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Artificial intelligence (AI) has been approved for biomedical research in diverse

areas from bedside clinical studies to benchtop basic scientific research. For

ophthalmic research, in particular glaucoma, AI applications are rapidly

growing for potential clinical translation given the vast data available and the

introduction of federated learning. Conversely, AI for basic science remains

limited despite its useful power in providing mechanistic insight. In this

perspective, we discuss recent progress, opportunities, and challenges in the

application of AI in glaucoma for scientific discoveries. Specifically, we focus on

the research paradigm of reverse translation, in which clinical data are first used

for patient-centered hypothesis generation followed by transitioning into basic

science studies for hypothesis validation. We elaborate on several distinctive

areas of research opportunities for reverse translation of AI in glaucoma

including disease risk and progression prediction, pathology characterization,

and sub-phenotype identification. We conclude with current challenges and

future opportunities for AI research in basic science for glaucoma such as inter-

species diversity, AI model generalizability and explainability, as well as AI

applications using advanced ocular imaging and genomic data.
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1 Introduction

1.1 Reverse translation in
glaucoma studies

In therapeutic development research, the conventional

forward translation paradigm adopts a benchtop-to-bedside

scheme, which aims to find genomic associations or therapeutic

biomarkers starting from in vitro studies and animal models to

validation in human subjects for further refinements and

therapeutic development. On the other hand, reverse translation

offers a different research paradigm that starts from human studies

to identify and generate hypotheses for validation in animal or in

vitro studies (1). This alternative research paradigm is poised to

address several bottlenecks in conventional forward translation

due to its more patient-centered, seamless, continuous, and

cyclical process (2).

In the field of glaucoma research, there is an urgent need to

develop therapeutic methods beyond the conventional clinically

proven therapeutic intervention of lowering intraocular pressure

(IOP). Glaucoma is the leading cause of irreversible blindness

worldwide. Although glaucoma is characterized by progressive

damage of the retinal ganglion cells and their axons, very little is

known about its underlying mechanisms. IOP is a major risk

factor, but not the cause of the disease. However, only a limited

number of current clinical trials (<7%) were able to focus on novel

neurotherapeutic targets (3). Such a mismatch between the need

and reality of the sub-phenotyping therapeutic development

research is in part hindered by the limitations embedded in the

conventional forward translation paradigm. Reverse translation

could potentially alleviate these barriers. For example, recent work

using a transgenic mouse model based on the optineurin E50K

gene mutation, originally discovered in human normal-tension

glaucoma patients (4), discovered novel mutation-level-dependent

age effects on visual impairment (5). In another example, inspired

by the relationship between aging and glaucoma in clinical

settings, Lu et al. designed retinal tissue reprogramming through

the induction of ectopic expression of the four Yamanaka

transcription factors and showed reverse age-related vision loss

and eye damage in an aging mouse model with glaucoma (6).

These and other related studies demonstrated the successful

implication of reverse translation in glaucoma research (7–9).
1.2 Role of AI in reverse translation

Universally, machine learning and artificial intelligence (AI)

in medicine have been applied mostly in clinical data with far

fewer studies pertaining to animal models. This disparity in

application arises largely from greater availability and

standardization of bedside clinical data compared to benchtop

data. This is particularly true in the field of glaucoma, in which
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much of the recent technology development has been established

in bedside clinical settings (10, 11). Disparities in technological

advancement that favor clinical applications present an ideal

opportunity to apply the reverse translation research paradigm.

Thus, AI applications in glaucoma are poised for technical

adaptations that can pioneer reverse translation from human

to animal models. In this perspective, we summarize several

areas of research opportunities for reverse AI translation in

glaucoma. We also point out current challenges in the field, and

identify several research directions to achieve successful reverse

translation for scientific discoveries in glaucoma in the future.
2 Areas of research opportunities for
reverse translation of AI in glaucoma

This perspective is structured in the following order: We first

review the latest research using supervised classification AI

models to predict glaucoma-related clinical and pathological

conditions, such as rapid glaucoma progression (Section 2.1)

and optic nerve head (ONH) abnormality detection (Section

2.2). Parallelly, we summarize the applications of unsupervised

clustering AI algorithms to identify glaucoma subtypes (Section

2.3), such as novel archetypal visual field loss patterns and ONH-

abnormality structural patterns. The next sections focus on AI

algorithms to identify glaucoma-related risk factors (Section 2.4)

and endophenotypes (Section 2.5-2.7). Specifically, we take a

close look at AI-derived phenotypic biomarkers for glaucoma

using ophthalmic imaging techniques including structural

optical coherence tomography (OCT) (Section 2.5-2.6) and

vascular OCT-Angiography (OCTA) (Section 2.7). Finally, we

review recent glaucoma AI research that addressed some of the

common AI challenges including AI model generalizability

(Section 2.8), model explainability (Section 2.9), and model

transferability through federated learning techniques (Section

2.10) to train aggregated models across multiple sites without the

need of sharing data among participating sites. We conclude by

discussing current opportunities and challenges for reverse AI

translation in glaucoma (Section 3.1), and share our perspective

on future research directions (Section 3.2) incorporating state-

of-the-art explainable AI method development into cutting-edge

ophthalmic imaging and genomic techniques.
2.1 Predicting the risk of rapid
glaucoma progression

Predicting the disease progression or risk is important for

patient stratification and guiding early intervention. Visual field

measurement is a low-cost diagnostic tool for evaluating visual

function. By using a deep neural network trained on low

dimensional, baseline 2D visual field measurements, recent
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studies showed promising predictive power in forecasting the

risk of rapid glaucomatous progression (12, 13). On the other

hand, OCT may be capable of predicting visual field progression

(14). The important question for future studies of reverse

translation would be: which approaches would be more

appropriate? Would visual field measurements predicting

glaucoma risk have more promising values for clinical

applications such as early screening or clinical trial participant

stratification, while using OCT to predict visual fields fits better

in animal studies to understand the structural-functional

relationships within the pathogenic mechanisms of glaucoma?

To answer these questions, longitudinal experiments could be

designed in transgenic animal models to simultaneously evaluate

the progression of functional and structural abnormalities and

model their pathogenic cascades as a function of time.
2.2 Optic disc and optic nerve head
abnormality detection in glaucoma

The ONH represents the confluence structure for the entire

visual system. Glaucoma is associated with elevated IOP,

whereas the ONH is heavily affected by the biomechanical

forces due to elevated IOP and is therefore susceptible to

structural damage and the associated functional loss. Han

et al. trained a convolutional neural network (CNN) model on

a large dataset of 282,100 images from both the UK Biobank and

the Canadian Longitudinal Study on Aging - CLSA for

automatic AI labeling of the ONH (15). Their study was able

to extract two key ONH parameters: vertical cup-to-disc ratio

and vertical disc diameter. Using OCT, Heisler et al.

demonstrated auto-peripapillary region extraction in a clinical

cohort with a much smaller dataset using a composited approach

of peripapillary layer segmentation and Faster R-CNN-based

object detection of Bruch’s membrane opening (BMO) (16).

Accurate segmentation of the optic disc region and peripapillary

retinal boundaries has also been demonstrated by combining

CNN and multi-weights graph search (17). These results showed

promising potentials for reverse translation to animal glaucoma

models in which the sample size is much smaller compared to

large-scale population studies such as the UK Biobank. It is

worth noting that special care should be taken in the

experimental design that, such reverse translation might

mainly be applicable in animals with ONH anatomy similar to

human eyes.
2.3 AI-derived data-driven
glaucoma sub-phenotyping

Understanding disease subtypes is important to achieve

precision medicine. For example, different subtypes of primary

open-angle glaucoma (POAG) showed different patterns of
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visual field progression (18). Distinctive glaucoma sub-

phenotypes were discovered based on visual field read patterns

(19) or structural descriptions of the ONH shape models (20)

through data-driven clustering and feature reduction methods

such as Uniform Manifold Approximation and Projection

(UMAP) and non-negative matrix factorization (21). Such

cl inical ly informed POAG sub-phenotypes provide

opportunities for new frontiers of reverse translation. Existing

AI studies in animal models are mainly limited to discriminating

between glaucomatous and healthy eyes via OCT (22). With the

reverse translation of AI findings from clinical studies, novel

animal models can be developed or identified to understand the

distinctive disease mechanisms for each of the POAG subtypes.
2.4 Genotype-associated genomic risk
for glaucoma

Genotype-phenotype associations are an important inter-

species bridge to connect benchtop and bedside studies. A recent

study has identified 14 archetypes of POAG using data-driven

clustering methods based on the visual field measurement

patterns (19) (Figure 1). By connecting the discovered sub-

phenotypes with the ancestry data, the authors discovered the

African-descendant ethnicity as the risk factor for specific

POAG sub-phenotypes for both early and advanced loss

archetypes. In another study, a genome-wide meta-analysis

identified 127 open-angle glaucoma loci (23). AI-driven

algorithms can also be used for assigning vertical cup-to-disc

ratios to extend our knowledge about the genetic architecture of

glaucoma (15). Such findings may guide the development of

novel transgenic mouse models that are highly relevant to the

human disease process. However, given the difference in ocular

anatomy between the mouse and humans, it would be important

to determine the inter-species translatability of the glaucoma

sub-phenotypes, and animal-specific glaucoma sub-phenotyping

models would need to be carefully trained and interpreted.
2.5 Morphological and biomechanical
phenotype of the glaucomatous ONH

Describing the morphological and biomechanical phenotype

of the ONH is critical for the field of glaucoma. Changes in ONH

structure have been considered a central event in glaucoma, and

the fragile ONH is constantly exposed to 3 major loads: IOP,

cerebrospinal fluid pressure (CSFP), and optic nerve traction

during eye movements. To better describe ONH structure in

patients, Devalla et al. has proposed several deep learning

approaches (e.g. DRUNET and ONH-Net) to simultaneously

segment both connective and neural tissues of the ONH from

OCT images (24), one of which was device-independent (25).

Panda et al. and Braeu et al. employed these AI-driven
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approaches to identify novel morphological biomarkers for

glaucoma in humans (20, 26). These technologies were then

successfully ‘reverse-translated’ in the tree shrew model (27) to

better understand non-linear optical distortions present in OCT

images. This knowledge could ultimately improve our glaucoma

predictions in patients.

Several technologies have been developed in humans to

assess the biomechanics of the ONH. As it is now possible to

observe IOP-induced (or gaze-induced) ONH deformations

with OCT, techniques such as digital volume correlation, the

virtual fields method, and other AI-driven approaches have been

used to map local ONH tissue strain, biomechanical properties,

and robustness (28–32). In a large glaucoma population,

Chuangsuwanich et al. identified key biomechanical trends: (1)

IOP-induced deformations were associated with visual field loss

in high-tension glaucoma but not normal-tension glaucoma

(33); and (2) normal-tension glaucoma ONHs were more

biomechanically sensitive to changes in gaze, while high-

tension glaucoma ONHs appeared more sensitive to changes

in IOP (34). Similar techniques have in turn been used to test

biomechanical hypotheses in non-human primates, allowing for

a greater degree of freedom, and simultaneous control of IOP,

CSFP, and blood pressure (35, 36). The knowledge gathered in

those animal tests could ultimately help us refine a viable clinical

test to assess ONH biomechanics in patients.
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2.6 Retinal morphology and shape
analyses for glaucoma

Biological and clinical explainability is important for both

forward and reverse translations. Lee et al. developed a

computational morphometric analysis pipeline to measure the

individualized glaucoma-induced retinal structural changes

through the estimation of retinal layer thicknesses and shape

deformation over time (37). Such measurements require

registration-based computation using a longitudinal dataset

(38). Recent work by Shaini et al. used non-negative matrix

factorization, an unsupervised dimensionality reduction and

clustering method, to derive distinctive subphenotypes of

ONH and peripapillary retinal nerve fiber layer (RNFL)

surface-shape-based features, which could further improve the

prediction accuracy of subsequent glaucomatous visual field

loss (21).

Focusing on the RNFL bundles, Leung et al. developed an

optical texture analysis (39), and illustrated its diagnostic

assessments for both glaucoma and non-glaucoma optic

neuropathies (40). Such mathematical-driven modeling tools

can be applied to both clinical studies and animal models to

understand the relationships between RNFL integrity and other

structural pathologies such as retinal vascular disruption.

Furthermore, the model can further benefit from more
FIGURE 1

The 14 archetypal visual field loss patterns derived from visual fields of the 1957 incident primary open-angle glaucoma cases (2581 affected
eyes). The integer at the top left of each archetype (AT) denotes the archetype number. The percentage at the bottom left of each archetype
indicates this pattern’s respective average decomposition weight. The algorithm identified 14 archetypes: four representing advanced loss
patterns, nine of early loss, and one of no visual field loss. African-American patients made up 1.3 percent of the study but had a nearly twofold
increased risk of early visual field loss archetypes, and a sixfold higher risk for advanced field loss archetypes, when compared to white patients.
[excerpted from (19)].
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accurate RNFL segmentation using deep-learning-based

segmentation. Deep learning-based methods enable the

automatic segmentation of retinal layers with high accuracy

(41). Compared to clinical OCT, animal studies have a limited

sample size and labeled ground truth data for training. In this

sense, transfer learning and pseudo-labeling are proven to be

beneficial in utilizing deep-learning models pre-trained on

larger-scale clinical OCT data in animal studies. They require

limited training data and minimal ground truth labels

(42) (Figure 2).

Recent work by Brau et al. incorporated state-of-the-art

geometric deep learning to train classifiers using point-cloud

data derived from segmented ONH boundaries (26, 43). By

using a dynamic-graph convolutional neural network

(DGCNN), an explainable AI method, the authors were able

to identify the critical 3D structural features of the ONH that are

important to provide an improved glaucoma diagnosis. Some of

those regions showed a great level of colocalization to the central

retinal vessels, which aligns with their findings that the central

retinal vessel trunk and branches have stronger diagnostic power

for glaucoma compared to RNFL thickness (44). This model is

also currently under clinical assessment (45). Importantly, this

model can become a useful area of analysis with recent AI

developments in glaucoma animal models. In OCT images,

Choy et al. employed AI technology to delineate Schlemm’s

canal lumens in mouse eyes (46). Similar segmentation and

shape analysis approaches were recently applied to fixed tissues

for automated analysis of multiple retinal morphological

changes, including RNFL thickness (42), optic nerve density,

and retinal ganglion cell soma density in animal models (47, 48).

These studies suggest that, while population sizes for ground

truth training may impose an obstacle to reverse translation of

AI technology, they are not insurmountable.
2.7 AI in OCT angiography for glaucoma

OCT Angiography (OCTA) is a functional extension of

OCT, which allows the detection of vascular-related retinal

and optic nerve diseases (49, 50). OCTA has been used to

quantify ONH blood flow in glaucoma since 2012 (51).

Clinical studies show that OCTA-based vessel density and flow

index are lower in glaucomatous eyes in the regions of the optic

disc (52), peripapillary retina (53), and macular retina (54).

OCTA-based vessel density can also reflect the severity of visual

field loss in glaucoma patients (55). Recently, OCTA-derived

nerve fiber layer plexus measurements have been used to further

correlate with visual functions by simulating sector-wise visual

field (56). Now, it is possible to detect glaucomatous focal

perfusion loss using OCTA (57). Given the close relationship

between the glaucoma-related pathologies and the retinal

vascular regions (26), validated by other imaging modalities

(44), we believe OCTA may serve as a new tool for glaucoma
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diagnosis and monitoring, and also understanding the

mechanism of disease development (58, 59).

However, OCTA data may suffer from projection artifacts

and motion artifacts (60). AI methods (61) have been applied for

projection artifact removal (60, 62). AI has also been applied to

enhance the retinal capillaries (63, 64), segment retinal vessels

(65, 66), quantify the avascular zone (67–71), and map arteries

and veins (72) in OCTA. There are potential opportunities for

side-by-side development in humans with the intent to

reverse translate.
2.8 AI model generalizability

Model generalization across devices is a crucial but

challenging issue in AI development. Devalla et al. proposed a

“3D digital staining” approach (25) that uses an “enhancer”

neural network to learn the mathematical morphological

operations to enhance the raw OCT images, which enables the

application of a pre-trained segmentation of the ONH on

different devices, thereby reducing variability. Similar

approaches can be achieved through domain-adaptation using

the generative adversarial network (GAN), with the potential to

add additional shape or feature priors and constraints into pre-

trained segmentation models (41) such as the source domain,

structural similarity, signal-to-noise ratio, and high-level

perceptual feature (73). Such data harmonization approaches

can be important when translating to animal studies to account

for different experimental setups and eliminate potential

batch effects.
2.9 Explainable AI for glaucoma

The explainability of AI modeling is crucial for translational

applications in both clinical and pre-clinical animal studies.

Recent studies have shown that explainable visualization can

identify previously non-reported regions surrounding ONH that

may be associated with glaucoma pathogenesis (74, 75). Some of

the conventional explainable AI methods, such as Grad-CAM, are

limited in terms of showing localized feature-important saliency

maps due to the lack of resolution. With the integration of B-scan

aggregation and enface projection for AI model visualization

method (76), it is feasible to identify localized pathological

signatures that differentiate retinal disease subtypes with a

relatively small training set using feature agnostic AI classifier

without the need for labeling of pathological regions. More

excitingly, the newly proposed biomarker activation map

(BAM) is an explainable visualization method specifically

designed for AI-based disease diagnosis (77). The generated

BAMs were designed to only localize the AI model-utilized

unique biomarkers belonging to the positive class and showed

much higher localization capability (77) than Grad-CAM or other
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FIGURE 2

Representative images of deep learning-assisted automatic retinal layer segmentation (A) and the thickness measurements of 5 retinal layers for
both injured and control rat eyes (B) before and 28 days after unilateral N-methyl-D-aspartate (NMDA) injection. Automatic retinal layer
segmentation was achieved using LF-UNet - an anatomical-aware cascaded deep-learning-based retinal optical coherence tomography (OCT)
segmentation framework that has been validated on human retinal OCT data (42). In this work, two techniques were applied to improve the
efficiency and generalizability of the LF-UNet segmentation framework when training with a small, labeled dataset – 1) composited transfer-
learning and domain adaptation, and 2) pseudo-labeling. [excerpted from (42)]. (RNFL, retinal nerve fiber layer; GCL, ganglion cell layer; IPL,
inner plexiform layer; INL, inner nuclear layer; ONH, optic nerve head).
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conventional explainable AI methods, such as attention maps. It is

foreseeable that such techniques can also be used to identify

glaucoma pathogenesis and validate biomarkers in future pre-

clinical studies.
2.10 Federated learning for glaucoma

The development of robust and generalizable deep learning

models usually requires large samples of representative training

data, which might demand the aggregation of data from different

location sources. However, data sharing for clinical data is often

restricted due to patient privacy concerns. Federated learning, or

collaborative learning, helps to resolve such barriers through the

training of an aggregated model without the need for data

transfer, and is important for accelerating AI glaucoma

research. The work by Lo et al. demonstrated the successful

implementation of the federated framework to train more

generalizable aggregated models of retinal vessel segmentation

and diabetic retinopathy classification using OCT data from

three different institutions and different OCT machines with

distinctive distributions of disease severity (78). With regard to

glaucoma, the work by Christopher et al. exemplified the

successful training of federated models for glaucoma detection

using data from two institutions containing distinctive racial

populations (79). For accelerating reverse translation into basic

science, future studies are envisioned that involve collaborative

efforts and openness in building shared data sources of pre-

clinical imaging, biochemical, and behavioral modalities in

healthy animals across species, age, and gender, as well as

experimental high-tension and normal-tension glaucoma

disease models for establishing robust baselines and predicting

neurobehavioral changes for further research. For pre-clinical

animal data, the barriers to data sharing would be lower without

privacy concerns. Moreover, the techniques developed in the

federated learning framework, such as parallel model training

with normalized weighted sharing and dataset-specific domain

adaptation, would be beneficial for reverse translation.
3 Discussion

3.1 Opportunities and challenges for
reverse translation of AI in glaucoma

In the recent decade, extensive efforts have been put into the

development and investigations of AI methods for glaucoma

research in clinical settings. Not only did these studies show

promising results in improving clinical outcomes on the bedside,

they have also provided precious first-hand experiences that

researchers can learn from towards reverse translation to animal

studies. The data-driven findings of glaucoma-related genomic loci

and glaucoma sub-phenotypes provide information for potential
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novel transgenic animal models to further study the biological

mechanisms for precision medicine. The effectiveness of using OCT

to predict visual field progression, as well as using visual field

measurements to predict the risk of accelerated glaucoma

progression, indicates strong functional-structural correlations

towards the disease progression. Such insights will likely guide the

experimental design of future animal studies to focus on specific

pathophysiological and functional pathways of the disease

mechanisms. Furthermore, many imaging-based AI models are

readily translatable to animal-based pre-clinical studies, from

structural segmentation to shape and biomechanical models for

the ONH and optic disc, peripapillary retinal vascular pathology

and avascular zone abnormality detection, as well as retinal nerve

fiber bundle texture analysis. Finally, AI methods for model

generalizability, domain adaptation, and explainable AI are crucial

for reverse translation to evaluate the applicability of animal models

to monitoring glaucomatous conditions.

To date, most of the AI method developments in glaucoma

are focused on clinical applications, leaving much room for

reverse translation to benchside basic science research. Some of

the current challenges in reverse translation research include the

anatomical differences in the visual system between human and

animal models. For example, human and rodent eyes have

different sizes, with fovea and lamina cribrosa being present in

humans but not in rodents (though they possess the pseudofovea

and glial lamina), and with optic nerve fibers decussating at the

optic chiasm to the contralateral hemisphere to different extents

between humans (52%) and rodents (above 90%). Finally, like

other biomedical and clinical applications, AI applications in

glaucoma research also inherit some of the current limitations,

such as model interpretability and generalizability.
3.2 Future research directions

Future research on reverse translation for glaucoma can

further benefit from integrating state-of-the-art developments in

AI methods. Advanced AI models such as vision transformers

have shown better generalizability in tasks depicting POAG

when applied to diverse independent datasets (80). The fast-

growing self-supervised learning techniques have shown

promising applications for efficiently utilizing relatively large

amounts of unlabeled data to learn pathological features that are

not specific to certain diseases but generalizable to other

diagnoses, such as patients with both glaucoma and diabetic

retinopathy or age-related macular degeneration. Although this

approach can be more practical as comorbidities often occur in

patients, care should be taken when applying self-supervised

learning in medical image data in which pathology-related

variations are highly localized. This often causes the algorithm

subject to shortcut learning, detecting non-clinically-relevant

easy features to drive prediction (81). Therefore, it is essential to

incorporate domain-specific information when developing self-
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supervised learning methods to avoid contamination by

spurious features (82). This can also improve robustness when

training on clinical problems with small sample sizes by

bootstrapping the performance to achieve diagnosis-level

explanation (83). Future research on explainable AI should not

only resolve where the model focuses, but also how the changes

in those locations affect the model performance. The

counterfactual approach (84) could potentially help to unveil

the blackbox of the deep learning models by interrogating the

explainability of the internal layers of the neural network,

leading to the causal explanation inside the model (85, 86).

Successful efforts in the reverse translation of AI may also

benefit the development and use of large animal models of

glaucoma (87–90). While larger animals, such as dogs, swine,

and primates, have greater anatomical homology to humans,

their use is limited by the cost of cohorts and ethical

considerations. Tree shrews may be considered as an

alternative glaucoma animal model given the presence of the

laminar cribrosa in the eyes of these small animals (27). The

ability to access refined measurements of glaucoma pathology in

a longitudinal and non-invasive manner could improve the

usability of these models moving forward (91–93).

In addition, the recent development of novel imaging

techniques has resulted in huge opportunities for data-driven AI

approaches for basic science studies. For example, the recent

advancements of adaptive optics, which is adopted from

telescope technology, and two-photon imaging (94–96) have

enabled in vivo visualization of glaucoma-related ocular

structures such as the retina, ONH and trabecular meshwork in

unprecedented detail (97). These data can facilitate efficient and

accurate retinal layer segmentations (98, 99), cellular-level

imaging of photoreceptors (100), and detect subtle pathological

protein deposition in RNFL in both human (101) and animal

studies (102). Furthermore, transmission electron microscopy and

laser scanning microscopy can image the ultrastructural

morphology of the ONH (103, 104), trabecular meshwork (105),

and RNFL (106) from mouse and non-human primate models of

glaucoma, enablingmore in-depth understanding of the glaucoma

pathogenesis (105) including astrocytic responses (104).While the

large amounts of high-resolution imaging data pose analytic

challenges using traditional image analysis methods, the fast-

growing field of AI application in digital pathology offers a

potential solution (107–109). Increased collection and

digitalization of ophthalmic imaging from both human and

experimental animal specimens provides great opportunities for

harnessing reverse AI translation to evaluate glaucoma

pathogenesis on a large scale with improved robustness.

Finally, the recent development of efficient sequencing

techniques has enabled AI applications on multi-omics data

for basic glaucoma research. For instance, genome-wide

association studies (GWAS) have revealed hundreds of POAG-

related genetic loci with consistent effects across ancestries (23,

110, 111); and whole-genome-based polygenic risk score enables
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the prediction of future glaucoma risks (112). Furthermore,

multi-omics investigations can help identify the molecular

signature for glaucoma predisposition (113), patient-specific

tear composition (114), mechanical stress-derived trabecular

meshwork cytoskeletal changes (115), and risk factors for IOP

elevation (116). Integrating image data with multi-omics data

(e.g., genomics, transcriptomics, proteomics, and metabolomics)

using approaches such as spatial transcriptomics (117) may

reveal novel genotype-phenotype associations and causal

inferences, allowing the understanding of glaucoma-related

disease etiology in a highly localized manner as well as the

identification of more biologically-related glaucoma phenotypes.
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glaucoma-related characteristics in retinal nerve fiber layer and choroid: Localized
morphometrics and visualization using functional shapes registration. Front
Neurosci (2017) 11:381. doi: 10.3389/fnins.2017.00381

38. Lee S, Charon N, Charlier B, Popuri K, Lebed E, Sarunic MV, et al. Atlas-
based shape analysis and classification of retinal optical coherence tomography
images using the functional shape (fshape) framework. Med Image Anal (2017)
35:570–81. doi: 10.1016/j.media.2016.08.012

39. Leung CKS, Guo PY, Lam AKN. Retinal nerve fiber layer optical texture
analysis: Involvement of the papillomacular bundle and papillofoveal bundle in
early glaucoma. Ophthalmology (2022) 129(9):1043–55. doi: 10.1016/
j.ophtha.2022.04.012

40. Leung CKS, Lam AKN, Weinreb RN, Garway-Heath DF, Yu M, Guo PY,
et al. Diagnostic assessment of glaucoma and non-glaucomatous optic
neuropathies via optical texture analysis of the retinal nerve fibre layer. Nat
BioMed Eng (2022) 6(5):593–604. doi: 10.1038/s41551-021-00813-x

41. Ma D, Lu D, Chen S, Heisler M, Dabiri S, Lee S, et al. LF-UNet - a novel
anatomical-aware dual-branch cascaded deep neural network for segmentation of
retinal layers and fluid from optical coherence tomography images. Comput Med
Imaging Graph Off J Comput Med Imaging Soc (2021) 94:101988. doi: 10.1016/
j.compmedimag.2021.101988

42. Ma D, Deng W, Wang X, Lee S, Matsubara J, Sarunic M, et al. Longitudinal
assessments of retinal degeneration after excitotoxic injury using an end-to-end
pipeline with deep learning-based automatic layer segmentation. Invest
Ophthalmol Vis Sci (2020) 61(9):PB0053.

43. Thiery AH, Braeu F, Tun TA, Aung T, Girard MJA. Medical application of
geometric deep learning for the diagnosis of glaucoma. arXiv (2022). Available at:
http://arxiv.org/abs/2204.07004.

44. Panda SK, Cheong H, Tun TA, Chuangsuwanich T, Kadziauskiene A,
Senthil V, et al. The three-dimensional structural configuration of the central
retinal vessel trunk and branches as a glaucoma biomarker. Am J Ophthalmol
(2022) 240:205–16. doi: 10.1016/j.ajo.2022.02.020

45. Braeu FA, Chuangsuwanich T, Tun TA, Thiery A, Barbastathis G, Aung T,
et al. AI-Based clinical assessment of optic nerve head robustness from 3D optical
coherence tomography imaging. Invest Ophthalmol Vis Sci (2022) 63(7):808.

46. Choy KC, Li G, Stamer WD, Farsiu S. Open-source deep learning-based
automatic segmentation of mouse schlemm’s canal in optical coherence
tomography images. Exp Eye Res (2022) 214:108844. doi: 10.1016/
j.exer.2021.108844

47. Deng W, Hedberg-Buenz A, Soukup DA, Taghizadeh S, Wang K, Anderson
MG, et al. AxonDeep: Automated optic nerve axon segmentation in mice with deep
learning. Transl Vis Sci Technol (2021) 10(14):22. doi: 10.1167/tvst.10.14.22
Frontiers in Ophthalmology 10
48. Ritch MD, Hannon BG, Read AT, Feola AJ, Cull GA, Reynaud J, et al.
AxoNet: A deep learning-based tool to count retinal ganglion cell axons. Sci Rep
(2020) 10(1):8034. doi: 10.1038/s41598-020-64898-1

49. Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, et al. Split-spectrum
amplitude-decorrelation angiography with optical coherence tomography. Opt
Express (2012) 20(4):4710–25. doi: 10.1364/OE.20.004710

50. Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, et al.
Quantitative optical coherence tomography angiography of vascular abnormalities
in the living human eye. Proc Natl Acad Sci (2015) 112(18):E2395–402. doi:
10.1073/pnas.1500185112

51. Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L, Baumann B, et al.
Quantitative OCT angiography of optic nerve head blood flow. BioMed Opt Express
(2012) 3(12):3127–37. doi: 10.1364/BOE.3.003127

52. Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, et al. Optical
coherence tomography angiography of optic disc perfusion in glaucoma.
Ophthalmology (2014) 121(7):1322–32. doi: 10.1016/j.ophtha.2014.01.021

53. Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, et al.
Optical coherence tomography angiography of the peripapillary retina in
glaucoma. JAMA Ophthalmol (2015) 133(9):1045–52. doi: 10.1001/
jamaophthalmol.2015.2225

54. Takusagawa HL, Liu L, Ma KN, Jia Y, Gao SS, Zhang M, et al. Projection-
resolved optical coherence tomography angiography of macular retinal circulation
in glaucoma. Ophthalmology (2017) 124(11):1589–99. doi: 10.1016/
j.ophtha.2017.06.002

55. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S,
Saunders LJ, et al. Relationship between optical coherence tomography
angiography vessel density and severity of visual field loss in glaucoma.
Ophthalmology (2016) 123(12):2498–508. doi: 10.1016/j.ophtha.2016.08.041

56. Liu L, Tan O, Ing E, Morrison JC, Edmunds B, Davis E, et al. Sectorwise
visual field simulation using optical coherence tomographic angiography nerve
fiber layer plexus measurements in glaucoma. Am J Ophthalmol (2020) 212:57–68.
doi: 10.1016/j.ajo.2019.11.018

57. Chen A, Liu L, Wang J, Zang P, Edmunds B, Lombardi L, et al. Measuring
glaucomatous focal perfusion loss in the peripapillary retina using OCT
angiography. Ophthalmology (2020) 127(4) :484–91. doi : 10.1016/
j.ophtha.2019.10.041

58. Rao HL, Pradhan ZS, Suh MH, Moghimi S, Mansouri K, Weinreb RN.
Optical coherence tomography angiography in glaucoma. J Glaucoma (2020) 29
(4):312–21. doi: 10.1097/IJG.0000000000001463

59. Van Melkebeke L, Barbosa-Breda J, Huygens M, Stalmans I. Optical
coherence tomography angiography in glaucoma: A review. Ophthalmic Res
(2018) 60(3):139–51. doi: 10.1159/000488495

60. Hormel TT, Huang D, Jia Y. Artifacts and artifact removal in optical
coherence tomographic angiography. Quant Imaging Med Surg (2021) 11
(3):1120–33. doi: 10.21037/qims-20-730

61. Wang J, Hormel T, Jia Y. Artificial intelligence-assisted projection-resolved
optical coherence tomographic angiography (aiPR-OCTA). Invest Ophthalmol Vis
Sci (2022) 63(7):2910–F0063.

62. Zhang M, Hwang TS, Campbell JP, Bailey ST, Wilson DJ, Huang D, et al.
Projection-resolved optical coherence tomographic angiography. BioMed Opt
Express (2016) 7(3):816–28. doi: 10.1364/BOE.7.000816

63. Gao M, Guo Y, Hormel TT, Sun J, Hwang TS, Jia Y. Reconstruction of high-
resolution 6×6-mm OCT angiograms using deep learning. BioMed Opt Express
(2020) 11(7):3585–600. doi: 10.1364/BOE.394301

64. Gao M, Hormel TT, Wang J, Guo Y, Bailey ST, Hwang TS, et al. An open-
source deep learning network for reconstruction of high-resolution oct angiograms
of retinal intermediate and deep capillary plexuses. Transl Vis Sci Technol (2021) 10
(13):13. doi: 10.1167/tvst.10.13.13

65. Guo Y, Hormel TT, Pi S, Wei X, Gao M, Morrison J, et al. An end-to-end
network for segmenting the vasculature of three retinal capillary plexuses from
OCT angiographic volume. Invest Ophthalmol Vis Sci (2020) 61(9):PB00119.

66. Lo J, Heisler M, Vanzan V, Karst S, Matovinović IZ, Lončarić S, et al.
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