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Retinal ganglion cells (RGCs) are the neurons in the retina which directly project to the
brain and transmit visual information along the optic nerve. Glaucoma, one of the leading
causes of blindness, is characterized by elevated intraocular pressure (IOP) and
degeneration of the optic nerve, which is followed by RGC death. Currently, there are
no clinical therapeutic drugs or molecular interventions that prevent RGC death outside of
IOP reduction. In order to overcome these major barriers, an increased number of studies
have utilized the following combined analytical methods: well-established rodent models
of glaucoma including optic nerve injury models and transcriptomic gene expression
profiling, resulting in the successful identification of molecules and signaling pathways
relevant to RGC protection. In this review, we present a comprehensive overview of
pathological features in a variety of animal models of glaucoma and top differentially
expressed genes (DEGs) depending on disease progression, RGC subtypes, retinal
regions or animal species. By comparing top DEGs among those different
transcriptome profiles, we discuss whether commonly listed DEGs could be defined as
potential novel therapeutic targets in glaucoma, which will facilitate development of future
therapeutic neuroprotective strategies for treatments of human patients in glaucoma.

Keywords: glaucoma, optic nerve, cell death, vulnerability, transcriptome, retinal ganglion cells
INTRODUCTION

Glaucoma is a retinal neurodegenerative disease that affects 64 million people worldwide. It is
estimated that the number of glaucoma patients will increase in the future (1, 2). There are several
types of glaucoma: primary glaucoma including open-angle glaucoma and angle-closure glaucoma,
congenital glaucoma, and secondary glaucoma. Increased IOP levels in glaucoma patients can lead
to optic nerve damage and RGC loss. However, patients with a form of primary open-angle
glaucoma, low tension glaucoma, also develop optic nerve damage despite having normal IOP.
Importantly, the common pathological change in all types of glaucoma is loss of axonal integrity and
RGC death. Unfortunately, there are no FDA-approved drugs that prevent RGC death by acting
directly on RGCs themselves. Identifying therapeutic targets that directly prevent RGC death and/or
in.org May 2022 | Volume 2 | Article 9053521
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enhance the capacity of RGC regrowth after axonal insult is one
of the crucial steps in developing treatments for all types
of glaucoma.

Using a variety of rodent models of glaucoma, a number of
studies have identified intrinsic and extrinsic molecules and
signaling pathways that mediate RGC survival and death (3–17).
Therapeutic interventions targeting these identified genes and
molecular pathways could be promising therapies. However,
whether effective neuroprotection in human glaucoma patients
can be achieved by targeting the same molecular pathways
studied in animal disease models remains unclear. Thus,
comprehensive analyses to identify beneficial molecular targets
which can be commonly effective in different animal models
could help to establish therapeutic molecular interventions for
glaucoma patients.

In this review, first we summarize existing rodent models of
glaucoma and optic nerve degeneration. We then explore the
powerful impact that transcriptomic technology has made on
identifying new therapeutic targets. Several transcriptomic
studies with RNA sequencing (RNA-seq) or microarray have
uncovered differentially expressed genes (DEGs) in RGCs or
whole retina depending on disease progression, retinal regions,
animal species or RGC subtypes. Among them, we select nine
studies in which the most highly upregulated and downregulated
genes have been identified using their own statistical criteria such
as FDR P-value <0.05 or P-value <0.05 compared to control
conditions and also listed in the main or supplemental figures in
each study. We exclude other studies which are redundant to the
selected studies due to the use of same disease models. By
manually comparing gene names among those top DEGs, we
identify which DEGs are commonly listed across different
transcriptome profiles. We then provide the summary of
previously validated functions of those common DEGs in
RGCs or other cells and their molecular mechanisms. Finally,
we discuss whether DEGs identified in the rodent models of
glaucoma could be applied for treatments of glaucoma patients.

INHERITED AND IOP-INDUCED
EXPERIMENTAL RODENT MODELS OF
GLAUCOMA AND OPTIC NERVE
DEGENERATION

Genetically or spontaneously generated rodent models of glaucoma
are a valuable resource for studying the genetic etiology of glaucoma
and identifying future therapeutic treatments in human patients.
The DBA/2J mouse strain is one of the most broadly utilized inbred
mouse strains in studying glaucoma (18). DBA/2J mice begin
displaying pigment dispersion, iris transillumination, iris stromal
atrophy, posterior synechiae, and IOP elevation around 6months of
age. By 11 months, optic nerve atrophy, optic nerve cupping, and
loss of optic nerve (60 - 90% loss) and RGCs (60 - 70% loss) are
evident (16, 18–21). Genetic analysis in DBA/2J mice revealed that
the iris pigment dispersion phenotype is caused by a premature stop
codon mutation in the Gpnmb (GpnmbR150X) gene which encodes a
transmembrane glycoprotein GPNMB. Iris stromal atrophy is
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caused by a mutation in the b allele of Tyrp gene (Tyrp1b), which
encodes a melanosomal enzyme, tyrosinase related protein-1, TRP-
1 (22, 23). DBA/2J-Gpnmb+ mice, which are homozygous for a
wild-type allele of Gpnmb on a DBA/2J genetic background, do not
develop elevated IOP and show no glaucomatous
neurodegeneration with age (24). Another inbred mouse strain,
YBR/EiJ (YBR) has been characterized as a form of pigmentary
glaucoma: high IOP levels are observed at six to seven months of
age, and about 60% of eyes display severe axon loss with extensive
gliosis and optic nerve damage by 14 months of age (25). A
transgenic mouse model of glaucoma, Tg-MYOCY437H, carrying
a mutation of humanMYOC (Y437H) mimics the pathophysiology
of human MYOC-associated glaucoma (26–28). The Tg-
MYOCY437H mouse line begins to exhibit elevation of IOP,
RGC loss and axon degeneration from three to five months of
age, resulting in 17.6% of RGC loss by three to five months of age
and 30% of RGC loss by 12 to 14 months of age (29).

Several IOP-induced experimental models have been developed,
providing the advantage of acute IOP elevation and faster
neurodegeneration compared to inherited rodent models. There
are four major IOP-induced experimental models: laser
photocoagulation, injection of microbeads, injection of silicon oil
into the anterior chamber or injection of hypertonic saline through
episcleral veins. (i) Laser photocoagulation to the single or multiple
locations in the anterior chamber commonly causes elevation of
IOP within 7 – 10 days after injury and sustained for at least a few
weeks (30–35). Laser photocoagulation of both limbal and episcleral
veins induces 78% of axon loss four - five weeks after injury (33, 34).
Similarly, concurrent laser treatments to trabecular meshwork and
episcleral veins lead to 60% of axon loss six weeks after injury (30).
However, laser treatments to trabecular meshwork alone cause only
20% of axon loss six weeks after injury (30) and only 41% of axon
loss as late as 24 weeks after injury (31). Laser photocoagulation of
two locations such as both limbal and episcleral veins or both
trabecular meshwork and episcleral veins induce around 30% of
RGC loss four - five weeks after injury (33, 34) and 60% of RGC loss
nine weeks after injury (30). (ii) Injection of polystyrene microbeads
to anterior chamber increases IOP levels within a week, but the
magnitude of IOP elevation or persistence of high IOP levels varies
depending on injection volume (36), size of microbeads (37) and
animal strains (38). Extended elevations of IOP for two to four
weeks after injections induce 20 - 40% of axon loss and 25 – 38% of
RGC loss (36, 37, 39). (iii) Clinical reports that intravitreal injections
of silicone oil, which is normally used to treat complex retinal
detachments, can lead to high IOP elevation and post-operative
secondary glaucoma in humans (40–42). This evidence supports the
development of the silicone oil-based rodent model of glaucoma.
Direct injections of silicone oil into the anterior chamber leads to
rapid IOP elevation within a few days, and the levels remain high for
eight weeks. 88% of peripheral RGC loss and 65% of axon loss are
appreciated eight weeks after injections (43). (iv) Injections of
hypertonic saline through episcleral veins lead to sclerosis of
trabecular meshwork and anterior chamber angle, resulting into
chronic and constant IOP elevation for a few weeks to months (44–
47). Rodents with more than 70% of RGC loss clearly show
progressive cupping and abnormal ERG results (47).
May 2022 | Volume 2 | Article 905352
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The rodent intraorbital optic nerve crush model has been
broadly utilized as a model of traumatic optic neuropathy to
identify the cellular and molecular mechanisms underlying RGC
death and survival, axon degeneration, and axon regeneration
(48). Optic nerve crush and ocular hypertension show differing
degenerative phenotypes, such as the magnitude of RGC subtype
death and topography of RGC loss (49). However, several studies
have demonstrated that the optic nerve crush model and
inherited or IOP-induced experimental rodent models of
glaucoma trigger RGC degeneration through mediating the
same downstream molecules, such as Bax (50, 51) and Jun (52,
53). Optic nerve crush causes rapid neurodegeneration, with
20%, 47% and 66% of RGC loss and 38%, 58% and 67% of axon
loss at three, five and seven days after injury, respectively (54).
The earlier optic nerve transection model (55) shows slightly
more severe pan-RGC death than the optic nerve crush model,
but the magnitude of death of RGC subtypes is comparable
between the two models (56). Establishing multiple rodent
models of glaucoma and optic neuropathies enables us to
clarify the pathology as observed in glaucoma patients and to
find future therapeutic molecular interventions.
IDENTIFICATION OF NEUROPROTECTIVE
GENES BY COMPARATIVE
TRANSCRIPTOME ANALYSIS

I. Disease Progression
RGC loss and axonal degeneration in glaucoma are irreversible, and
the magnitude of neurodegeneration worsens over time. In a
common hypothesis, the balance between decreasing expression
of neuroprotective genes and/or increasing expression of cell death-
induced genes could decide the final neurodegenerative outcomes.
Several studies have shown RNA-seq profiles at different time points
of neurodegeneration in inherited and IOP-induced experimental
rodent models of glaucoma (Figure 1A, Supplemental Table 1). [1]
The retina of 3 month-old (before disease onset) and 8 month-old
DBA/2J mouse (after IOP elevation) (57), [2] RGCs of the eye with
mild or moderate IOP elevation (mild IOP increase:1< mmHg <4;
moderate IOP increase: ≥4mmHg) by injections of polystyrene
microbeads and RGCs of the normal eye (58), and [3] the retinal
ganglion cell layer (RGCL) of the eye with IOP elevation by aqueous
outflow obstruction following injecting hypertonic saline
unilaterally into episcleral veins and RGCL of the normal eye
(59), [4] the retina two days after optic nerve transection and the
uninjured retina (60), [5] the retina two days after optic nerve crush
and the uninjured retina (61), and [6] the retina one day after optic
nerve crush and the uninjured retina (62) have been utilized for
RNA-seq or microarray analysis to identify DEGs in each study.
First, we compared top DEGs listed in [1] – [6]. We found that
crystallin superfamily members (Crygb, Cryba1, Crygs, Cryba2,
Cryaa, Crybb1), Lcn2 (lipocalin 2), Lgals3 (galectin-3), Hmox1
(heme oxygenase-1), Ecel1 (endothelin converting enzyme like 1),
Atf3 (activating transcription factor 3), Csrp3 (cysteine and
glycine rich protein 3), and Serpina3n (serpin family A member
3) are commonly upregulated or downregulated (Figure 1B).
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Among these common DEGs, we summarize the information of
expression and functions of crystallin superfamily members (Crygb,
Cryba1, Crygs, Cryba2, Cryaa, Crybb1), Lcn2, Lgals3 Hmox1, Ecel1
and Atf3. We discuss whether these DEGs could be key common
therapeutic targets for treatments of glaucoma.

Crygb, Cryba1, Crygs, Cryba2, Cryaa, Crybb1 -
Crystallin Superfamily Members
Crygb, Cryba2, Cryaa, Cryba2 are commonly downregulated in
degenerating RGCs or retina as seen in [1] (57), [2] (58) and [6]
(62) (Figure 1B). Crystallins include the a, b, and g subtypes,
and the superfamily members are expressed in normal RGCs, but
they are downregulated in IOP-induced experimental models of
glaucoma (63, 64). Although a-crystallins are downregulated
after optic nerve crush, overexpression of aA- and aB-crystallins
enhance RGC survival after injury (65). Injection of a-crystallin
protein into the vitreous space after optic nerve crush also
attenuate optic nerve degeneration (66). Crystallins family
members carry out their anti-apoptotic functions through
mediating different molecular pathways. They bind to Bax and
Bcl-X and repress the translocation from the cytosol into
mitochondria during staurosporine-induced cell death (59).
They also prevent the activation of caspase 3 and activate PI3K
(67) and attenuate endoplasmic reticulum stress (68). Microglial
activation and TNF-a and iNOS release are repressed by
crystallins (69). Thus, crystallins could be a potential regulator
for RGC protection through mediating several molecular
pathways in glaucoma.

Lcn2 (Lipocalin 2)
Lcn2 is commonly upregulated in neurodegeneration as shown
in [1] (57), [3] (59), [4] (60) and [6] (62) (Figure 1B). Lipocalin-
2 (encoded by Lcn2) is a secreted protein that belongs to the
Lipocalins, a group of transporters of small lipophilic molecules,
and the expression is elevated after administration of
lipopolysaccharide (LPS) (70). Several studies have
demonstrated that lipocalin-2 has neurotoxic effects.
Recombinant lipocalin-2 protein induces apoptosis of neurons
in vitro (71). Lipocalin-2 levels are elevated after intracerebral
hemorrhage due to the brain injury, and loss of lipocalin-2
reduces microglial activation, brain swelling, brain atrophy,
and neurologic deficits compared to control (72). Similarly,
thrombin-induced brain swelling, blood-brain barrier
disruption, neuronal death and neurologic deficits are
markedly reduced by loss of lipocalin-2 (73). After transient
middle cerebral artery occlusion, lipocalin-2 expression is
upregulated in astrocytes and endothelial cells, and loss of
lipocalin-2 attenuates infarct volume, neurologic deficit, and
inflammatory response (74). Moreover, the expression is
induced in reactive astrocytes in the rodent model of ALS,
leading to neuronal death (75). Most recently, in the IOP-
induced neurodegeneration in vitro model, recombinant
lipocalin-2 protein leads to increased RGC death (76). Thus,
lipocalin-2 could be a neurotoxic factor expressed in non-
neuronal cells so that suppression of lipocalin-2 expression or
blocking the functions could prevent RGCs from death
in glaucoma.
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Lgals3 (Galectin-3)
Another commonly upregulated gene in neurodegeneration is
Lgals3 as seen in [3] (59) and [4] (60) (Figure 1B). Galectin-3
(Gal3) (encoded lgals3) is a member of the lectin family. In the
ischemic injury model, Gal3 is expressed in activated microglial
cells at the lesion site. Loss of Gal3 exacerbates ischemic damage
and increases neuronal apoptosis after cerebral ischemia. This is
mediated by an elevation of IL-6 and SOCS3 expression (77).
Moreover, treatments with recombinant Gal3 protein reduce
neuronal death and brain damage and improve post-ischemic
functional recovery (78). This evidence indicates that Gal3 plays
critical roles as a neuroprotective factor. However, neurotoxic
roles for Gal-3 by immune cells have been also reported.
Administration of neutralizing antibodies against galectin-3
attenuates the expression of pro-inflammatory markers such as
IL-1b and IL-6 and exerts neuroprotection in the cortex and
Frontiers in Ophthalmology | www.frontiersin.org 4
hippocampus after head injury (79). Loss of Gal3 also enhances
RGC protection and reduces the number of degenerated axons
after optic nerve crush (80). Taken together, Gal-3-mediated
functions may differ depending on the stage of progression of
injury and glaucoma.

Hmox1 (Heme Oxygenase-1)
Hmox1 is upregulated in neurodegeneration in [3] (59) and [4]
(60) (Figure 1B). Heme oxygenase (HO) enzymes degrade heme
to form biliverdin, iron, and carbon monoxide (CO) gas. Heme
oxygenase-1 (HO-1, encoded by Hmox1) exerts neuronal and
non-neuronal cell protection after visceral organ injury (81) and
brain ischemic injury (82). In the retina, overexpression of
Hmox1 adenovirus attenuates RGC loss after pressure-induced
ischemia (83). Thus, Hmox1 could play a role as a critical
neuroprotective factor in glaucoma. On the other hand, light-
A

B

FIGURE 1 | Identification of common genes among different transcriptome profiles at the specific conditions in the animal models of glaucoma. (A) Summary of nine
[1] – [9] transcriptome studies in the retina or RGCs in a variety of animal models of glaucoma and [10] possible risk genes associated with glaucoma in humans.
(B) Common genes listed across different transcriptome profiles and the fold change of each gene under the specific condition. Potential protective or harmful effects
of common DEGs on RGCs in glaucoma have been discussed in the main text.
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induced retinal degeneration causes photoreceptor degeneration
and increases Hmox1 expression. High expression of Hmox1
induces photoreceptor degeneration even without light stress
(84). Taken together, Hmox1 overexpression has a
neuroprotective role in only RGCs, but not other retinal cells.

Ecel1 (Endothelin Converting Enzyme Like 1)
Ecel1 is upregulated after optic nerve crush as shown in [4] (60)
and [5] (61) (Figure 1B). Endothelin-converting enzyme-like 1
(Ecel1/DINE, encoded by Ecel1) has been identified as an
elevated gene response upon nerve injury in the rat brain (85).
In the retina, knockdown of Ecel1 by AAV2-CRISPR/CAS9 virus
leads to severe RGC loss at four days after optic nerve crush (86).
In contrast, loss of Ecel1 has no impacts on RGC survival/death
rates at seven days, two and four weeks after optic nerve crush
compared to control. Intriguingly, loss of Ecel1 enhances RGC
axon regeneration only when Zymosan, a potent monocyte
activator and promotes axonal regeneration is present (87).
Thus, Ecel1 could exert RGC protection only at the early
stages of RGC degeneration in glaucoma.

Atf3 (Activating Transcription Factor 3)
Atf3 is commonly upregulated in [3] (59), [4] (60), [6] (62), and
[8] (88) (Figure 1B). ATF3 is a member of the basic leucine
zipper (bZip) family of transcription factors, and ATF3 is highly
conserved across different species: mouse and zebrafish Atf3
orthologs share 95% and 71% identity with human ATF3 (89).
In the optic nerve crush model, Atf3 is preferentially upregulated
in aRGCs, one of the RGC subtypes resistant to the injury
signals. Overexpression of Atf3 via AAV2 viruses (wherein ~80%
of RGCs are infected) enhances RGC survival after optic nerve
injury (90). The other study has demonstrated that hippocampal
neurons die due to growth factor withdrawal, application of
staurosporine or NMDA, or oxygen–glucose deprivation,
while ATF3 inhibits neuronal death induced by these toxic
factors (91). One of potential molecular pathways for RGC
protection by ATF3 is through CREB binding to the Atf3
promoter and subsequent induction of expression (91). CREB
is a downstream factor of CaMKII, which shows high
neuroprotective effects in NMDA- and IOP-induced RGC
degeneration models and after optic nerve crush (92). Thus,
CaMKII-CREB-ATF3 molecular axis could enhance RGC
survival in glaucoma.

II. Region-Specific Retinal Effects
One of the notable pathological features at the early stages of
neurodegeneration in glaucoma is that retinal axon degeneration
and loss of RGCs does not occur evenly in the whole retina. Both
diffuse and local patterns of RGC loss (93, 94) and specific
regions of retinal axon degeneration (95) are observed in
glaucoma patients. The rodent models of glaucoma also
recapitulate geographically diffuse and focal/regional patterns
of RGC loss and axon degeneration (21, 96–102). However, little
is known about whether the same molecular mechanisms
mediate neurodegeneration in all retinal regions. Most
recently, our study has shown that RGCs in the peripheral
Frontiers in Ophthalmology | www.frontiersin.org 5
ventrotemporal (VT) retina are more vulnerable to
degenerative signals after optic nerve crush compared to RGCs
in other retinal regions. We also demonstrated that
neurodegenerative signals conveyed from the optic nerve to
VT RGCs after ONC are mediated by SERT-integrin b3
molecular axis, leading to an acute reduction in the expression
of GPNMB, which has an RGC protective capacity. In contrast,
GPNMB expression in other retinal regions decline slowly. Thus,
these molecular interactions confer region-specific RGC
vulnerability after optic nerve crush (103). To understand the
molecular mechanisms of focal RGC loss in glaucoma, one study
has shown through RNA-Seq analysis: [7] the retinal areas where
RGCs have already died and the retinal areas where RGCs
continue to survive in 11 - 15 month-old DBA/2J mouse (104)
(Figure 1A, Supplemental Table 1). We compared top DEGs
between [7] and [1] – [6], but we are unable to find any common
DEGs. However, we focus on Opa1 (OPA1 mitochondrial
dynamin like GTPase) since Opa1 is functionally related to
Hmox1 which has been discussed above. Here, we discuss
whether Opa1 could be involved in RGC protection through
the mitochondrial pathway with other DEGs such as
Hmox1 (Figure 1B).

Opa1 (OPA1 Mitochondrial Dynamin Like GTPase)
OPA1 is an inner mitochondrial membrane protein, and loss of
OPA1 induces mitochondrial membrane potential reduction and
fragmentation of mitochondrial network (105). OPA1 haplo-
insufficiency is responsible for the most common form of
autosomal dominant optic atrophy (ADOA), a neuropathy
leading to degeneration of RGCs and the optic nerve (106).
The Opa1 mutant mouse, a mouse carrying a pathogenic
mutation in Opa1 shows a significant reduction (35 - 41%
decrease) of RGCs compared to WT mice and also axon
degeneration with age. Electroretinography (ERG) responses
are unaffected, but visually evoked potential (VEP)
measurements show significantly reduced amplitudes in the
mutant mouse (107, 108). One of the molecular mechanisms
underlying Opa1-mediated functions is that BNIP3, a pro-
apoptotic member of the Bcl-2 family is induced by stresses
such as hypoxia, and it mediates mitochondrial fragmentation
and apoptosis by disrupting OPA1 complex (109, 110).
Moreover, Opa1 is directly linked to glaucomatous
neurodegeneration. In the IOP-induced glaucoma model by
translimbal laser photocoagulation of the trabecular meshwork,
overexpression of OPA1 via AAV2 viruses attenuates loss of
RGCs through reducing expression of BAX and improving
mitochondrial health and mitochondrial surface area (111).
Thus, Opa1 could maintain mitochondrial quality, leading to
RGC protection in glaucoma.

Hmox1 - Opa1 Pathway
As described above, the heme oxygenase-1 (HO-1, encoded by
Hmox1) is commonly identified in [3] (59) and [4] (60), and it
protects neurons and non-neuronal cells after injury (81, 82).
Intriguingly, since the heme oxygenase-1 (HO-1; Hmox1)
enzyme system is important for cell protection against
May 2022 | Volume 2 | Article 905352
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oxidative damage in the cardiovascular system, loss of HO-1
shows a reduction in expression of Opa1 and other factors,
leading to disruption of mitochondrial quality and then cell
death (112). Moreover, loss of HO-1 gene in adipocyte cells
reduces thermogenic mitochondrial fusion and fission genes
such as Opa1 (113). Thus, vulnerable RGCs locally located in
the retina could be determined by dysfunctions of the
mitochondrial pathways, whose importance has been also
described by the other study (16).

III. Animal Species
Most RGCs die in glaucoma patients and in the rodent models of
glaucoma. However, unlike mammals, zebrafish possess high
neuroprotective and regenerative capacity in the retina: in the
optic nerve crush models, ∼75% of zebrafish RGCs survive after
optic nerve injury, even up to 7-weeks post-injury (114).
Zebrafish also show robust regenerative responses, regenerate
RGC axons and connect to target regions in the brain (115–117).
Several transcriptome studies using the retina or RGCs two days
(118), three days or later after optic nerve crush (119) have
identified DEGs which could potentially regulate axon
regeneration. Most recently, to test the hypothesis that RGC
protective signals could be acutely evoked after optic nerve
damage, we performed RNA-seq analysis using zebrafish RGCs
within 24 hours after optic nerve transection [8] (88) (Figure 1A,
Supplemental Table 1). Among top DEGs, stat3 and other
molecules related to Jak/Stat pathways are highly upregulated
after injury, and we found that Jak/Stat pathways mediate RGC
protection while microglia/macrophages kill RGCs after optic
nerve transection (88). To explore additional neuroprotective
genes in RGCs across species, we compared transcriptome
profiles between [8] zebrafish RGCs after optic nerve
transection (88) and others in the rodent glaucoma and optic
nerve injury models [1] – [7]. Intriguingly, zebrafish atf3
(activating transcription factor 3), irf9 (interferon regulatory
factor 9), sox11b (mouse Sox11) (SRY-Box transcription factor
11), adcyap1b (mouse adcyap1) (adenylate cyclase activating
polypeptide 1) and emb (embigin) are commonly upregulated
or downregulated (Figure 1B). Among those common DEGs,
since Atf3 has been already discussed above, here we discuss
whether other common DEGs such as irf9 and sox11 in
mammals could be potential therapeutic targets in glaucoma.

Irf9 (Interferon Regulatory Factor 9)
Irf9 is upregulated in optic nerve crush models [6] (62) and [8]
(88) (Figure 1B). Interferon regulatory factor 9 (IRF9 encoded
by Irf9) is a transcription factor that regulates innate immune
responses. Although there is no direct evidence that IRF9 is
involved in RGC protection or death in glaucoma or after optic
nerve injury, some studies have shown that IRF9 is connected
with neurological pathology (120, 121). IRF9 expression is
elevated in neurons after brain ischemia/reperfusion injury,
and it potentiates neuronal death via suppression of Sirt1
expression and acetylation of p53 (122). Thus, Irf9 could
induce RGC death after nerve injury and in glaucoma in
mammals, while in zebrafish, other neuroprotective factors
Frontiers in Ophthalmology | www.frontiersin.org 6
may be more active to overcome IRF9-indcued degenerative
signals in RGCs.

Sox11 (Zebrafish Sox11b) (SRY-Box Transcription
Factor 11)
Sox11 is upregulated in optic nerve crush models [4] (60) and [8]
(88) (Figure 1B). Sox11, a transcription factor is highly expressed
in developing RGCs, and it is a critical regulator for RGC
differentiation and retinal axon guidance during development
(123–126). Although Sox11 expression in RGCs is
downregulated after postnatal stages (126), overexpression of
Sox11 protects specific RGC types, but not pan-RGCs, and
promotes retinal axon regeneration after optic nerve injury
(127–129) . One of molecular mechanisms is that
overexpression of Sox11 increases expression levels of anti-
apoptotic factor, Bcl2. However, Sox11 kills aRGCs, one of the
resistant RGC subtypes and reduces expression of Spp1, a marker
for aRGCs after optic nerve injury (127, 129). Thus, Sox11 could
be a unique and selective neuroprotective factor in glaucoma.

IV. RGC Subtypes
46 RGC types in adult mouse retina display differential RGC
vulnerability and show distinct molecular signatures, some of
which have been identified as novel neuroprotective and/or axon
regeneration-related genes using single RNA-seq analysis by [9]
(130) (Figure 1A, Supplemental Table 1). For instance, aRGCs
are resistant to injury signals after optic nerve crush (131).
Moreover, Timp2 and Prph are highly expressed in resilient
RGC types, and overexpression of these factors induces RGC
protection after optic nerve injury. In contrast, Crhbp andMmp9
are highly expressed in vulnerable RGCs, and loss of these factors
enhances RGC survival (130). Thus, clarifying molecular
signatures in resilient RGC subtypes compared to vulnerable
RGC subtypes after optic nerve injury enable us to identify them
as novel neuroprotective factors in glaucoma. Thus, we
compared transcriptome profiles between [9] (130) and [1] –
[8]. We found that Ndnf (neuron derived neurotrophic factor),
Ctxn3 (cortexin 3) and Gabra2 (gamma-aminobutyric acid type
A receptor subunit alpha2) are commonly regulated (Figure 1B).
Among them, we focus on Ndnf and discuss potential functions
in RGCs.

Ndnf (Neuron Derived Neurotrophic Factor)
Ndnf is upregulated in injured zebrafish RGCs [8] (88) and highly
expressed in resilient RGCs [9] (130) after optic nerve injury
(Figure 1B). Neuron-derived neurotrophic factor (NDNF
encoded by Ndnf) is a glycosylated, disulfide-bonded protein. In
the retina, NDNF is more highly expressed in resilient RGCs
compared to vulnerable RGCs, and overexpression of Ndnf via
AAV2virus inRGCspromotesRGCsurvival afteroptic nerve injury
(130). NDNF also has the neuroprotective effects in other CNS
neurons. In the hippocampus neuron cultures, NDNF supports
neuronal survival and promotes neurite growth and neuron
migration (132). Although the molecular mechanisms underlying
NDNF-mediated neuronal protection are still unclear, NDNF could
be identified as a potential therapeutic gene in glaucoma.
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POTENTIAL THERAPEUTIC TARGETS FOR
GLAUCOMA PATIENTS

A large number of studies on glaucoma inheritance in humans
have identified loci that could be associated with specific
glaucomatous phenotypes or genetic mutations, suggesting that
genetic factors could trigger the initiation of glaucoma. The
review article by Wang et al. (133) show that 22 loci of
glaucoma are listed and includes the relevant genes such as
myocilin (MYOC), optineurin (OPTN), cytochrome P450
subfamily I polypeptide 1 (CYP1B1) and others. [10] These
authors also display 74 possible pathogenic or risk genes
associated with glaucoma (133) (Figure 1A, Supplemental
Table 1). Moreover, single nucleotide polymorphisms (SNPs)
and larger variations including copy number variations could also
impact the progression and magnitude of glaucomatous
phenotypes. Thus, we compare top DEGs identified in [1] – [9]
with 74 possible pathogenic or risk genes listed in [10]. We found
that OPA1 (OPA1 mitochondrial dynamin like GTPase), RPGRIP1
(RPGR Interacting Protein 1) and ATOH7 (Atonal BHLH
Transcription Factor 7) are commonly listed (Figure 1B).
Indeed, these genes have been associated with glaucoma in
humans: OPA1 (134, 135), RPGRIP1 (136) and ATOH7 (137).
OPA1 in rodent RGCs has been discussed above, and it could be a
potential neuroprotective gene. Expression and functions of
ATOH7 in developing RGCs have been investigated, with
ATOH7 mediating RGC survival during development (138).
Moreover, most recently, 127 loci associated with open-angle
glaucoma have been identified, with specific genes, such as
RERE, VCAM1, ZNF638, SMAD6 potentially conferring open-
angle glaucoma risk (139). Among those risk genes, MAPT is
also listed as one of DEGs in the IOP-induced glaucoma model [3]
(59). The microtubule-binding protein tau (tau encoded byMAPT)
enhances RGC death after optic nerve crush (140). Alternative
splicing of MAPT produces distinct tau isoforms which induce
RGC death in the rodent model of Alzheimer’s disease (141). Thus,
MAPT could be a mediator of RGC death in glaucoma.
CONCLUDING MARKS

Combined analytical studies using well-established animal
models of glaucoma and transcriptomic gene expression
profiles have provided critical molecular insights into how
RGCs can be preserved in glaucoma. In this review, we
performed comparative analyses of several transcriptomic
profiles using different glaucoma models. We found that some
of the DEGs are commonly listed across different species and/or
animal disease models, suggesting that they are most likely to be
effective therapeutic targets for treatments of RGC degeneration
in glaucoma. Because these DEGs have been identified from
different cellular sources, such as single RGCs, RGC layer or
whole retina, they could affect RGC survival or death through cell
autonomous or non-cell autonomous mechanisms. Even if
functional studies of these common DEGs unveil no role for
them in neurodegeneration, they can still be utilized as molecular
Frontiers in Ophthalmology | www.frontiersin.org 7
markers to inform us about the magnitude of RGC degeneration
and/or animal- and cell-type specific degenerative outcomes.
There are many other DEGs that we were unable to cover in
the scope of this review but may ultimately play important roles
in neuroprotection. Several key review articles have previously
organized and described relevant genes and molecular
mechanisms of neurodegeneration in glaucoma (142–144).
Most recently, Wang et al. (145) have also summarized
commonly upregulated or downregulated genes by comparing
transcriptomic data in several glaucoma mouse models and optic
nerve crush models, most of which we have also included in this
review. The deep molecular insights into neurodegeneration and
neuroprotection, in particular in immune-mediated and other
molecular pathways, provided by Wang et al. (145), complement
the focus of our review. Together, these primary experimental
studies and further cross-analysis through review articles,
including ours, will lead to a better understanding of common
and di ffer ing molecular mechanisms that under ly
neurodegeneration in disease and injury conditions. Further
studies using the existing or novel rodent models of glaucoma
with current and new transcriptomic gene expression profiles
under a certain condition will be beneficial for gaining more
knowledge of targeted molecules for future gene therapy.
Moreover, in the comparison of DEGs identified in
transcriptomic profiles to disease susceptibility loci identified
in epidemiological datasets, only a few DEGs are matched to
glaucoma risk alleles in humans. Indeed, many susceptibility loci
are related to regulation of IOP since they are expressed in the
trabecular meshwork or angle tissues. Thus, further studies
aiming at identification of risk genes directly connected to
neurodegeneration in glaucoma patients will be needed.

There are still many unanswered questions: how many genes
or interventions are required for completely preventing or
delaying neurodegeneration? Can we use the same molecular
interventions in all types or specific types of glaucoma? What
visual functions can be maintained by one or the other gene
manipulations in all or specific RGC subtypes? What evaluation
system (e.g. 3-D human retinal organoid) is the most reliable to
test the neuroprotective efficacy of candidate genes in human
glaucoma RGCs? Further research will give answers to these
critical questions that are key to development and proper choice
of neuroprotective interventions that take into account disease
stage and the types of glaucoma.
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