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Background: The tumor microenvironment (TME) plays a critical role in the

development, progression, and clinical outcomes of hepatocellular carcinoma

(HCC). Despite the critical role of natural killer (NK) cells in tumor immunity, there

is limited research on their status within the tumor microenvironment of HCC. In

this study, single-cell RNA sequencing (scRNA-seq) analysis of HCC datasets was

performed to identify potential biomarkers and investigate the involvement of

natural killer (NK) cells in the TME.

Methods: Single-cell RNA sequencing (scRNA-seq) data were extracted from the

GSE149614 dataset and processed for quality control using the “Seurat” package.

HCC subtypes from the TCGA dataset were classified through consensus

clustering based on differentially expressed genes (DEGs). Weighted gene co-

expression network analysis (WGCNA) was employed to construct co-expression

networks. Furthermore, univariate and multivariate Cox regression analyses were

conducted to identify variables linked to overall survival. The single-sample gene

set enrichment analysis (ssGSEA) was used to analyze immune cells and the

screened genes.

Result: A total of 715 DEGs from GSE149614 and 864 DEGs from TCGA were

identified, with 25 overlapping DEGs found between the two datasets. A

prognostic risk score model based on two genes was then established.

Significant differences in immune cell infiltration were observed between high-

risk and low-risk groups. Immunohistochemistry showed that HRG expression

was decreased in HCC compared to normal tissues, whereas TUBA1B expression

was elevated in HCC.

Conclusion: Our study identified a two-gene prognostic signature based on NK

cell markers and highlighted their role in the TME, which may offer novel insights

in immunotherapy strategies. Additionally, we developed an accurate and reliable

prognostic model, combining clinical factors to aid clinicians in decision-making.
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1 Introduction

Primary liver cancer is one of the most common malignant

tumors, the sixth most prevalent cancer in the world, and the

second leading cause of cancer-related deaths (1, 2). Hepatocellular

carcinoma is the predominant type of liver cancer (80%-90%). The

majority of patients with HCC are diagnosed during the late stages

of the disease. Clinical benefit is limited in patients with advanced

HCC, with a median overall survival (OS) of only 1-1.5 years (3, 4).

In terms of treatment, the primary methods for liver cancer

treatment include surgical resection, local ablation, transarterial

chemoembolization (TACE), and liver transplantation. In recent

years, immunotherapy has also shown potential in the treatment of

HCC, providing patients with new treatment options. In addition,

immune-related genes play an important role in tumour

immunotherapy. Tumor microenvironment (TME) refers to the

surrounding environment in which tumor cells exist (5, 6).

Nowadays, it is widely accepted that the components of the TME,

such as immune cells and inflammatory cells, play a pivotal role in

tumor development, progression, and clinical outcomes (7–9).

Consequently, alterations in the TME have an impact on patient

prognosis, making it critical to identify TME biomarkers to predict

patient outcomes (10, 11).

Natural killer (NK) cells are cytotoxic lymphocytes and

components of innate immunity, capable of recognizing and

eliminating damaged or stressed cells (12). In the liver, NK cells

make up 30-50% of intrahepatic lymphocytes (13). Immune cells

are able to directly kill tumor cells and promote T-cell immune

responses in tumor immunity, thereby inhibiting the occurrence

and development of cancer (14, 15). In many types of cancer, the

infiltration level of NK cells is reduced, including gastric,

esophageal, breast, and colon cancers (16–18). However, studies

on NK cells in patients with HCC are scarce. Moreover, high levels

of infiltrated NK cells in tumor tissues are associated with better

prognosis in patients with cancer (19, 20). Therefore, in-depth

characterization of NK cell phenotypes and functionality is crucial

for understanding liver cancer and could help determine

therapeutic strategies for HCC patients.

Traditional bulk RNA sequencing (bulk RNA-seq) averages the

transcriptional profiles of cells in one sample, which is strongly

influenced by cell type dominance. In addition, bulk RNA-seq is

unable to effectively distinguish between different cell lineages and

cellular interactions. The advent of single-cell mRNA sequencing

(scRNA-seq) has broadened the understanding of cellular

components and gene expression specificities in the TME (21).

Single-cell sequencing is a technique that allows the analysis of gene
02
expression at the individual cell level. It involves isolating single

cells, amplifying their RNA or DNA, and sequencing the genetic

material to uncover cellular heterogeneity and molecular profiles.

ScRNA-seq highlight heterogeneity and distinct subpopulations

within tumors, allowing for enumeration and quantification of

immune infiltration in tumor tissue (22, 23). The heterogeneous

immune cell infiltrates are a crucial factor for treatment response

and prognosis in HCC and other tumor types (24–26). The majority

of scRNA-seq studies on immune cells derived from HCC tissues

have predominantly focused on T cell characteristics, with limited

research dedicated to NK cells (25, 27). Consequently, there is an

urgent need for scRNA-seq analysis of NK cells from both healthy

liver and HCC tissues to uncover NK cell-related prognostic genes

that contribute to a deeper understanding of HCC prognosis.

In this study, different cell subsets between tumor tissues and

normal control tissues were identified from the HCC single-cell

dataset of the Gene Expression Omnibus (GEO) database. In

conjunction with bulk RNA-seq analysis of The Cancer Genome

Atlas (TCGA) cohort and the International Cancer Genome

Consortium (ICGC) cohort, NK cell marker gene-related features

for predicting HCC prognosis were created, and a model was built

with clinical indicators and NK cell risk profiles. Our study

expanded the exploration of HCC and contributed novel insights

into HCC diagnosis, therapies, and prognosis.
2 Methods and materials

2.1 HCC data and processing in
public databases

The gene expression dataset (GSE149614) consists of single-cell

samples from 10 HCC patients, including ten primary tumor

samples and eight adjacent normal samples. The raw data

contained a total of 25479 genes and 71915 cells. The Seurat

function from the R package was employed to ensure each gene

was expressed in a minimum of 3 cells and each cell had at least 250

genes expressed to filter single cells. The percentage of

mitochondria and rRNA quantities were calculated using the

“PercentageFeatureSet” function. Cells with less than 200 genes, a

percentage of mitochondrial reads less than 25%, and a median

UMI count of less than 500 were excluded from the downstream

analysis. After filtering, 53293 cells were retained.

The RNA-seq transcriptome information and matching clinical

data were downloaded from the TCGA database (https://

portal.gdc.cancer.gov/) and ICGC database (https://dcc.icgc.org/).
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2.2 Single-cell RNA sequencing
data analysis

The “SCTransform” method was adopted for data

normalization, and the “FindVariableFeatures” function was

applied to identify the top 2000 highly variable genes (HVGs)

(28). The integrated data were scaled by the “Sclae Data” function,

and principal component analysis (PCA) was performed using the

“Run PCA” function for 2000 HVGs. The “FindNeighbors” and

“FindClusters” functions were implemented to find cell clusters

when dim=50 and resolution=0.4 (29, 30). Next, we selected the top

20 principal components in order to further reduce the

dimensionality using the UMAP method. UMAP is a method of

data dimensionality reduction, which assumes that the available

data samples are uniformly distributed in a topological space

(Manifold), and these limited data samples can be approximated

(Approximation) and mapped (Projection) to a lower dimensional

space. Differential genes (DEGs) in different cell types were

identified by setting logfc=0.5, minpct=0.25, and adjusting P<0.05

in Seurat’s Findallmarker function. Cell cluster annotation was

based on marker genes obtained from the literature and the

Cellmarker Database.
2.3 Differential gene expression analysis

DEGs in the dataset GSE149614 were identified and confirmed

using the limma package, which applies linear models to detect

genes that show significant changes in expression across different

experimental conditions. In the TCGA dataset, the limma, DESeq2,

and edgeR packages were utilized. Each of these tools employs

different statistical approaches for identifying DEGs, such as linear

models, data normalization and dispersion estimation, and negative

binomial distribution for RNA-seq count data. By using these

methods, we ensured a comprehensive and reliable analysis of the

differentially expressed genes across the dataset, leading to more

accurate results.
2.4 Clustering

The DEGs in the TCGA-LIHC obtained by the three algorithms

were taken to be intersected. We determined a total of 356 up-

regulated and 168 down-regulated genes. Consistent clustering

analysis was performed in TCGA-LIHC samples by using the

“ConsensusClusterPlus” R package to identify molecular subtypes.

Pam arithmetic and “Spearman” distance were utilized to complete

500 bootstraps, with every bootstrap having specimens (≥80%) of

the TCGA-LIHC dataset. Cluster number k was between 2 and 10,

and optimal clusters were screened by cumulative distribution

function (CDF) curve and consensus CDF. Survival differences

among the molecular subtypes were estimated by Kaplan-Meier

(K-M) curves using the log-rank test. Additionally, differences in

the distribution of clinical characteristics between molecular

subtypes were compared with chi-square tests.
Frontiers in Oncology 03
2.5 Weighted gene co-expression
network analysis

The gene expression data profiles of TCGA were constructed for

gene co-expression networks using the WCGNA package in R,

including module identification, network generation, gene

screening, calculation of properties, and data visualization.

Correlations between gene pairs were first calculated using gene

expression profiling and transformed into a collocation matrix.

Then, the soft threshold was set to make network construction

among the genes in the network obey scale-free networks, and the

adjacency matrix was transformed into a topological overlap matrix

(TOM). Branches of the cluster tree and different colors represent

different gene modules. The correlation between module eigengenes

and clinical traits was assessed using the Pearson correlation test to

identify the significant modules.
2.6 Construction of a prognostic risk
model for HCC

By analyzing the intersection of prognosis-related genes and

DEGs, the death differential genes related to the prognosis of HCC

were finally obtained (31). Univariate and multivariate COX

analyses were employed to screen for genes with P<0.05 as

prognostically relevant genes for HCC and to establish risk

regression scores. According to the predictive risk scores, patients

were divided into high and low-risk groups to explore the survival

difference (32).
2.7 Development of the nomogram

After combining risk scores and clinical factors, a nomogram was

established. We can accurately predict 1-, 3-, and 5-year survival in

HCC patients by calculating cumulative scores based on individual

factors. The predictive ability and accuracy of the nomogram were

assessed by the ROC curve, calibration curve, and DCA curve.
2.8 Immune cell infiltration and
correlation analysis

The relative infiltration of immune cell types in the tumor

microenvironment was assessed by Single Sample Gene Set

Enrichment Analysis (ssGSEA), including monocyte, central

memory CD4 T cell, CD56dim natural killer cell, plasmacytoid

dendritic cell, central memory CD8 T cell, immature dendritic cell,

natural killer cell, activated dendritic cell, gamma delta T cell,

CD56bright natural killer cell, memory B cell, MDSC, T follicular

helper cell, activated CD8 T cell, Effector memory CD8 T cell, Type

1 T helper cell, Type T helper cell, natural killer T cell, regulatory T

cell, effector memory CD4 T cell, activated CD4 T cell, Type 17 T

helper cell, macrophage, immature B cell, mast cell, eosinophil,

neutrophil, and activated B cell. Expression data were used to
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further analyze the correlation between the screened genes and

immune cells.
2.9 Immunohistochemical staining

For IHC staining, HCC tissues were fixed in 4% paraformaldehyde

and embedded in paraffin blocks, followed by a process of dewaxing

and rehydration (33, 34). Peroxidase activity was blocked with 3%

hydrogen peroxide. Sections were incubated overnight at four°C with

primary antibodies (anti-HRG, anti-TUBAB1) purchased from

Abcam. The tissue sections were treated with biotinylated secondary

antibody, then stained with diaminobenzidine substrate-chromogen

solution, and counterstained with hematoxylin. The images were

captured in the XSP-CD204 microscope. It helps validate the

expression, localization, and distribution of proteins within tissues,

providing insight into the molecular characteristics of diseases, such as

cancer, and confirming the presence of specific biomarkers for

diagnostic or research purposes.
2.10 Statistical analysis

All statistical analyses were conducted using R software (version

4.1.3). Continuous variables were compared using the Mann-
Frontiers in Oncology 04
Whitney U or Kruskal-Wallis test, and categorical variables were

compared using the Chi-square test or Fisher’s Exact test.

Correlations were examined using Spearman rank analysis.

Statistical significance was claimed for P<0.05 (two-sided).
3 Result

3.1 Identification of tumor-associated NK
cell marker genes

By executing the Seurat function and PercentageFeatureSet

function, a total of 53293 cells were screened in the scRNA

GSE149614 dataset. The quality control before and after filtration

was displayed (Supplementary Figure S1). After log-normalization

and dimensionality reduction of the data, we obtained the

distribution of the nine cell clusters by UMAP visualization

(Figures 1A, B). The results of the significant genes with the

top20 in rank change values are list in Supplementary Table S1.

These cells were manually annotated by cell type based on marker

expression, involving NK cells (NKG7, KLRD1), Macrophages

(CD68), Epithelial cells, plasma cells (CD138), T cells (CD3D+,

CD3E), Endothelial cells (CD31), and B cells (CD79A, MS4A6A),

Dendritic Cells (CD141), monocytes (CD14) (Figures 1C–G,

Supplementary Figure S2). Comparative the tumor samples from
FIGURE 1

Definition of cell clusters. (A) U-MAP of 27 cell subgroups. (B) U-MAP of nine cell types. (C) The expression of major marker genes in 27 cell clusters.
(D) The expression of CD3E in the 27 clusters. (E) The expression of CD68 in the 27 clusters. (F) The expression of CD79A in the 27 clusters. (G) The
expression of NKG7 in the 27 clusters. (H) The proportion of cell types in tumor tissues and para-cancer tissues. (I) Differential genes associated with
NK cells. NK cells, natural killer cells; U-MAP, uniform manifold approximation and projection.
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patients HCC01, HCC02, HCC03, HCC04, HCC05, HCC06,

HCC07, HCC08, HCC09, HCC10 and adjacent non-tumor tissues

from HCC03, HCC04, HCC05, HCC06, HCC07, HCC08, HCC09,

HCC 10, it was found that the proportion of NK cells in the tumor

tissues was significantly lower than in the adjacent non-tumor

tissues (Figure 1H). Figure 1I demonstrated the DEGs between

the tumor and para-cancer in NK cells.
3.2 Consensus clustering identified
two clusters

To investigate the cause of hepatocellular carcinoma

development at the molecular level, we performed differential

analysis by calling the dataset from the TCGA database and using

the Deseq2 package, edgeR package, and limma package

(Figure 2A). The common set of differentially expressed genes is

represented by the intersection of the three sets of genes, including

356 up-regulated and 168 down-regulated genes (524 genes in total,

Figures 2B, C, Supplementary Table S2). Based on the expression of
Frontiers in Oncology 05
these 524 DEGs, we clustered the 360 samples from TCGA-LIHC

using the ConsencusClusterPlus package, and according to the

cumulative distribution function (CDF) and incremental area, two

clusters (Cluster 1 and Cluster 2) were obtained when K=2

(Figure 2D–F, Supplementary Figure S3). K-M analysis revealed

that patients in Cluster 2 had a markedly worse overall survival (OS)

than patients in Cluster 1 (Figure 2G).
3.3 Prognostic genes were screened out
by WCGNA

To further analyze the correlation between gene expression

patterns and distinct cell subgroups in HCC, we performed the

WGCNA method to construct key modules based on the two

clusters, and the results of the hierarchical cluster analysis of all

samples are presented in Figure 3. We constructed a co-expression

network in HCC by calculating the Pearson correlation coefficient

in the two clusters based on the WCGNA analysis (Figure 3D). The

Pearson correlation test was used to assess the relationship between
FIGURE 2

Identification of molecular subtypes. (A) Differential genes associated with different groups in TCGA cohort. (B) Venn diagram of upregulated
differential genes. (C) Venn diagram of downregulated differential genes. (D) Heatmap of sample clustering when K=2. (E) Delta area. (F) Cumulative
distribution function. (G) K-M survival analysis of cluster 1 and cluster 2 in the TCGA-LIHC dataset. TCGA, The Cancer Genome Atlas; K-M,
Kaplan-Meier.
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module eigengenes and clinical traits, helping to identify the

significant modules. Modules with a p-value less than 0.05 were

considered significant. The hierarchical clustering was applied to

cluster genes, and a total of 6 modules were obtained. Among them,

the turquoise module was the most relevant module with a

prognosis (P<1e-200, Figure 3E). Then, we selected the

intersection of highly expressed genes in NK cell lines and genes

in the turquoise module in WCGNA analysis for subsequent

analysis (Figure 3F). A total of 25 prognosis-related candidate

genes were identified.
3.4 Identification of prognosis-
related genes

HRG and TUBAIB were screened as prognostically relevant

genes for HCC by univariate and multivariate COX regression

analysis (Figures 4A, B), and the risk score model was established

(Figure 4E). Results at both TCGA and ICGC cohorts showed that

HRG gene indicated association with better prognosis while TUBA1B

indicates association with poor prognosis (Figures 4C, D,

Supplementary Figure S4). Patients were assorted into high-risk

and low-risk groups in accordance with the median value of risk

scores. Survival analysis exhibited significant discrimination in OS

among the groups (P<0.001, Figure 4F).
Frontiers in Oncology 06
3.5 Development of the nomogram
combining risk score and
clinicopathological indicators in
TCGA-LIHC

We subsequently examined the association between risk scores

and clinical variables, which were statistically different for group,

event, and gender. The nomogram was constructed by risk score, age,

stage, and gender (Figure 5A). The ROC curves produced the 1-, 3-,

and 5-year area under the curve (AUCs) were 0.88, 0.89, and 0.89

(Figure 5B). The calibration curve showed that the predicted value of

the nomogramwas in good agreement with the actual observed value,

and the DCA curve showed that the nomogram had a better clinical

net benefit and better clinical applicability (Figures 5C, D). Patients

were classified into low-risk and high-risk groups according to a

cutoff value of 50% predicted by the nomogram. The KM curves

demonstrated significantly higher OS with the low-risk

group (Figure 5E).
3.6 Immune landscape based on risk score

We investigated the proportions of various immune cell types in

the HCC sample and para-cancer sample (Figure 6A). The

considerable variations in immune cell infiltration between the
FIGURE 3

Identification of co-expression modules in HCC. (A) Sample clustering to detect outliers. (B) The scale-free fit index for soft-thresholding powers.
(C) Constructing a gene dendrogram based on different metrics. (D) Heatmap of the correlation between 6 modules and clinical characteristics. (E)
The correlation between turquoise module and prognostic cluster. (F) Venn diagram of NK cell differential genes and turquoise module. NK cells,
natural killer cells; HCC, hepatocellular carcinoma.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1570647
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2025.1570647
high- and low-risk groups were evident from the single sample

GSEA (ssGSEA). The results displayed that the proportion of

monocytes, CD56dim NK cells, CD56bright NK cells, and CD8+

T cells was higher in the low-risk group than in the high-risk group

(P<0.05). The CD4+ T cell, MDSC, macrophages, and mast cells of

the high-risk group were substantially elevated compared with that

of the low-risk group (Figure 6B). Correlation analysis showed that

HRG was positively correlated with increased NK cells, and

TUBA1B was negatively correlated with increased NK cells

(Supplementary Figures S5C, D). We further confirmed the

results by correlation analyses of immune cells and immune

molecules (Figures 6C, D, Supplementary Figure S5).

3.7 Validation of prognostic genes

To validate the prognostic value of the prognostic genes, we

used the IHC stain to detect the protein expression of HRG and
Frontiers in Oncology 07
TUBA1B in tumor tissues and normal tissues. The expression of

HRG decreased in HCC compared with normal tissues, whereas

TUBA1B expression levels increased in HCC compared with

normal tissues (Figure 7).
4 Discussion

Hepatocellular carcinoma is highly heterogeneous,

characterized by various morphologic features and biologic

behaviors (35). Most patients with HCC are diagnosed at an

advanced stage, which leads to rapid progress and poor outcomes

due to the lack of effective and safe treatment (36, 37). Immune cells

and stromal cells in TME are the main cellular components

mediating immune tolerance and escape (38–43). Further studies

on the heterogeneity of immune cells in the TME are indispensable

for understanding their impact on prognosis. We developed a two-
FIGURE 4

NK cell signature establishment. (A) Univariate Cox analysis of screened genes. (B) Multivariate Cox analysis of screened genes. (C) K-M curve
compares the overall HCC patients in the TCGA cohort. (D) K-M curve compares the overall HCC patients in the ICGC cohort. (E) Distribution of risk
scores and patient survival between low and high-risk groups in the TCGA cohort. (F) KM curve compares the overall HCC patients between high-
risk and low-risk groups in the TCGA cohort. NK cells, natural killer cells; K-M, Kaplan-Meier; TCGA, The Cancer Genome Atlas.
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gene signature based on GEO (GSE148614) and TCGA-LIHC

datasets and constructed a nomogram combining the gene

signature and clinical features to predict OS in HCC.

Single-cell sequencing is a booming emerging technology in

biomedical research and clinical practice, enabling comprehensive

characterization of cell subpopulations, states, and lineages in

heterogeneous tissues (44, 45). This is essential for the study of

disease progression, tumor metastasis, response to treatment, and

assessment of survival probability (25, 46). Therefore, scRNA has

great development potential for promoting the diagnosis, targeted

therapy, and prognosis prediction of cancers. We found that NK cell

subsets were associated with prognosis based on scRNA-seq data

from the GSE149614 dataset. NK cell infiltration is positively

correlated with good prognosis (47, 48). Many studies have

revealed that NK cell regulation of T cell function is an important

immunomodulatory component in anticancer immunity (48–50).

HCC patients with higher levels of intra-tumoral NK cell infiltration

responded better to sorafenib treatment (51). These data strongly

suggested that NK cell dysfunction contributes to HCC progression

(52). In addition to the ability to kill malignant cells without prior
Frontiers in Oncology 08
sensitization, NK cells influence the activity of other immune cells

by producing cytokines such as IFN-g (53).
We applied consensus clustering on the TCGA-LIHC dataset,

which can be effectively divided into 2 clusters, and the prognosis of

the C1 and C2 clusters was significantly different. In WCGNA, we

identified six modules and found that the turquoise module had the

highest correlation with the prognostic cluster. The intersect was

taken between NK cell genes and prognosis-related genes and yielded

25 genes. By univariate and multivariate Cox regression analysis,

HRG and TUBA1B were correlated to survival outcomes of HCC.

HRG is a secretory glycoprotein that binds to a variety of ligands,

thereby regulating immunity, cell adhesion, angiogenesis, and

thrombosis (54, 55). Inflammatory factors are pivotal in

inflammatory diseases progression (56–60). HRG inhibits the

activation of pro-inflammatory signaling (NF-kB) (61). Extensive

studies have shown that the NF-kB signaling pathway is related to the

development, progression, and invasion of tumors, and targeted

regulation of the NF-kB signaling pathway can modulate these

processes in various tumors. And NF-kB is bound to the inhibitory

protein Farnesoid X (FXR), which retains NF–kB within the cytosol,
FIGURE 5

Nomogram analysis based on multivariate Cox regression. (A) Nomogram combing the risk score, stage, age, and gender. (B) Time-dependent ROC
curves analysis of 1-year, 3-year, and 5-year survival. (C) The calibration curve of 1-year, 3-year, and 5-year survival. (D) Decision curve analysis. (E)
K-M curve between high-risk group and low-risk group. ROC, receiver operating characteristic; K-M, Kaplan-Meier.
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thus preventing its transcriptional activity (62, 63). Additionally,

HRG enhances the interaction between TNFR1 and Caspase8,

promoting the formation of TNFR1 complex II, which directly

induces apoptosis (64). Microtubules, which consist of a-tubulin

and b-tubulin, perform important cellular functions such as protein

trafficking, cell cycle, and cell migration (65). HRG also plays a

significant role in modulating immune responses and angiogenesis,

demonstrating potential in clinical applications for tumor targeting

and sepsis-related immune regulation. Its immunomodulatory

properties provide a foundation for developing novel therapeutic

strategies, with promising applications in personalized treatments.

Microtubulin a1b (TUAB1B), an isoform of a-microtubulin, is

associated with the expression of immune-related genes (66, 67).

TUBA1B may play crucial roles in promoting tumor progression,

including colon adenocarcinoma, osteosarcomas, l iver

hepatocellular carcinoma, and renal cell carcinoma (68–71).

Furthermore, TUBA1B has been shown to mediate the infiltration

of several immune cells in hepatocellular carcinoma and colorectal

cancer. High TUBA1B expression is reported to be related to high

paclitaxel resistance (72). Therefore, TUBA1B could also represent

a therapeutic target for overcoming drug resistance, particularly in
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microtubule-targeting treatments, and holds promise for advancing

precision oncology strategies. In our study, we further utilized IHC

staining to assess the protein expression of HRG and TUBA1B in

tumor and normal tissues. The results indicated that HRG

expression was lower in HCC compared to normal tissues, while

TUBA1B expression was higher in HCC, thereby confirming the

prognostic value of these genes.

The identified genes have significant clinical applications in

both immunotherapy and chemotherapy. In immunotherapy, these

genes could help predict tumor response to treatment, guide the

development of targeted therapies to enhance immune cell function,

and enable personalized treatment strategies. As for chemotherapy,

these genes can be used to predict drug resistance, assess therapeutic

efficacy, and tailor chemotherapy regimens to individual patients,

improving treatment outcomes and minimizing side effects.

Additionally, the integration of therapies can be optimized by

monitoring the expression of these genes, enabling real-time

adjustments to treatment plans.

To assess the immune infiltration, ssGSEA analysis was

performed. Based on the results of our study, the HRG gene and

the TUBA1B gene can predict the prognosis of HCC and accurately
FIGURE 6

Correlation analysis between the signature and immunity. (A) Immune cell proportion of all tissues in the TCGA-LIHC cohort. (B) Immune cell
proportion of high-risk and low-risk groups in the TCGA-LIHC cohort. (C, D) Correlation of immune cell infiltration and risk score. TCGA, The
Cancer Genome Atlas.
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respond to the tumor immune microenvironment. The HRG gene

was correlated with anti-tumor immune cell infiltration, whereas

TUBA1B gene was negatively correlated. The prognosis and

immunotherapy outcomes are strongly influenced by the number

of tumor-infiltrating lymphocytes (TILs) in the tumor

microenvironment (73). Our findings provided new hints and

references for the development of the immunotherapeutic

approach for hepatocellular carcinoma.

There were limitations of the current study were acknowledged.

Firstly, the sample size was small, and a prospective, large-sample,

multicenter trial is warranted to confirm these findings. Secondly,

functional studies on the molecular and biological functions of key

genes will be required to substantiate this hypothesis. Thirdly, this

study only identified NK cell-related genes, and further research is

needed to explore other potentially related genes. Lastly, external

validation using an independent cohort is required to assess the

generalizability and reliability of our model.

Our study identified prognostically relevant NK cell signatures,

which were further val idated in cl inical samples by

immunohistochemistry. The findings had significant implications

for the calculation of prognosis and therapeutic decision-making.

Accurately assessing prognostic risk allows clinicians to identify

individuals who are more likely to benefit from specific

interventions or who require enhanced follow-up. Furthermore,

discovering novel NK cell marker genes contributes to our
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understanding of the role of NK cells in HCC procession and

provides a new strategy for precision immunotherapy.

5 Conclusion

In our study, we found a two-genes prognostic signature based

on NK cell marker genes and elaborated on the role of the

prognostic genes in the tumor immune microenvironment to

provide new ideas for immunotherapy. In addition, we

established an efficient and accurate prognostic model combined

with clinical indicators to help clinicians make decisions.
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