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In the lacrimal gland, myoepithelial cells (MEC) express muscle contractile proteins such
as alpha smooth muscle actin (SMA) and calponin and therefore can contract to help
expel lacrimal fluid. In a previous study, we demonstrated that lacrimal gland MEC express
the oxytocin receptor (OXTR) and they contract under oxytocin (OXT) stimulation. Using
NOD and MRL/lpr mice (animal models of Sjogren’s syndrome), we reported a decrease
in SMA and calponin protein levels plus a decline in acini contraction after stimulation with
OXT. It is known that proinflammatory cytokines, such as interleukin-1b (IL-1b), tumor
necrosis factor alpha (TNF-a) or interferon gamma (IFN-g), can affect OXTR expression
and signaling capacity and inhibit MEC contraction. The aim of the current study was to
investigate if proinflammatory cytokines are implicated in the loss of MEC contractile
ability. Thus, lacrimal gland MEC from SMA-GFP transgenic mice were treated with IL-1b
(10 ng/ml) for a total of 7 days. At days 0, 2, 4 and 7, GFP intensity, cell size/area,
contractile proteins amounts and MEC contraction were assessed. At day 0, control and
treated cells showed no differences in GFP intensity and cell size. GFP intensity started to
decrease in treated MEC at day 2 (20%; p=0.02), continuing after day 4 (25%; p=0.007)
and 7 (30%; p=0.0001). Mean cell area was also reduced at day 2 (34%; p=0.0005), and
after 4 (51%; p<0.0001) and 7 days (30%; p=0.0015). The contraction assay at day 2
showed a 70% decrease of contraction in treated MEC (p<0.0001), 73% (p<0.0001) at
day 4 and 82% (p=0.0015) at day 7 when compared to control. Levels of contractile
proteins were measured on day 7 showing a decrease in SMA and calponin amount in
treated MEC compared with the control group (around 30%; p=0.0016 and p=0.0206;
respectively). Similar results were observed when TNF-a and IFN-gwere added along with
IL-1b. Taken together the present data and those from our previous studies with Sjogren’s
syndrome mouse models, they strongly suggest that proinflammatory cytokines affect
lacrimal gland MEC contractile ability that may account for the reduced tear secretion
associated with Sjogren’s syndrome dry eye disease.
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INTRODUCTION

Lacrimal gland myoepithelial cells (MEC) form an extensively
branched network surrounding the acinar and ductal cells of the
lacrimal gland epithelium, being an important component of its
secretory apparatus (1–3). MEC are able to contract helping to
expel lacrimal fluid and they express muscle contractile proteins
such as alpha smooth muscle actin (SMA) and calponin as well as
epithelial markers (keratin 5 and 14) (3). They also express both
muscarinic and purinergic receptors implying that MEC can
respond to neural stimuli (4–6).

We have recently demonstrated that lacrimal gland MEC
express the oxytocin receptor (OXTR) and they contract under
oxytocin (OXT) stimulation (7, 8). The OXTR, like many other G
protein coupled receptors (GPCRs), can be desensitized by
prolonged agonist stimulation which can lead to a reduced
signal transduction (9–11). Normal desensitization of GPCRs
is commonly mediated through b-arrestin binding, however,
under inflammatory conditions, OXTR down-regulation has
also been observed (12, 13).

Proinflammatory cytokines, such as interleukin-1beta (IL-
1b), tumor necrosis factor alpha (TNF-a) or interferon gamma
(IFN-g), have been shown to be key mediator in lacrimal gland
inflammation associated with Sjogren’s syndrome affecting
OXTR expression and signaling capacity and impair MEC
contraction critically impeding lacrimal gland fluid release
(14). In addition, it has been reported that IL-1b decreases
OXTR mRNA levels and downregulates OXT binding capacity
in myometrial and decidua human cell cultures (15–18).

In our previous study, using animal models of Sjogren’s
syndrome (NOD and MRL/lpr mice), we reported a decrease
in SMA and calponin protein levels plus a decline in acini
contraction after stimulation with OXT (7). These results
indicated that MEC function is impaired during chronic
inflammation of the lacrimal gland. Thus, the aim of the
current study was to investigate if proinflammatory cytokines
are implicated in the loss of MEC contractile ability. Lacrimal
gland MEC from a SMA-GFP transgenic mouse strain were
treated with IL-1b (10 ng/ml) for a total of 7 days. At day 0, 2, 4
and 7, GFP intensity, cell area, contractile proteins amounts and
MEC contraction were assessed. Our data show that chronic
treatment with proinflammatory cytokines decreased GFP
intensity, cell size, SMA and calponin protein expression and
inhibited OXT-induced MEC contraction. Similar results were
observed when TNF-a and IFN-g were added along with IL-1b.
MATERIALS AND METHODS

Cytokines, Chemicals, and Antibodies
Recombinant human IL-1b, recombinant human TNF-a
and recombinant human IFN-g were purchased from
PEPROTECH (Rocky Hill, NJ). Oxytocin was purchased from
Sigma-Aldrich (Saint Louis, MO). Cell media Dulbecco’s
Modified Eagle (DMEM) and RPMI-1640 medium (Roswell
Park Memorial Institute), collagenase type II, penicillin-
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streptomycin, L-glutamine, and fetal bovine serum (FBS) were
from Gibco (Waltham, MA). TrypLE Express was from
Invitrogen (Carlsbad, CA). Rabbit polyclonal antibody against
aSMA (ab5694 at 1:400 dilution) and rabbit monoclonal
antibody against calponin (ab46794 at 1:2000 dilution) were
from Abcam (Waltham, MA). All secondary antibodies were
from LI-COR (Lincoln, NE).

Animals
All experiments described herein were performed in accordance
with the Association for Research in Vision and Ophthalmology
(ARVO) statement for the use of animals in ophthalmic and
vision research and were approved by the Tufts Medical Center
Institutional Animal Care and Use Committee. Mice were
maintained in constant temperature rooms with fixed light/
dark intervals of 12 h length and were fed ad libitum. To
obtain MEC, SMA‐GFP mice (C57BL6)/SMACreErt2 strain was
used for this study that was described by Yokota (19) and were a
kind gift of Dr. Ivo Kalajzic (UConn Health, Farmington, CT). In
these mice, the lacrimal gland MEC, which express SMA, are
therefore labeled with GFP.

Isolation and Propagation of Lacrimal
Gland MEC
Four- to 6-week-old SMA-GFP mice were euthanized and the
exorbital lacrimal glands were removed and minced into lobules
for collagenase digestion using our previously described protocol
(5, 8). Briefly, lacrimal glands were washed in cold DMEM,
gently minced with a scalpel and forceps to prepare 2-3 mm
lobules and placed in digestion media (1.5 mL/gland of DMEM
and 1.65 mg/mL of collagenase type II). Samples were then
incubated in a shaking water bath (37°C and 100 rpm) for 20-30
minutes. At regular 5 min intervals, lobules were gently pipetted,
10 times, through tips of decreasing diameter. Digested media
was filtered through a sterile cell strainer (100 µm nylon mesh;
Thermo Fisher Scientific, Waltham, MA), remaining tissue
pushed through the mesh using the pipette tip, and collected
cells washed with 1-2 mL DMEM. Cells were then centrifuged at
100 x g for 5 minutes, resuspended in complete RPMI-1640
medium supplemented with 10% fetal bovine serum, 2 mM L-
glutamine, and 100 µg/mL penicillin-streptomycin and
centrifuged again at 100 x g for 5 minutes. Pelleted cells were
resuspended in 10 mL complete RPMI media, plated in 100 mm
culture dishes (VWR, Radnor, PA) and placed in a 37°C
incubator (5% CO2).

Cytokine Treatment of Lacrimal
Gland MEC
Lacrimal gland MEC were seeded in 6-well plates in 5% FBS
RPMI Media. Confluent to sub-confluent MEC cultures were
treated with 10 ng/ml of IL-1b alone or in combination with 10
ng/ml each of TNF-a and IFN-g, for a total of 7 days. Every other
day media was changed, and 4-5 pictures were randomly taken
from each well to perform further analysis of GFP intensity and
cell area measurements. In other experiments, cells were
trypsinized to perform the contraction assay, as described
April 2022 | Volume 2 | Article 873486
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below. After the last day of treatment (day 7), cells were lysed,
and protein samples were prepared for western blotting studies,
as described below.

Image Analysis of GFP Intensity and Cell
Size Measurements
Images of MEC cultures were taken on day 0 (before addition of
cytokines) then 2, 4 and 7 days of cytokines treatment using a
digital camera (SPOT Insight CMOS; SPOT Imaging, Sterling
Heights, MI) mounted on an inverted light microscope (Eclipse
TE2000-S; Nikon Instruments Inc., Melville, NY). Total GFP
intensity was analyzed, in each of these time frames from control
and treated MEC, using ImageJ/Fiji software (ImageJ 1.53,
National Institutes of Health, USA). Analyzing GFP intensity is
an indirect indicator of SMA protein levels since GFP expression
in MEC is under the control of the SMA promoter. In addition, a
minimum of 5 to 6 cells per photograph were selected to measure
the cell area (µm2) using SPOT Advanced Imaging software
(Version 5.6).
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SDS-PAGE and Western Blotting
At the end of the cytokine treatment, lacrimal gland MEC from
treated and control groups were lysed in 0.2 mL ice-cold radio-
immunoprecipitation assay (RIPA) buffer (10 mMTris-HCl pH 7.4,
150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium
deoxycholate, and 0.1% SDS supplemented with protease
inhibitors). Cell lysates were centrifuged at 20,000 x g for 30
minutes and the supernatant collected. Proteins were separated by
SDS-PAGE on NuPage 4–12% Bis-Tris gels in MOPS-SDS buffer
(Invitrogen, Carlsbad, CA). Protein in the gels were transferred to
nitrocellulose membranes using NuPage transfer buffer (Invitrogen)
and processed for immunoblotting. After transfer, nitrocellulose
membranes were stained with REVERT Total Protein Stain (LI-
COR) following the manufacturer’s instructions and prior to being
blocked using Odyssey blocking buffer (LI-COR) for 1 hour at room
temperature. Membranes were then incubated overnight at 4°C
with the appropriate primary antibody for SMA and calponin
diluted in blocking buffer + 0.1% tween-20. Following washing
with Tris-buffered saline + tween-20 (TBS; 50 mM Tris-HCl,
A

B

FIGURE 1 | Effect of IL-1b on GFP intensity. Lacrimal gland MEC were either left untreated (control) of incubated with IL-1b (10 ng/ml) for 2, 4, or 7 days. Three or 4
random images were taken, using the same camera setting for all conditions, from each well and GFP intensity was quantified using ImageJ/Fiji software, as
described in the Methods section. (A) Shows representative images from control and treated MEC at all time points measured and (B) Shows averaged data from 4
independent experiments. Compared to the control group, IL-1b treatment significantly decreased GFP intensity at all time points measured (Mann-Whitney U test).
Data are means ± SD; n=20-23 for day 0; n=32 for day 2; n=31-32 for day 4; and n=28 for day 7 with all data from 4 independent experiments. Scale bar = 50 mm.
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150 mM NaCl, 0.1% tween-20, pH 7.6) membranes were then
incubated for 1 hour at room temperature with their appropriate
secondary antibodies followed by detection on a LI-COR Odyssey
Infrared Imager. Staining in each lane for REVERT total protein
stain (see Supplementary Material), and band intensity for
immunoblotting was quantified using the LI-COR Image Studio
software (v.4.0). Western blot band quantifications were then
normalized to the total amount of protein in each lane.

MEC Contraction Assay
On days 2, 4 or 7, cells were trypsinized from the 6-well plate and
seeded overnight in a 24-well-plate, at a density of around 5,000
cells/well. Cells treated with cytokines and untreated cells
(control) were stimulated with OXT (10-6 M) for 20 minutes.
Video recording of the contraction process was performed using
a digital camera (SPOT Insight CMOS; SPOT Imaging, Sterling
Heights, MI) mounted on an inverted fluorescence microscope
(Eclipse TE2000-S; Nikon Instruments Inc., Melville, NY). Also,
Frontiers in Ophthalmology | www.frontiersin.org 4
still images were taken before and 20 min after OXT stimulation
for image analyses. At least 10 random cells from each well and
each condition were used for image analyses, using ImageJ/Fiji
software (ImageJ 1.53, National Institutes of Health, USA). The
perimeter of the same cell was calculated before and after OXT
stimulation, and the difference between these two values that
represents the decrease in cell size after OXT stimulation, was
expressed in percentage.

Statistical Analyses and
Data Presentation
Statistical analyses were performed using GraphPad Prism
Software (version 9.0; San Diego, CA). Where appropriate,
data are presented as means ± standard deviation (SD). Data
consisting of 2 groups were analyzed using a 2-tailed unpaired
Student’s t-test or the Mann-Whitney U test for non-normally
distributed data with significant results being considered at
p-value < 0.05.
A

B

FIGURE 2 | Effect of IL-1b on MEC size. Lacrimal gland MEC were either left untreated (control) of incubated with IL-1b (10 ng/ml) for 2, 4, or 7 days. Three or 4
random images were taken, using the same camera setting for all conditions, from each well MEC size was quantified using SPOT Imaging software, as described in
the Methods section. (A) Shows representative images from control and treated MEC at all time points measured and (B) Shows averaged data from 4 independent
experiments. Compared to the control group, IL-1b treatment significantly decreased MEC size at all time points measured (Student’s t-test). Data are means ± SD;
n=23-24 for day 0; n=19 for day 2; n=15-16 for day 4; and n=27-28 for day 7 with all data from 4 independent experiments. Scale bar = 50 mm.
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RESULTS

Effect of IL-1b on GFP Intensity andMEC Size
Since GFP expression in the transgenic mouse used in our studies
is under the control of the SMA promoter, a decrease in GFP
intensity would imply a decrease in SMA expression. Lacrimal
gland MEC were left untreated or incubated with IL-1b for up to
7 days. Images were taken at days 0, 2, 4, and 7 and used for
image analyses to quantify GFP intensity or MEC size, as
described in the Methods section. As shown in Figure 1, at
day 0, control and treated cells showed no difference in GFP
intensity. GFP intensity started to decrease in treated MEC at day
2 (20%; p=0.02), continuing at day 4 (25%; p=0.007) and day 7
(30%; p=0.0001) (Figure 1).

The data in Figure 2 summarizes the effect of IL-1b treatment
on MEC size. At day 0 there was no significant difference in cell
size between the treated and control group. However, mean cell
area was reduced at day 2 (34%; p=0.0005), day 4 (51%;
p<0.0001) and day 7 (30%; p=0.0015) in treated MEC treated
compared with the control group (Figure 2).

These data suggest that chronic treatment of lacrimal gland
MEC with IL-1b lead to degradation of SMA protein, which
resulted in smaller sized cells. Quantification of SMA and
Frontiers in Ophthalmology | www.frontiersin.org 5
calponin protein expression levels, as discussed below, lend
support to this hypothesis.

Effect of IL-1b Treatment on MEC
Contractile Proteins Levels
The data from the GFP intensity analyses suggested that chronic
treatment of lacrimal gland MEC with IL-1b lead to lower
expression of SMA protein. To test this hypothesis, we
prepared cell lysates from control and IL-1b treated MEC and
performed western blotting analyses to quantify the level of
expression of SMA as well as calponin. As shown in Figure 3,
there was a 33% decrease in the amount of SMA and calponin
protein in treated MEC compared with the control group
(p=0.0016 and p=0.0206; respectively). Please note that, as
expected, SMA expression decreased to a similar level as did
GFP intensity (Figure 1).

These data suggest that chronic treatment of MEC with IL-1b
lead to lower expression of SMA and calponin proteins.

Effect of IL-1b on OXT-Induced
MEC Contraction
So far, our data suggest that chronic IL-1b treatment led to
degradation of contractile proteins which could result in
A

B

FIGURE 3 | Effect of IL-1b on SMA and calponin protein levels. Lacrimal gland MEC were either left untreated (control) or treated with IL-1b (10 ng/ml) for 7 days. SMA
and calponin protein level were quantified by western blotting and reported as a ration relative to total protein stain, as described in the Methods section. (A) Shows
western blots for SMA (top) and calponin (bottom) in control (B) and IL-1b treated (T) MEC samples. (B) Graphs showing the amount of SMA and calponin in control
and treated lacrimal gland MEC relative to total protein stain. SMA and calponin amounts are significantly decreased in lacrimal gland MEC treated with IL-1b compared
with the control (P = 0.0016 and P = 0.0206; respectively, Student’s t-test.). Data in the plots are means ± SD, n = 7 from 4 independent experiments.
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impaired lacrimal gland MEC contraction. Cells incubated with
IL-1b for 2, 4 or 7 days were trypsinized, seeded overnight on 24-
well plates to perform contraction assay as described in the
Methods section. As shown in Figure 4, compared to controls,
day 2 treated MEC showed a 70% (p<0.0001) decrease in OXT-
induced contraction. Contraction was further decreased by 73%
(p<0.0001) at day 4 and 82% (p=0.0015) at day 7 (Figure 4).

These data suggest that IL-1b induced lower expression of
SMA and calponin proteins led to inhibition of OXT-induced
MEC contraction.

Effects of IL-1b, TNF-a and IFN-g, on GFP
Intensity, Cell Size and Contractile Protein
Expression
The proinflammatory cytokines TNF-a and IFN-g, are known to
be elevated in chronically inflamed lacrimal glands as occurs in
Sjogren’s syndrome. Therefore, we tested their effect, when
added with IL-1b, on MEC functions. At day 0, GFP intensity
and cell size of treated and untreated MEC was not significantly
different (data non shown). In contrast, both GFP intensity and
MEC size were significantly decreased following treatment with
the cytokine cocktail for 7 days (Figures 5A, B). When compared
to IL-1b alone, the cytokine cocktail decreased GFP intensity and
cell size to a larger extent: 57% vs. 30% and 41% vs. 30%;
respectively (Figures 1, 2, and 5). Similarly, the amounts of the
contractile proteins, SMA and calponin, were also decreased,
although not statistically significantly, following cytokine
cocktail treatment (Figure 5C).

These data suggest that TNF-a and IFN-g can synergize with
IL-1b to further impact MEC functions in chronically inflamed
lacrimal glands.
Frontiers in Ophthalmology | www.frontiersin.org 6
DISCUSSION

The data from the current studies show that chronic treatment of
lacrimal gland MEC with the proinflammatory cytokine IL-1b
led to lower expression of the contractile proteins, SMA and
calponin, which resulted in smaller sized cells and inhibition of
OXT-induced MEC contraction. These in vitro findings
recapitulate our previously published in vivo findings in animal
models of Sjogren’s syndrome with chronically inflamed lacrimal
glands (7). Namely, the lower expression of SMA and calponin
proteins, the reduced MEC size, and the loss of OXT-
induced contraction.

It is known that several proinflammatory cytokines are highly
expressed in Sjogren’s syndrome target organs (20–22). Some of
the pro-inflammatory cytokines thought to play an important
role in Sjogren’s syndrome pathophysiology are the interferons
(IFN), IL-12, IL-18, TNF-a, IL-1b, IL-6 and B-cell activating
factor (BAFF) (21). These cytokines are highly expressed in
Sjogren’s syndrome with IFN in particular being responsible
for activation of autoreactive T and B cells in the lacrimal glands
(21, 23). In the current studies, addition of two other
proinflammatory cytokines known to be associated with
Sjogren’s syndrome pathophysiology, TNF-a and IFN-g,
seemed to potentiate (or synergize) the effects of IL-1b.

The mechanisms involved in proinflammatory cytokine-
induced degradation of MEC contractile proteins and
inhibition of OXT-induced contraction remain to be
investigated. In several muscle tissues, studies have shown that
both the OXTR as well as contractile proteins are down regulated
by proinflammatory cytokines. For example, studies showed that
proinflammatory cytokines, especially IL-1b, down-regulate the
expression of the OXTR in uterine smooth muscle (15, 17). The
effect of IL-1b was both at the mRNA level as well as the OXTR
protein level, although the molecular mechanisms were not
described (17). A study by Castro et al. (24) reported that
matrix metalloproteinase 2 (MMP-2) interacts with calponin-1
in aortic vascular smooth muscle cells and that MMP-2 mediated
proteolysis of calponin-1 during endotoxemia contributes to
LPS-induced hypocontractility. It is worth noting that we
showed that inhibition of MMP-2 leads to increased tear
production in an animal model of Sjogren’s syndrome dry eye
disease (25). Future studies testing the effect of MMP-2
inhibition on proinflammatory cytokine induced lacrimal
gland MEC dysfunction are needed.

In myometrial cells, the activation of the transcriptional
regulatory nuclear factor kB (NF-kB) family is the main
component in IL-1b signaling cascade (26–28). Several studies
showed a concerted increase in the expression of genes of the
ubiquitin/proteasome pathway, including the muscle specific
ubiquitin ligases Trim63 (MuRF-1), Fbxo32 (Atrogin-1), as
well as many other 20S and 19S proteasome subunits and
cathepsin L, activating as a final protein breakdown the
ubiquitin pathway (29). In several disease conditions, calpain
and/or caspase-3 were reported to mediate this initial breakdown
(30–32). The role of these pathways in proinflammatory
cytokine-mediated lacrimal gland MEC dysfunction remain to
be investigated.
FIGURE 4 | Effect of IL-1b on oxytocin-induced lacrimal gland MEC
contraction. Lacrimal gland MEC were either left untreated (control) of
incubated with IL-1b (10 ng/ml) for 2, 4, or 7 days. Cells were trypsinized for
each time period, reseeded at low density and then stimulated with OXT
(10−6 M) for 20 minutes. Changes in MEC size (i.e., contraction) following OXT
stimulation was measured using ImageJ/Fiji software, as described in the
Methods section. Chronic treatment of MEC with IL-1b significantly inhibited
OXT-induced contraction at all three time points (Student’s t-test). Data are
means ± SD; n=30-35 for day 2; n=28-29 for day 4 and n=34-35 for day 7
with all data from 3 independent experiments.
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In conclusion, our data show that chronic treatment of
lacrimal gland MEC with the proinflammatory cytokine IL-1b
lead to lower expression of the contractile proteins SMA and
calponin, reduced cell size and a profound inhibition of OXT-
induced contraction. The addition of two other proinflammatory
cytokines, TNF-a and IFN-g, seemed to potentiate the effect of
IL-1b on lacrimal gland MEC. These in vitro findings coupled
with our published in vivo findings suggest that targeting
proinflammatory cytokine in chronically inflamed lacrimal
gland is a potential therapeutic target to restore MEC
contractile ability and tear secretion in dry eye disease.
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