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Dry eye syndrome, a form of ocular surface inflammation, and chronic ocular

pain are common conditions impacting activities of daily living and quality of

life. Oxytocin and secretin are peptide hormones that have been shown to

synergistically reduce inflammation in various tissues and attenuate the pain

response at both the neuron and brain level. The oxytocin receptor (OXTR) and

secretin receptor (SCTR) have been found in a wide variety of tissues and

organs, including the eye. We reviewed the current literature of in vitro

experiments, animal models, and human studies that examine the anti-

inflammatory and anti-nociceptive roles of oxytocin and secretin. This review

provides an overview of the evidence supporting oxytocin and secretin as the

basis for novel treatments of dry eye and ocular pain syndromes.
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Introduction

Dry eye syndrome (DES) affects up to 15% of the adult population, and up to 30% of

patients over age 50, causing significant impairment in visual acuity, workplace

functioning, and activities of daily living (1, 2). Originally thought to be a condition of

reduced tear volume, subsequent research shows that the pathogenesis involves a

complex interplay of multiple autoimmune, inflammatory, hormonal, and pain

pathway influences (3, 4). Despite a better understanding into the mechanism of dry

eye pathogenesis, currently available treatments are limited to symptomatic relief with

artificial tears and non-specific immunosuppressive medications (5).

Oxytocin is a nine amino-acid neuropeptide hormone synthesized in the

paraventricular and supraoptic nuclei of the hypothalamus and has well-studied roles

in parturition, lactation, social bonding, and neuropsychological disorders (6). It binds to
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the oxytocin receptor (OXTR), which is a member of the

rhodopsin-type (class I) G-protein coupled receptor family

that contains seven transmembrane a-helices and is coupled

to Gaq/11, Gai/o, or Gas heterotrimeric complexes (7–10). When

coupled to Gaq/11 class GTP binding proteins, stimulation of this

receptor activates phospholipase Cb (PLCb) catalyzing the

hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) to

generate inositol triphosphate (IP3) and 1,2-diacylglycerol

(DAG), which in turn leads to intracellular calcium release

and protein kinase C stimulation, respectively (11). In

conjunction with calmodulin, intracellular calcium then

activates protein kinases involved in myoepithelial cell

contraction. While the oxytocin PLC/Ca2+ pathway is well

known for its role in mammary gland and smooth muscle

function, it has recently been shown to induce lacrimal gland

myoepithelial cell contraction (7). OXTR can also be coupled to

Gai/o, resulting in inhibition of adenylate cyclase and a decrease

of intracellular cyclic adenosine monophosphate (cAMP) (10).

OXTR coupled with Gas potentially increases cAMP; however,

its physiologic existence is questionable with only low or

insignificant coupling ever demonstrated (8–10). Depending

on the tissue type, stimulation of OXTRs coupled with Gaq/11

or Gai/o complexes can act synergistically, as in the case of

myometrial cell contraction, or antagonistically as occurs with

inward rectifier K + channel conductance in olfactory neurons

(12) and cell growth in human embryonic kidney cells (13–15).

The OXTR can also signal via G protein-independent

pathways. Stimulation of the OXTR and subsequent

phosphorylation by G protein coupled receptor kinases induce

the recruitment of b-arrestins (9, 16). While b-arrestins lead to

desensitization of the OXTR, they also have been shown to

simultaneously activate downstream signaling, including the

mitogen-activated protein kinase (MAPK) pathway (16).

OXTR has been shown to be expressed in the tongue, nose,

retina, gut, and brain (11, 17–20). Studies suggest anti-

inflammatory roles for oxytocin in the heart (21), skin (22),

and gastrointestinal tract (23), as well as pain mitigation in the

setting of chronic low back pain (24), facial pain syndromes (25),

and migraine headaches (26, 27).

The secretion of oxytocin and expression of OXTR have

been shown to be influenced by expression of secretin, a peptide

hormone that regulates water homeostasis and pancreatic

secretions, and the secretin receptor (SCTR) in the

hypothalamus (28, 29). Rodent model studies of inflammatory

bowel disease demonstrate that oxytocin works synergistically

with secretin to reduce inflammation in the gut (30). These

results suggest that dual peptide treatment may modulate

inflammation in tissues and organs that express both OXTR

and SCTR and that secretin may potentiate the action of

oxytocin. The presence of OXTR has been previously

described in the retina, where it was proposed to have a role

in paracrine signaling with the retinal pigment epithelium (19).

OXTR had also been identified in human and mouse lacrimal
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glands with its expression decreased in the setting of dry eye

mouse models (31). Additionally, OXTR and SCTR have been

shown to be expressed on the corneal surface of humans and

rats, although their function is unknown (32). Given their anti-

inflammatory roles and presence on relevant ocular structures,

these neuropeptide pathways potentially may be harnessed for

novel treatments of dry eye and ocular pain syndromes.

PubMed was used to search for articles containing

combinations of keywords: (oxytocin OR secretin) AND

(inflammation OR anti-inflammatory OR pain OR nociception

OR trigeminal neuralgia OR eye OR dry eye syndrome OR

Sjögren’s syndrome). Available articles in English were reviewed

and included in this review if found to be relevant to the anti-

inflammatory or anti-nociceptive effects of OXTR and/or SCTR

on the eye.
Dry eye syndrome and ocular pain

Chronic ocular pain is a significant component of DES that

may be less responsive to conventional treatment including

lubrication, topical corticosteroids, and immunomodulators

(33). Multiple studies suggest that DES patients can experience

symptoms consistent with neuropathic pain, including

hypersensitivity to environmental triggers (wind, light, heat),

spontaneous burning unresponsive to therapies, severe

symptoms with minimal exam findings, co-existing

psychologic distress, and increased pain sensitivity in regions

other than the eye (34, 35). Patients with increased chronic pain-

related syndromes exhibit more severe neuropathic-type dry eye

symptoms, suggesting that a subset of dry eye patients resistant

to conventional treatment may manifest an underlying central

pain processing disorder (36).

There are several proposed pathways that modulate

neuropathic pain. Nerve growth factor (NGF), released in

chronic inflammation, increases sensitivity to painful stimuli

by activating peripheral nociceptors via tyrosine kinase (trkA)

receptors (37). A second proposed pathway is mediated by

corneal nociceptors that transmit pain signals along the

trigeminal nerve (V1) followed by the release of glutamate

binding to AMPA (a-Amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid) receptors for the sensation of acute

pain and NMDA (N-methyl-D-aspartate) receptors for chronic

pain, resulting in a continued transmission of pain signals to

higher-order neurons (37). Additionally, in one genome-wide

analysis of differentially expressed genes following dorsal root

ganglion compression, several key genes that may play a role in

neuropathic pain development were found, including syndecan

1 (Sdc1); phosphatidyloinositol-4,5-bisphosphate 3-kinase,

catalytic subunit gamma (Pi3k); Janus kinase 2 (Jak2); Jun

proto-oncogene, AP-1 transcription factor subunit (Jun); and

interleukin 6 (IL-6) (38).
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In addition to neuropathic pain, there is also a component of

nociceptive pain in DES. Heightened sensitivity to pain and

diminished pain tolerance are significantly associated with

symptoms of dry eye disease (39). This type of pain involves

several nociceptor pain fibers, such as transient receptor protein

(TRP) channels, that are responsible for sensing tissue

inflammation and damage (40). Environmental triggers can

lead to damaged epithelial cells and corneal nerves, causing an

upregulation of pro-inflammatory mediators within the cornea

of dry eye patients. These inflammatory stimuli include

prostaglandin 2 (PGE2), cyclooxygenase 2 (COX2), various

interleukins (IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-17), tumor

necrosis factors alpha (TNF-a), reactive oxygen species, nerve

growth factor (NGF), and metalloproteinase-9 (MMP-9) (40).

Pain hypersensitivity and central sensitization involving the

trigeminal brainstem may result from persistent ocular surface

damage, inflammation, and pain nerve stimulation, leading to

chronic dry eye symptoms that are disconnected from the

pathology seen in the eye (40, 41). Patients with greater dry

eye and reported ocular pain symptoms also display

hypersensitivity within corneal somatosensory pathways that

suggest modulation of specific nerve pathways (42).

Furthermore, dry eye symptoms have been correlated with

measures of anxiety and pain sensation at distant locations in

the forearm, suggesting diffuse somatosensory dysfunction

beyond the trigeminal system (43).
Oxytocin’s role in pain reduction

It is well-documented that neuropathic pain similar to

symptoms experienced by patients with DES is mediated by

chronic inflammation in neurons and increased excitability in

brain regions associated with somatosensory processing and

stress (44). Table 1 outlines the anti-nociceptive roles of

oxytocin and secretin. There is evidence from rat models that

oxytocin modulates pain processing at the rostral angular insular

cortex, a brain structure important in nociception (45). At the

level of the spinal cord, animal models of neuropathic pain have

shown that oxytocin inhibits nociceptive neurotransmission at

the medullary dorsal horn by suppressing transmission from

sensory Ad and C-fibers (54) and increasing GABAergic

inhibitory transmission to TRPV1 (transient receptor potential

channel vanilloid 1), a non-selective cation channel that

transmits painful stimuli in the nervous system (46). In

addition, oxytocin suppresses the expression of inflammatory

cytokines TLR-4, TNF-a, and IL-1b while down-regulating

mechanical and thermal pain sensation in rat models (47). At

the neuronal level, oxytocin inhibited activation of the

trigeminocervical complex in animal models (48) by blocking

the release of calcitonin gene-related peptide, a neuropeptide

that regulates nociceptive signaling (27). The mechanism of

oxytocin’s effects may be mediated by increasing intracellular
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transporter and depolarizing GABA on nociceptive trigeminal

neurons (49) or increasing voltage-gated K+ channel currents in

the trigeminal ganglia, decreasing the resting potential and

activity of the neurons (25). One study showed that oxytocin

was effective in alleviating vincristine-induced neurite damage in

cultured primary dorsal root ganglion neurons in vitro and

vincristine-induced hyperalgesia with an in vivo mouse

model (50).

In several animal models, oxytocin attenuates trigeminal

(26, 51) as well as visceral pain (51). At the neurophysiologic

level, oxytocin receptors have been detected in the lateral

capsular division of the central nucleus of the amygdala, with

anxiolytic effects mediated by the depression of inwardly

rectifying K+ channels (52, 55). Activation of parvocellular

oxytocin neurons in the paraventricular nuclei can also inhibit

spinal pain processing by repressing nociceptive transmission

from Ad and C-type afferent signaling pathways (56). In a rat

model of neuropathic pain, oxytocin application to nerve-

injured sites decreased the amount of TRPV1-immune

reactive trigeminal neurons, key players in nociception, that

innervated the whisker pad skin. This led to an attenuation of

orofacial mechanical allodynia following infraorbital nerve

injury (53). In another rat study of neuropathic pain

involving infraorbital nerve injury, the combined effects of

oxytocin application to the locally injured nerve and low-level

laser therapy showed a decrease in cortical excitation in

response to electrical stimulation of dental pulp, reflecting a

reduction of neuropathic pain processed by the animals’ brains

(57). In animal models of intestinal inflammation, the

combination of secretin and oxytocin decreases the

excitability of central neurons located in the hypothalamus,

amygdala, and piriform cortex, areas of the brain critical for the

emotional processing of pain (30), with similar findings in the

frontal cortex, hippocampus, thalamus, and midbrain observed

in separate models (26). In a double-blinded, placebo-

controlled, cross-over design trial involving 30 healthy

human subjects, a single dose of 40 IU/ml intranasal

oxytocin was shown to enhance endogenous pain inhibition

in the trigeminal distribution via conditioned pain modulation

as well as improved mood (58). Another double-blinded,

placebo-controlled trial of ten individuals with migraine

showed a dose-dependent response of oxytocin in reducing

headache pain with oxytocin levels positively correlated with

measures of symptom severity (59).
Anti-inflammatory effects of
oxytocin and secretin

Ocular surface inflammation is an important risk factor for

and subsequent consequence of DES (3). Both the innate and

adaptive immune system play key roles in the pathogenesis of
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DES. The innate immune response in DES has been shown to

involve activation of interleukin and tumor necrosis factors

through the MAPK pathway and upregulation of immune cells
Frontiers in Ophthalmology 04
through Toll-like receptor signal transduction (60). The adaptive

immune response in DES has been shown to involve CD4+ T

cells and antigen presenting cells (APCs), which increase
TABLE 1 Anti-nociceptive roles of oxytocin and secretin.

Paper
Cited

Hormone(s) Model Organism Anatomical
Site

Proposed Mechanism Physical Findings

Kubo
et al.
(25)

Oxytocin Rat – partial ligation of
infraorbital nerve

Oxytocin applied
to trigeminal
ganglion (TG)

Increased voltage-gated K channel currents
➔ suppressed TG neuronal
hyperexcitability after nerve injury

Reduced mechanical hypersensitivity in
whisker pad skin

Tzabazis
et al.
(27)

Oxytocin Rat Trigeminal
ganglion (TG)

Decreased capsaicin-induced calcitonin
gene-related peptide release from dural
nociceptors

Electrocutaneous stimulation and adjuvant-
induced inflammation ➔ upregulation of
oxytocin e-receptor protein expression in TG
neurons

Gamal-
Eltrabily
et al.
(45)

Oxytocin Rat Rostral agranular
insular cortex
(RAIC)

Modulates pain processing at cortical
insular level by increasing cortical
GABAergic transmission and activating
descending spinal noradrenergic
mechanisms

Oxytocin microinjection into RAIC during
inflammatory nociceptive input (formalin
injection) reduced flinches and spontaneous
firing of spinal wide dynamic range cells
Effect abolished by OXTR antagonist and
GABAA receptor blocker; partially reversed by
a2A-adrenoreceptor antagonist

Garcıá-
Boll et al.
(2017)

Oxytocin Rat Medullary dorsal
horn (MDH)

Dose-dependently inhibits peripheral-
evoked activity in nociceptive MDH
neurotransmission – associated with
blockade of Ad- and C-fibers
Effect abolished by OXTR antagonist, not
affected by vasopressin V1A receptor
antagonist

Sun et al.
(46)

Oxytocin Rat – partial ligation of
sciatic nerve

Sciatic nerve/
spinal cord

Relieves neuropathic pain through GABA
release and presynaptic TRPV1 inhibition
in spinal cord

Alleviated mechanical allodynia and thermal
hyperalgesia in partial sciatic nerve ligation
Inhibits capsaicin-induced ongoing pain in
rats

Mou
et al.
(47)

Oxytocin Rat – bone cancer pain
model

Spinal cord
(intrathecal)

Suppresses up-regulation of TLR4, IL-1b,
TNF-a in spinal cord

Ameliorates mechanical allodynia and thermal
hyperalgesia

Garcıá-
Boll et al.
(48)

Oxytocin Rat Trigeminocervical
complex (TCC)

Reduced TCC neuronal firing evoked by
meningeal electrical stimulation
OXTR antagonist abolished this effect

Mazzuca
et al.
(49)

Oxytocin Rat – newborn pups Reduces depolarizing action of GABA on
nociceptive neurons

Reduced pain in newborn and 2-day pups
(measured by thermal tail-flick assay, electrical
whisker pad stimulation)
OXTR antagonist enhanced pain sensitivity in
newborn pups

Zhu
et al.
(50)

Oxytocin Mice – vincristine
(VCR)-induced
neurotoxicity; OXTR-
knock out (KO)
Cultured primary dorsal
root ganglion (DRG)
neurons

Dorsal root
ganglion, sciatic
nerve

Alleviated VCR-induced hyperalgesia
Attenuated VCR-induced damages of nerve
endings, myelin sheaths, Schwann cells in
sciatic nerve and DRG
Effects diminished with OXTR antagonist
OXTR-KO mice showed more severe
hyperalgesia than wild-type

Meidahl
et al.
(51)

Oxytocin Rat – mild traumatic
brain injury (TBI)
model

Brain, trigeminal
nerve

Reduced mild TBI pain by binding to OXT
or VA1-receptors, most likely by peri-
trigeminal nerve mediated uptake

Attenuated reactive and spontaneous, ongoing
non-reactive pain following mild TBI for 3-4
hours after intranasal administration

Hu et al.
(52)

Oxytocin
Receptor
(OXTR)

Rat Lateral (CeL)
nucleus of central
amygdala

Activation of OXTR increased action
potential firing frequency in CeL neurons
via inhibition of inwardly rectifying K+
channels
Required phospholipase Cb and protein
kinase C to increase neuronal excitability

Ando
et al.
(53)

Oxytocin Rat – infraorbital nerve
injury (IONI)

OXT application
to infraorbital
nerve injury site

Inhibits increase in transient receptor
potential vanilloid 1(TRPV1)-IR and
TRPV4-IR TG neurons ➔ attenuates post-
IONI orofacial mechanical allodynia
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production of a multitude of cytokines, including IFN-gamma,

IL-6, IL-17, IL-4, and IL-1, that contribute to further pro-

inflammatory pathways, such as NF-kB and corneal epithelial

caspase-1 pathways (60).

There is evidence supporting the anti-inflammatory roles of

oxytocin and secretin in multiple organ systems, outlined in

Table 2. Oxytocin has been shown in rodent models to decrease

plasma concentrations of cytokines including TNF-a, IL-1, IL-4,
and IL-6 in the setting of bacterial infection (61), wound healing

(62), and intestinal inflammation (30, 63), where there was

synergy with secretin. Rodent model studies suggest that

oxytocin has widespread effects on leukocyte activation,

expression, and migration, while decreasing stress-induced

release of reactive oxygen species and corticosterone (64, 74–

76). In an obesity mouse model, the administration of oxytocin

decreased TNF-a secretion and the macrophage M1/M2 ratio,

inducing an anti-inflammatory phenotype with improvements

in glucose tolerance (65). In another obesity mouse model study,

expression of adipose tissue OXTR was increased in obese mice

compared to lean controls. Exposure to long-term oxytocin

treatment led to reductions in visceral adipose tissue

inflammation, with decreased adipocyte size, macrophage

infiltration, IL-6 and TNF-a expression. Adiponectin, a key

anti-inflammatory adipokine, was increased in both plasma

and adipose tissue, while plasma levels of serum amyloid A, a

marker of systemic inflammation, were decreased (66). In vivo

and in vitromodels of food allergy showed that oxytocin inhibits

the production of multiple cytokines, including thymic stromal

lymphopoietin (TSLP), IL-33, and IL-25, through suppression of

NF-kB signaling and upregulation of B-arrestin2 expression,

which decreased systemic anaphylactic responses and intestinal

inflammation in mice (67). In a separate inflammatory bowel

disease (IBD) murine model, OXTR knock-out mice displayed

an increased number of pro-inflammatory cytokine transcripts

encoding for TNF-a, IL-1b, and IL-6 and exhibited shorter villi

and crypts in the intestinal mucosa, a sign of chronic

inflammation. In addition, colonic tissue in OXTR knock-out

mice was more susceptible to cholera toxin-induced

inflammation compared to a blunted immune response

observed in wild-type mice treated with oxytocin (68).

Oxytocin-treated mice also had a reduction in neutrophils and

macrophages observed in the mucosal and submucosal layers of

the colon and decreased expression of TNF-a and IFN-g, leading
to clinical improvement in ulcerative disease (30). At the cellular

level, in vitro experiments using gut epithelial cells have

demonstrated that oxytocin modulates important molecules in

the stress signaling pathway (69, 77) and plays a regulatory role

in translation of proteins (69). In addition, oxytocin may protect

epithelial cells from inflammation (70). Mouse models of

blepharitis, Sjögren’s keratoconjunctivitis sicca, and DES have

demonstrated elevated levels of inflammatory cytokines,

including IL-1, IL-6, and TNF-a (78–80) although the role of
Frontiers in Ophthalmology 05
oxytocin in modulating these inflammatory cytokines on the

ocular surface is currently unknown.

Synergism between secretin
and oxytocin

There is evidence of synergistic activity between secretin and

oxytocin, an interaction that may enhance their usefulness as anti-

inflammatory agents. Indeed, the release of oxytocin is directly

influenced by the levels of circulating secretin through stimulation

of a1-adrenoreceptors and SCTR (81). Secretin has been shown to

activate supraoptic oxytocin neurons, which express SCTR, and

facilitate release of oxytocin from these nerve dendrites in mice

(28). In rats, secretin can increase the firing rate of supraoptic

oxytocin neurons through noradrenergic pathways, thereby

increasing the plasma concentration of oxytocin (82). In a rat

model of chronic colitis, combined intravenous (IV)

administration of secretin and oxytocin led to decreased

inflammatory infiltrates in the colon and reduced expression of

TNF-a and IFN- g in colonic tissue. Interestingly, IV

administration of oxytocin or secretin alone did not produce a

significant change in colonic inflammation. Combined IV

administration of oxytocin and secretin also inhibited colitis-

associated activation of forebrain neurons in the paraventricular

nucleus of the hypothalamus, basolateral amygdala, central

amygdala, and piriform cortex (30).
Oxytocin and secretin’s roles in dry
eye syndrome

Oxytocin and OXTR are expressed in the myoepithelial cells

of the lacrimal gland, stimulating the contraction of acinar cells

to secrete tears. The number of oxytocin receptors and

myoepithelial cells are significantly reduced in mouse models

of Sjögren’s syndrome, suggesting oxytocin’s role in maintaining

tear production. Stimulation of oxytocin receptors in the

lacrimal glands of healthy, control mice resulted in contraction

of acini and the production of tears that was not present when

dry eye disease mice were exposed to oxytocin (31). The pro-

inflammatory state of DES may also be driven by corneal

epithelial dysfunction and increased sensitivity to bacterial

metabolites produced by commensal organisms on the ocular

surface. For example, in dry eye mouse models, bacterial

lipopolysaccharides (LPS) increases the expression of

inflammatory mediators including IL-1b, IL-6, CXCL10, IL-
12a, and IFN-g in the conjunctiva and IL-1b and CXCL10 in

the cornea (83). In-vitro studies of anterior pituitary cell culture

provided the first evidence that oxytocin can inhibit LPS and IL-

1b stimulation of macrophages, T-cells, and B-cells and decrease

IL-6 cytokine production (71).
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TABLE 2 Anti-inflammatory roles of oxytocin and secretin.

Paper
Cited

Hormone(s) Model Organism Anatomical
Site

Molecular Effects Physical/Pathology Findings

Nation
et al. (21)

Oxytocin ApoE-/- Mice Heart Reduced IL-6 Decreased atherosclerosis

Petersson
et al. (22)

Oxytocin Rat Skin Reduced myeloperoxidase (marker of
neutrophil recruitment)

Reduced edema

Iseri et al.
(23)

Oxytocin Acetic acid-induced
colitis in rat

GI tract Reduced malondialdehyde (end-product of
lipid peroxidation), myeloperoxidase (MPO,
index of neutrophil infiltration) in colon tissue
Reduced LDH and TNF-a

Reduced acetic acid-induced colonic
fibrosis

Welch
et al. (30)

Secretin and
Oxytocin

Colitis in rat Colon Reduced TNF-a and IFN-g in colon tissue Decreased colonic inflammatory infiltrates

Hawley
et al.
(2021)

Oxytocin Aqueous deficient dry
eye in NOD and MRL/
lpr mice; humans

Lacrimal glands,
myoepithelial
cells (MECs)

OXTR is highly expressed in MECs of
mouse and human lacrimal glands –
reduced expression in diseased glands
Oxytocin mediates contractions of
lacrimal gland acini – impaired in
diseased glands

Clodi et al.
(61)

Oxytocin Bacterial endotoxinemia
in humans

Plasma Reduced endotoxin-induced plasma ACTH,
cortisol, procalcitonin, TNF-a, IL-1 receptor
antagonist, IL-4, IL-6, macrophage
inflammatory protein-1a, macrophage
inflammatory protein-1b, monocyte
chemoattractant protein-1, interferon-
inducible protein 10, VEGF

Poutahidis
et al. (62)

Oxytocin Oxytocin-KO mice Skin and
mucosal tissues

Worsened skin wound repair in OXT-KO
mice (delayed re-epithelialization, delayed
collagen and fibrinogenesis, increased
accumulation of neutrophils)

Cetinel
et al. (63)

Oxytocin Colitis and stress in rat Colon Reduced MPO, MDA Decreased colitis-induced anxiety
Reduced inflammatory cell infiltration
and submucosal edema

Inoue et al.
(2017)

Oxytocin Mice Brain –

microglia
Inhibits eIF-2a-ATF4 pathway ➔ suppresses
TNF-a, IL6, IL-1b

Wang
et al. (64)

Oxytocin Autistic mice
(valproate-induced)

Brain –

hippocampus,
amygdala,
microglia

Reduced Il-1b, IL-6, TNF-a in hippocampus
and amygdala
Reduced microglia activation in hippocampus,
amygdala

Improves anxiety, depression, repetitive
behavior, and social interactions

Garrido-
Urbani
et al. (65)

Oxytocin Diet-induced obese mice Bone marrow
cells
Adipose tissue

Decreased TNF-a secretion in M1-derived
macrophages
Decreased TNF-a in adipose tissue

Induced anti-inflammatory phenotype
with decreased M1/M2 macrophage ratio
Decreased body weight, improved glucose
tolerance

Szeto et al.
(66)

Oxytocin Obese mice Adipose tissue
Plasma

Reduced IL-6 and TNF-a, increased
adiponectin (anti-inflammatory marker) in
adipose tissue
Increased adiponectin, decreased serum
amyloid A (inflammatory marker) in plasma

Reduced decreased adipocyte size and
macrophage infiltration

Yu et al.
(67)

Oxytocin Food allergy in mice GI tract Inhibits thymic stromal lymphopoietin, IL-25,
IL-33

Decreased systemic anaphylactic response
and intestinal inflammation

Welch
et al. (68)

Oxytocin IBD/OXTR-KO mice GI tract OXTR-KO ➔ increased TNF-a, IL-1b, IL-6 OXTR-KO ➔ shorter villi and crypts in
intestinal mucosa

Klein et al.
(69)

Oxytocin Caco2BB human gut
cell line

Gut cells Biphasic response in PI3k/Akt pathway,
activation peaks with OXTR internalization

Klein et al.
(70)

Oxytocin Caco2BB human gut
cell line

Gut cells Suppresses NF-kB signaling and counteracts
LPS-elicited silencing of the unfolded protein
response
Activates dsRNA-activated kinase, X-box
binding protein 1, immunoglobulin binding
protein, A20 (TNF-a-induced protein 3),

(Continued)
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Animal studies have demonstrated that secretin increases

tear production but not when topical anesthesia is applied,

suggesting a sensory-dependent mechanism of effect (73).

Vasoactive intestinal peptide (VIP) and pituitary adenylate

cyclase-activating polypeptide (PACAP), which are part of the

same superfamily of structurally related peptide hormones that

includes secretin, glucagon, glucagon-like peptides, gastric

inhibitory peptide (GIP) and growth hormone-releasing

hormone (GHRH), have been shown to increase tear

production by upregulating cyclic adenosine monophosphate

(cAMP) and cyclic guanosine monophosphate (cGMP)

production and protein kinase A phosphorylation, resulting in

downstream aquaporin protein expression stimulating fluid and

protein flow (73, 84, 85).
A role for topical oxytocin and
secretin in dry eye syndrome and
ocular pain?

Animal and human studies suggest that oxytocin can be

administered safely for local treatment with little to no systemic

side effects. In mouse, rabbit, and primate models, there was

minimal systemic absorption of oxytocin through the nasal

mucosa (86, 87) and ocular surface (88). In a mouse model of

mild traumatic brain injury (TBI), intranasal oxytocin

application led to an attenuation of reactive and ongoing non-

reactive pain following mild TBI for at least 3-4 hours.

Interestingly, IV administration of oxytocin did not have the

same pain attenuating effects, and there were higher

concentrations of oxytocin found in the trigeminal ganglion
Frontiers in Ophthalmology 07
following intranasal application compared to IV administration

of oxytocin (51). A 20-year review of intranasal oxytocin use in

human research studies found that dosages of 18-40 IU oxytocin

had no reliable side effect profile compared to placebo and no

reported adverse outcomes (89).

Several analogs of oxytocin, including lipo-oxytocins and

TGOT, have been studied in the basic science and clinical trial

contexts for social anxiety, autism spectrum, and other

neuropsychiatric disorders, and shown to be powerful

agonists on OXTR (90–92). Carbetocin is another oxytocin

analog that has been extensively studied as treatment for

postpartum hemorrhage when peripherally administered

(92, 93). Unlike oxytocin itself, recent evidence points to

oxytocin analogs having differential abilities to activate the

OXTR, and subsequent downstream effects, depending on

which G protein with the OXTR is coupled (15), raising the

potential of selective OXTR-based therapies. Recently, a non-

peptide agonist of oxytocin receptor (LIT-001) was able to

induce a durable reduction in inflammatory pain-induced

hyperalgesia in a rat model (94). Several small molecules

have shown evidence as allosteric modulators of the SCTR,

expanding potential drug options beyond secretin and its

peptide analogs (95, 96).
There has been evidence for oxytocin and secretin’s role in

reducing inflammation within human corneal cells. In a cell

culture model of ocular surface inflammation created through

the exposure of TNF-a to human corneal cells, levels of ICAM-1

expression were measured following administration of oxytocin

and/or secretin. Three hours after addition of oxytocin or

secretin, ICAM-1 levels were reduced about 40% compared to

TNF-a treatment alone. A combination treatment of both

oxytocin and secretin did not result in further reduction of
TABLE 2 Continued

Paper
Cited

Hormone(s) Model Organism Anatomical
Site

Molecular Effects Physical/Pathology Findings

inositol requiring enzyme 1a
Inactivates eukaryotic translation initiation
factor 2a

Spangelo
et al. (71)

Oxytocin Neurointermediate
Pituitary lobe (NIL)
primary cell culture
from rat tissue

NIL tissue from
pituitary glands

Inhibited LPS and IL-1b stimulation of IL-6
release from NIL cells

Yang et al.
(72)

Oxytocin Human – with dry eye
disease, nebulized OXT
treatment

Ocular surface Improved Ocular Surface Disease Index
scores, light sensitivity, dryness, tear
meniscus height
Increased basal epithelial cell density,
decreased dendritic cell density, increased
sub-basal nerve density and tortuosity

Gilbard
et al. (73)

Secretin Rabbit –
keratoconjunctivitis
sicca model

Eye Decreased tear film osmolarity – effect
was blocked by prior administration of
proparacaine
Increased tear secretion by irritative
sensory stimulation (blocked when ocular
surface is anesthetized)
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ICAM-1 levels. The effect of the hormonal treatment was

transient, with a maximal change at 3-4 hours (32).

A recent prospective cohort study investigated the use of

nebulized oxytocin compared to vitamin B12 for the treatment

of dry eye disease. Thirty-eight patients with DES were enrolled,

with half receiving oxytocin (OXT) nebulization and the other half

receiving vitamin B12 (VB12) nebulization treatment twice weekly

for 3 months. Several clinical measurements were taken at baseline,

1 month, and 3 months after starting treatment, including Ocular

Surface Disease Index (OSDI) questionnaire, self-reported light

sensitivity and dryness, tear meniscus height (TMH), tear break-up

time (BUT), and corneal staining. In vivo confocal microscopy

(IVCM) data of basal epithelial cell density, sub-basal dendritic cell

density, nerve density, and nerve tortuosity were also measured

(72). IVCM is used to identify structural features that are

pathognomonic for DES, including decreased number of corneal

epithelial cells, increased number of dendritic cells, reduced sub-

basal nerve density, and increased nerve tortuosity (97).

There were no adverse events in either treatment group over

the 3 months. The VB12 group showed statistically significant

improvements in all clinical measurements and signs of DES,

apart from nerve tortuosity, over the 3-month treatment. For the

OXT group, all clinical and IVCM data showed significant
Frontiers in Ophthalmology 08
improvement at 1 month, except for nerve tortuosity. Between

the 1-month and 3-month timepoints, there were significant

improvements in OSDI, TMH, BUT, and sub-basal nerve

density; however, nerve tortuosity was increased. Like the

VB12 group, the oxytocin group showed significant

improvements at 3 months compared to baseline, except for

nerve tortuosity and BUT. The OXT group IVCM data showed

an increased basal epithelial cell density, decreased dendritic cell

density, and increased sub-basal nerve density and tortuosity at 1

and 3 months, reflecting an overall improvement in DES

conditions, apart from the increased nerve tortuosity (72).

This study demonstrates a promising potential use of

nebulized oxytocin as an effective treatment for DES.
Conclusion

There is a growing body of evidence supporting the role of

oxytocin and secretin in ocular surface homeostasis, outlined in

Figure 1. Oxytocin promotes tear production by the lacrimal

gland and appears to reduce pain via both neuronal and central

mechanisms; its intranasal use has shown promise in the

treatment of trigeminal pain. There is compelling evidence
FIGURE 1

Potential mechanistic relationships and biomarkers relating stimulation of the oxytocin and secretin receptors at the ocular surface with
modulation of pain and inflammation.
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showing the anti-inflammatory and anti-nociceptive potential of

oxytocin, especially in synergism with secretin, in intestinal

mucosa and other tissue types. There may be a similar role for

these peptide hormones in reducing ocular surface inflammatory

and pain syndromes. Further studies are necessary to determine

the physiologic functions of ocular surface oxytocin and secretin

receptors and how stimulation of these receptors modulate

inflammatory and pain pathways.
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48. Garcıá-Boll, E, Martıńez-Lorenzana, G, Condés-Lara, M, and González-
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