillance, especially because visual field

testing is often unreliable in pediatric patients (14). Recently,

optical coherence tomography (OCT) has been found to be an

objective modality in the observation of NF1-associated OPG

(12, 14). OCT measures retinal nerve fiber layer (RNFL)

thickness, recording secondary loss of optic nerve fibers, a

reliable marker for visual loss in NF1 patients (12, 14).
OPG diagnosis

Imaging

Patients with signs and/or symptoms suggestive of an OPG

including afferent (optic nerve, chiasm, or optic tract) or efferent

neuro-ophthalmic involvement with or without endocrine

manifestations should undergo neuroimaging. Magnetic

resonance imaging (MRI) of the brain and orbit with

gadolinium contrast is the preferred imaging modality for

OPG (10). Computed tomography (CT) scans may be useful

for bony structures and for identification of any calcification

within the tumor (which can be indicative of low-grade

histology), but CT involves radiation exposure which may

have deleterious long-term effects in children. MRI is superior

to CT for soft tissue resolution and for defining the extent of

OPG involvement of the optic pathways (15).

On MRI, OPG are generally hypointense to isointense on T1

and hyperintense on T2 weighted images (4, 5) (Image 4). OPG

typically show variable contrast enhancement (4) (Image 5). The

imaging of OPG in NF1 patients is more likely to show bilateral

involvement and extension to the optic chiasm and/or optic

tracts. Involvement of the lateral geniculate body, hypothalamus,

or temporal lobe may also occur (16). Non-NF1 patients with

OPGmore often have fusiform lesions (5, 17–20) confined to the

optic nerve or optic chiasm, but can have more extensive spread.

Surveillance imaging is needed with orbital and brain MRI to
Frontiers in Ophthalmology 03
monitor radiographic changes to the OPG and treatment effects

if undergoing therapy.
Biopsy

Most cases of OPG can be diagnosed based on the clinical

and radiographic appearance of the lesion. A diagnostic biopsy,

however, provides a definitive diagnosis of OPG and World

Health Organization (WHO) tumor classification subtype (1, 9)

as well as other tumor markers which can be informative for

treatment options. In the WHO tumor classification, WHO

Grade I and II gliomas are tumors that progress slowly and

are together known as “low-grade gliomas,” while WHO Grade

III and IV gliomas are faster growing tumors known as “high-

grade gliomas” (1). Most OPGs are WHO Grade I gliomas,

although they are occasionally WHO Grade II gliomas. It is

extremely rare for OPGs to progress toWHO Grade III or Grade

IV gliomas (1).

WHO Grade I gliomas are the least aggressive tumors and

have few characteristics of anaplasia (21). Pilocytic astrocytomas

comprise the majority of low-grade OPGs and histologically

have a biphasic pattern, characteristic Rosenthal fibers, and

eosinophilic granular bodies (5, 9). Immunohistochemically,

pilocytic astrocytomas are diffusely and strongly positive for

GFAP and transcription factor Olig-2 (5). The prognosis of these

tumors is typically very good with overall survival rates for OPGs

(mostly pilocytic astrocytomas) after 10 years of 90% or more

(22, 23). Most studies on OPG however do not differentiate

survival rates between the different grades/types of gliomas, and

treatment options will also vary the survival rate.

WHO Grade II gliomas are characterized by the following

histopathology features related to the degree of anaplasia: cellular

density moderately increased, occasional nuclear atypia, mitotic

activity absent or 1 mitosis, necrosis absent, endothelial

proliferation absent (21). WHO Grade II OPGs are either

pilomyxoid astrocytomas or fibrillary astrocytomas and each has

distinct characteristics. Pilomyxoid astrocytomas are composed of

piloid cells in a loose fibrillary and myxoid background. These

tumors are considered to be more aggressive than pilocytic

astrocytomas and immunohistochemically label strongly and

diffusely for GFAP and vimentin but are negative for the

neuronal markers synaptophysin, neurofilament, chromogranin

and epithelial membrane antigen (5). Komotar et al. reported that

14% of patients with pilomyxoid astrocytomas presented with CSF

dissemination (24). Fibrillary astrocytomas (also known as diffuse

astrocytomas) are well differentiated and characterized by a high

degree of infiltration of neuropils (5). Neurofilament protein

stains are helpful in histological viewing of infiltrative nature of

this tumor (5). In general, the prognosis is worse for Grade II

gliomas than Grade I gliomas, although OPG specific data in this

area is limited (25).
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Malignant OPG are extremely rare and are more often

observed in adults than in children. One review reported fewer

than 50 total cases of malignant OPG in 2014 (26). High grade

gliomas are either anaplastic astrocytomas (Grade III) or

glioblastomas (Grade IV). The prognosis for malignant OPG

is poor and most patients die within a year of diagnosis

(27, 28).
Current management

The natural history of OPG is highly variable and depends

on a multitude of factors. Asymptomatic or visually stable

patients with OPG can be observed clinically with surveillance

ophthalmologic exams and serial MR imaging (29). The first line

of medical treatment for symptomatic and progressive OPG is

often vincristine and/or carboplatin-based chemotherapy (30,

31). Other less commonly used chemotherapeutic agents include

cisplatin, etoposide, and, temozolomide (9). Some of the

common side effects associated with these agents are found

in Table 1.

Novel and unique targeted therapies, however, have emerged

for the treatment of OPG. These targeted therapies continue to

evolve and improve and may change the treatment algorithms

for OPG in the near future. Patients who fail, are intolerant of, or

non-compliant with maximum medical therapy may be

candidates for radiotherapy, however, there are significant

potential side effects (e.g., impaired intellectual development

and endocrine function) in the pediatric population (33, 34).

Patients with obstructive hydrocephalus or exophytic lesions

may benefit from surgery but in most cases the morbidity (visual

loss) and potential mortality (e.g., hypothalamic involvement)

precludes surgical resection of OPG. Thus, the optimal

treatment for OPG is determined on a case-by-case basis

(13, 29).
Potential and novel treatments

Immunotherapy and tumor markers

Immunotherapy is a method of tumor treatment that

effectively uses or amplifies a patient’s immune system to

directly target cancer cells (35). Immunotherapy is a

promising option for cancer treatment because of its high

degree of specificity, long-lasting effects, and reduction in

toxicity and severe side effects (35, 36). Tumor markers are

biological molecules that indicate the presence of cancerous

growth and can prove helpful in measuring effectiveness of

treatment (37). Although few studies have been performed on

the role of immunotherapy for OPGs, other studies can provide

insight into potential immunotherapy treatments that could be

developed specifically for OPGs. A brief summary of the mode of
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actions for the immunotherapeutic agents discussed can be

found in Table 2.
MEK and BRAF inhibitors

MEK and BRAF inhibitors are promising immunotherapy

options for children with OPG and have been approved for use in

selected pediatric low-grade gliomas (38–40) with specific tumor

markers. The MEK inhibitor, selumetinib, was demonstrated to have

a 2-year progression-free survival rate of 69% in one study of

pediatric patients with progressive or recurrent low grade gliomas

(41). Fangusaro et al., reported that up to 96% of recurrent, refractory,

or progressive NF1-associated pediatric low grade glioma patients

(WHO grades I and II) experienced progression free-survival (PFS)

after 24 months of selumetinib (42). PFS was defined as the time

period between initial treatment and disease progression or death, or

time between initial treatment and last follow-up for patients without

progression (42). Additionally, 13 out of 25 patients in this cohort of

low grade gliomas had specifically OPG and 10 of the OPG patients

had Snellen visual acuity (VA) comparisons in at least one eye prior

to treatments (18 valuable eyes at baseline) (42). Among these 18

valuable eyes, there was improvement in vision in 2 eyes and stability

(neither improvement or worsening) in 16 eyes. Furthermore,

Goldmann perimetry testing comparisons after one year of

treatment revealed that of the 10 patients with visual acuity tested,

9 patients had stable visual fields and 1 patient had improvement

(42). Other MEK inhibitors including refametinib, binimetinib,

trametinib, and cobimetinib have either been approved or are

being further developed.

The biochemical pathway targeted in the MEK inhibitors is

of interest because the mitogen-activated protein kinase

(MAPK) signaling pathway regulates important cellular

activities including cell proliferation and often becomes

dysregulated by tumor cells (39, 43). The MAPK pathway

consists of Ras/Raf/MEK/ERK, and many cancers have been

found to be induced by Ras/Raf dysfunction, including sporadic

and NF1-associated OPG (39, 44, 45). Selective MEK 1/2

inhibitors block the MAPK pathway and can therefore

regulate the proliferation and progression of cancer cells (39).

Raf proteins are also a component of the MAPK pathway that

can become dysregulated. BRAF is a gene that encodes the B-Raf

protein, which functions as a point of signal transduction in cellular

proliferation (46). OPG patients commonly have a point mutation

in their BRAF gene known as BRAFV600E and, less commonly, a

mutation known as BRAFV600K (47, 48). KIAA1549:BRAF fusion

can also occur (47, 48). These genetic alterations can produce an

overactive B-Raf protein that dysregulates normal signaling and

causes a high degree of cancer cell proliferation. BRAFV600E

mutation has been confirmed to result in more aggressive low

grade glioma proliferation and resistance to conventional treatment

options (48–50). Lassaletta et al. found that the 5-year progression

free survival rate in patients with V600E low grade gliomas were less
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than 50% and 35% for radiation therapy and chemotherapy

respectively (analyzed using Kaplan-Meier method and 95%

Confidence Intervals) (49). BRAF inhibitors such as vemurafenib,

dabrafenib and encorafenib exhibit high specificity for V600

mutated tissues and are associated with positive outcomes; Nobre

et al. observed an 80% objective response in BRAF V600E–mutated

low grade glioma patients following treatment with dabrafenib or

vemurafenib and 53% of patients experienced a greater than 50%

reduction in tumor size (48, 51, 52). MEK inhibitors, such as

selumetinib, have also been demonstrated to reduce tumor

volume in some patients with BRAF mutations; Banerjee et al.

found that of the patients with recurrent low grade gliomas that

experienced a greater than 50% reduction in tumor size following

selumetinib treatment, 4 had BRAF mutations (41). Moreover,

combination therapy of MEK inhibitors and BRAF inhibitors (i.e.,

dabrafenib) are increasingly being utilized in clinical settings. For

instance, BRAF and MEK inhibitors combination therapy has been

found to increase the objective response rate in patients with

melanoma by 15-20% when compared to monotherapy

treatments (53). Several projects comparing combination therapy

to either MEK inhibitor or BRAF inhibitor monotherapy are

currently being performed for different types of tumors; further

information should be available in the near future.

From a clinical perspective, a tumor biopsy may be helpful to

determine if the OPG harbors the specific BRAF mutation (54).

If a BRAF mutation is found, MEK inhibitors and/or BRAF

inhibitors may be useful in treatment of the OPG. With these

recent advancements, the use of MEK and BRAF inhibitors in

treatment of OPG has increased exponentially in the past two

years. Research studies are currently evaluating the effects of

both MEK inhibitors and BRAF inhibitors as well as the

combination therapy in children with OPG.

However, these agents have side effects and several case

reports of reversible outer retinal layer separation, retinopathy

and uveitis in pediatric patients followingMEK or BRAF inhibitor

treatment have been observed (55, 56). Children treated with

MEK/BRAF inhibitors should be followed with dilated

ophthalmic exams to monitor for macular edema and retina

breaks or tears. Although the frequency of dilated eye exams

necessary is unclear, dilated eye exams typically will be performed

every 3 months after beginning MEK/BRAF inhibitor treatment.

Time in between appointments can be lengthened appropriately

following several unremarkable monitoring exams.
Checkpoint inhibitors

Checkpoint inhibitors are a major class of immunotherapy

treatments that can be used to treat cancer and are being considered

in OPG. Tumor cells progress and grow by circumventing the

immune system’s regulatory checkpoints thereby preventing T-cells

from identifying and attacking tumor cells (36). Checkpoint

inhibitors function by blocking the inhibitory checkpoint
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receptors that are dysregulated by tumor cells thereby inducing a

T-cell mediated anti-tumor response (57). Two major checkpoints

have been studied in rodent and human models: cytotoxic T

lymphocyte-associated antigen 4 (CTLA-4) and programmed cell

death protein 1 (PD-1) (58, 59). Much of the current research on

checkpoint inhibitors has not focused specifically on OPG.

However, discussion of this novel technology is incredibly

important as it may serve as a promising future treatment of OPG.

CTLA-4 is an inhibitory T-cell receptor that preferentially

binds ligands B7.1/CD80 and B7.2/CD86 expressed on the surface

of altered antigen-presenting cells; as a result, T-cell costimulatory

receptor CD28 cannot bind these ligands and T-cell proliferation

and the immune response is inhibited (60). Anti-CTLA-4

immunotherapy has demonstrated some positive results;

tremelimumab has been successful in several clinical trials as a

treatment for multiple types of cancer (61). However, in

glioblastoma management, anti-CTLA-4 treatment was shown

to be no more effective than standard chemotherapy in reducing

associated mortality in several different trials (61–64). Further

research is needed to determine if anti-CTLA-4 immunotherapy is

more effective than chemotherapy for treatment of OPG.

Additionally, CTLA-4 is an important tumor marker that

can provide further insight into tumor severity and progression.

In a study performed by Liu et al., increased expression of

CTLA-4 in patients with low-grade gliomas appeared to be

associated with an increased probability of poorer prognosis

(62). CTLA-4 can additionally be used to track treatment

progress. CTLA-4 should ideally decrease over time with

treatment, but there is considerable difficulty in successful

drug delivery across the blood-brain barrier which must be

addressed (65). Inefficient delivery across the blood-brain

barrier is a key challenge that currently prevents checkpoint

inhibitors from being utilized in treatment of many more

tumors, such as OPG. Novel solutions to overcome this

challenge are actively being researched; Galstyan et al.

introduced the possibility of using targeted nanoscale

immunoconjugates for effective delivery of anti-CTLA-4 across

the blood-brain barrier (66). The evidence base continues to

expand on the use of these checkpoint inhibitors for OPG, but

evidence is not sufficiently robust to make any specific

recommendations for treatment indications at this time.
Bevacizumab-Based
chemotherapy treatments

Bevacizumab (Avastin®) is an anti-vascular endothelial growth

factor (anti-VEGF) monoclonal antibody which is a treatment used

in OPG as well as a number of other ophthalmologic retinovascular

diseases (e.g., “wet” age-related macular degeneration and

proliferative diabetic retinopathy) (67). Bevacizumab is a

humanized monoclonal IgG1 antibody that binds to and inhibits

VEGF, thereby decreasing angiogenesis and controlling tumor
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growthandprogression (68).VEGF increases angiogenesis andgiven

that OPGs have increased abnormal expression of VEGF, OPG

consequently are highly vascularized tumors (69, 70). Gururangan

et al. used bevacizumab and irinotecan combination chemotherapy

in OPG and reported stabilization in 80% of recurrent low-grade

OPGwho did not respond to prior traditional chemotherapy and/or

radiation therapy (71).Hwang et al. reported an86% response rate of

OPGtobevacizumab-basedcombination therapywith improvement

in visual and neurologic symptoms (72). Moreover, bevacizumab

monotherapy has proven to be just as efficacious in improving visual

acuity and other symptoms associated with recurrent optic pathway

gliomas, while lacking the toxicity associated with irinotecan in

combination therapies (72, 73).

Clinically, bevacizumab-based treatments have become

increasingly utilized, especially early in treatment if severe

vision loss at diagnosis and if chemotherapy or MEK/BRAF

inhibitors are not providing adequate treatment. Furthermore,

for some patients, a combination of chemotherapy, MEK/BRAF

inhibitors, and bevacizumab is useful in treatment of OPG.

However, cessation of bevacizumab-based treatments often

results in recurrence or progression. Gorsi et al. reported a

91% progression rate following discontinuation of bevacizumab

(74). Hwang et al. reported a similar progression rate of about

93% following cessation of bevacizumab treatments (72).

Common side effects from bevacizumab-based treatments

include hypertension, fatigue, joint pain, bleeding events, and

proteinuria; however, these side effects were transient and

reversible following cessation of therapy (38, 71–73, 75, 76).
Stereotactic radiation techniques

Conventional radiation therapy can be used to treat recurrent

OPGs. Stereotactic radiosurgery (SRS) and fractionated stereotactic

radiotherapy (SRT) have also been described in OPG. Stereotactic

radiosurgery (SRS) is a sophisticated technique that uses the

convergence of high-energy radiation beams from many different

angles and planes to focus radiation treatment on a specific target,

such as an OPG (77). Each radiation beam is not disruptive to

neurological tissue development, but convergence ofmultiple beams

in a highly specific location createsDNAmutations that arrest tumor

progression (78). SRS refers to a single high-dose radiation session

while SRT refers to two to five fractionated sessions of focused

radiation (77, 78). SRS and SRT procedures use Image-Guided

Radiation Therapy (IGRT) where three-dimensional imaging

technologies (MRI, CT, PET) are used to precisely focus the

radiation dose to the tumor (77). Fractionated SRT for OPG

patients has demonstrated PFS rates of 92% after 3 years, 72% after

5 years, and a 90% survival rate (with or without progression) after 5

years (79).
TABLE 1 Chemotherapeutic agents and side effects.

Chemotherapeutic
Agent

Common Side Effects

Carboplatin • Infection, especially when white blood cell count is
low
• Bruising, bleeding
• Anemia which may cause tiredness, or may require
blood transfusions
• Vomiting, nausea
• Hair loss

Cisplatin • Infection, especially when white blood cell count is
low
• Bruising, bleeding
• Anemia which may cause tiredness, or may require
blood transfusions
• Kidney damage which may cause swelling, may
require dialysis
• Hearing loss including ringing in the ears
• Nausea, vomiting
• Confusion
• Numbness, pain and tingling of the fingers, toes,
arms and/or legs, loss of balance

Etoposide • Infection, especially when white blood cell count is
low
• Bruising, bleeding
• Anemia which may cause tiredness, or may require
blood transfusions
• Nausea, vomiting
• Sores in mouth which may cause difficulty
swallowing
• Hair loss

Temozolomide • Headache, seizure
• Constipation, nausea, vomiting, diarrhea
• Trouble with memory
• Difficulty sleeping
• Muscle weakness, paralysis, difficulty walking
• Dizziness
• Tiredness
• Hair loss

Vinblastine • High blood pressure which may cause headaches,
dizziness, blurred vision
• Infection, especially when white blood cell count is
low
• Anemia which may cause tiredness, or may require
transfusion
• Bruising, bleeding
• Pain in the bones, jaw, and at the tumor
• Constipation
• Tiredness
• Hair loss

Vincristine • Headache, jaw pain and/or bone/muscle pain
• Numbness and tingling of fingers or toes
• Swelling of lower legs
• Muscle weakness and difficulty walking
• Constipation, which may be severe, as a result of a
bowel blockage
• Nausea, vomiting, diarrhea
• Pain or redness at the site of injection
• Hair loss
Table based on data from National Institute of Health: National Cancer Institute. https://
ctep.cancer.gov/protocoldevelopment/sideeffects/drugs.htm (32).
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The Gamma Knife® system has been reported in the

treatment of OPG (80). Gamma Knife SRS involves 201

Cobalt-60 beam sources distributed within a spherical cavity

that the patient places his/her head into and can treat tumor

lesions from 5-40 millimeters (78). El-Shehaby et al. found that

single session SRS using the Gamma Knife system resulted in a

90% control rate and 83% PFS rate for OPG (80).

Proton beam therapy is another SRS technique that can be

used in treatment of OPG. Proton beams are used in place of

photons (as in Gamma Knife) for extremely precise radiation

dosing in management of small and irregularly shaped tumors

(81). Proton beam therapy has proven to be effective in

treatment of brain metastases (82) and low-grade gliomas (83).

Indelicato et al. described 174 pediatric patients with low-grade

gliomas that were treated with proton therapy which resulted in

an 84% PFS rate and a 92% overall survival rate after 5 years (83).

When compared to conventional radiotherapy, stereotactic

radiation techniques appear to be favorable with fewer associated

toxicities. However, some mild side effects of stereotactic radiation

have been reported includingnausea, fatigue, vomiting, andpain (84,

85).More informationand testingwill be required toensure the long-

termefficacy and safety of stereotactic radiation in treatment ofOPG.
Future directions

There are multiple new treatments emerging for OPG, which is

increasing the options for individualized treatment of OPG. Surgery

for hydrocephalus or for debulking exophytic components of tumor

in OPG can be considered but in most cases surgical resection has

unacceptable surgical morbidity and mortality. Chemotherapy

remains the mainstay for symptomatic or progressive OPG,

however, MEK and BRAF inhibitors, bevacizumab, and other

immunotherapeutic approaches such as checkpoint inhibitors are

showing promise for OPG.
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TABLE 2 Immunotherapeutic agents modes of action.

Immunotherapeutic
Agent

Mode of Action

MEK Inhibitor Targets MEK, a downstream protein kinase in the MAPK pathway that is often dysregulated and overactive in cancers. Inhibiting MEK-
dependent signaling cascades leads to reduction in tumor growth.

BRAF Inhibitor Targets BRAF, a protein kinase that is part of the MAPK pathway that is dysregulated and overactive in cancers. BRAF mediates signaling
from RAS to MEK in the Ras/Raf/MEK/ERK pathway. Inhibiting BRAF kinase interferes with the MAPK pathway of cancer cells and leads
to a reduction in tumor growth.

Checkpoint Inhibitor Cancer cells often dysregulate the normal functioning of the immune system and produce increased checkpoint proteins which cause
inactivation of normal T-Cell inflammatory response. Checkpoint inhibitors block checkpoint proteins from binding, allowing T-cell
inflammatory response to remain active and attach cancer cells.
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