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Hepatocellular carcinoma (HCC) represents the most prevalent form of liver

cancer. Despite notable advancements in therapeutic strategies, HCC continues

to pose significant public health challenges due to its rising incidence and high

mortality rates worldwide. Selenium is an essential trace element that playing a

critical role in human health. Recent studies have highlighted its potential

preventive and therapeutic benefits in the context of HCC. However, some in

vitro and in vivo investigations have yielded inconsistent results, and the

mechanisms by which selenium influences HCC are still not completely clear.

This review begins by providing an extensive evaluation of the effects and

mechanisms of selenium on the primary risk factors associated with HCC,

including viral infections, metabolic abnormalities, and lifestyle factors.

Subsequently, we outline the roles and mechanisms by which selenium

influences the proliferation, metastasis, and immune microenvironment of

HCC. Finally, we emphasize the imperative for further investigation into the

optimal dosage and forms of selenium, as well as its effects on the HCC

microenvironment, to inform the development of effective clinical strategies.

This review thus provides a foundational framework for the potential clinical

application of selenium in the treatment of HCC.
KEYWORDS
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1 Introduction

Liver cancer is a major contributor to global cancer-related mortality, with projections

indicating an incidence exceeding 1 million cases by 2025 (1). Hepatocellular carcinoma

(HCC) is the most prevalent histological subtype of liver cancer, accounting for

approximately 90% of all cases (2). The primary risk factors for HCC development

include viral infections, metabolic abnormalities, and lifestyle factors (3). Despite

significant advancements in therapeutic strategies, HCC survival rates remain low due to
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late-stage diagnosis and high rates of tumor recurrence (4),

highlighting the urgent need to explore strategies aimed at

preventing and mitigating the progression of HCC.

Selenium (Se), an essential trace element with critical roles in

human health (5), has recently gained attention for its potential in

managing HCC, particularly due to its contributions to antioxidant

defense, redox signaling, DNA repair, and immune function (6).

Currently, 25 selenoproteins have been identified in humans,

including glutathione peroxidases (GPxs), thioredoxin reductases

(TrxRs), and several other selenoproteins with yet-to-be-elucidated

functions. Extensive epidemiological studies have explored the link

between selenium levels and HCC risk (7).

For instance, In-Wook Kim et al. reported that serum selenium

levels were significantly lower in HCC patients (67.47 mg/L)
compared to healthy controls (108.38 mg/L) in South Korea (8),

and a study by M. Buljevac et al. observed comparable findings (9).

An eight-year follow-up study in Qidong County, Jiangsu Province,

demonstrated that selenium supplementation reduced HCC

incidence by 35.1%, with a subsequent increase in HCC rates

upon withdrawal of selenium from the treatment group.

Furthermore, a meta-analysis indicated that both selenium status

and selenium intake were inversely related to hepatitis, cirrhosis,
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and HCC (10). These results emphasize the possible benefits of

selenium supplementation in managing HCC. However, some in

vitro and in vivo studies have yielded conflicting results regarding

selenium’s impact on HCC, and the mechanisms underlying

selenium’s influence on HCC remain poorly understood.

In this review, we will offer a current overview of selenium’s

roles in the prevention and treatment of HCC, as well as to discuss

the potential mechanisms underlying these effects. Additionally, we

will suggest prospective research directions concerning the

investigation of selenium in HCC. By synthesizing existing

evidence, this review seeks to establish a foundation for the

clinical application of selenium in the management of HCC.
2 The potential effects of selenium in
the prevention of HCC

As mentioned above, viral infections, metabolic abnormalities,

and lifestyle factors are the primary risk factors for HCC (Table 1).

These conditions often lead to hepatitis or cirrhosis, which

subsequently develop into HCC. Therefore, controlling these risk

factors is crucial for reducing HCC incidence.
TABLE 1 Selenium’s preventive role in the incidence of HCC.

Risk Factor Selenium Functions Reference

Viral Infections

HBV

Selenium inhibits HBV protein expression, transcription, and genome replication (11)

Selenium suppresses HBV replication (12)

Selenium can reverse HBx induced hepatotoxicity (13)

HBV+ patients exhibited significantly reduced serum selenium levels. (12, 14, 15)

HCV

Selenium can inhibit HCV replication. (16)

Selenium levels in HCV+ patients are notably lower than those in healthy people in
clinical observations.

(16–18)

Metabolic
abnormalities

Obesity

Selenium affects obesity through the regulation of reactive oxygen species (ROS). (19, 20)

Selenium affects obesity by modulating inflammation (21)

Selenium affects obesity by enhancing insulin sensitivity and improving metabolism. (22)

Diabetes
Selenium reduces oxidative stress and regulates diabetes. (23, 24)

Selenium regulates diabetes through selenium proteins. (25, 26)

NAFLD

Selenium can effectively alleviate hepatic oxidative stress, hepatic profibrotic
responsehepatic injury, fat granule accumulation and insulin resistance during the
development of NAFLD.

(27–34)

A strong correlation is observed between serum selenium levels and the occurrence
of NAFLD in clinic.

(35–37)

Lifestyle factors

Alcohol consumption Serum selenium levels were notably reduced in patients with ALD. (38, 39)

Smoking
Selenium reduces the carcinogenicity of smoking through its antioxidant effects and
immune regulation.

(40–42)

Aflatoxin

Selenium controls AFB1-induced liver injury. (43)

Selenium reduces AFB1 toxicity by regulating mitochondrial respiration. (44)

Selenium can alleviate AFB1-induced cell cycle arrest. (45)
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2.1 Selenium reduces the occurrence of
virus-induced HCC

Hepatitis B virus (HBV) and Hepatitis C virus (HCV) are the

primary viruses related to HCC. They can persistently alter the

host’s antiviral defenses and disrupt cellular pathways that regulate

liver homeostasis, ultimately leading to viral hepatitis and HCC

development (46). Selenium is the only nutrient directly correlated

with viral infections. In the absence of selenium, viruses may

become more prone to mutation, causing more severe damage to

the organism (12, 13).

2.1.1 The impact of selenium on HBV infection
HBV infection is the cause of nearly 50% of HCC cases (47–50).

The effects of selenium on HBV inhibition have been well

documented. Studies have shown that sodium selenite (Na2SeO3)

can suppress HBV protein expression, transcription, and genome

replication in a dose- and time-dependent manner in human

hepatoma cell lines Huh7 and HepG2.2.15 (11). Another study

demonstrated that 5 mMNa2SeO3 can suppress HBV replication by

~50% in HepG2.2.15 cells by promoting apoptotic cell death and

inhibiting cellular inhibitors of apoptosis proteins (cIAPs)

(Figure 1). Additionally, 500 nM Na2SeO3 can reverse hepatitis B

virus X protein (HBx) induced hepatotoxicity by GPX4-mediated

ferroptosis blockade (12). The introduction of selenoprotein P (SeP)

can notably reverse HBx-induced lipid peroxidation and TNF-a
upregulation in HepG2 cells (13) (Figure 1). These findings suggest

that selenium can reduce the incidence of HBV-induced HCC.

Actually, the NHANES 2007-2018 study data indicated that

individuals testing positive for hepatitis B surface antigen (HBsAg)

have reduced blood selenium concentrations (14). Shi et al.

confirmed that serum selenium levels are lower in HBV-positive

HCC patients, and higher selenium levels are linked to better

prognosis in this group (12). Similar observations were made in

Pakistan by Naseem Rauf et al., emphasizing the consistent link

between selenium deficiency and HBV infection (15).

2.1.2 The roles of selenium in HCV infection
Regarding HCV, an in vitro study showed that HCV suppresses

the expression of gastrointestinal glutathione peroxidase (GPx) in

replicon cells, aiding viral propagation within host cells, suggesting

that regulating GPx activity could provide new strategies to inhibit

HCV replication (16). Clinical data also support these findings,

revealing a negative correlation between HCV viral load and both

selenium levels (r = -0.730) and GPx activity (r = -0.675) (17)

(Figure 1). Additionally, Dominik Bettinger et al. found that HCV

infection significantly lowers serum selenium levels, with an even

greater decline in patients developing HCV-related cirrhosis (18)

(Figure 1). In Pakistan, a significant proportion of HCV-infected

patients exhibit substantially lower selenium levels compared to

healthy controls (15). Overall, these findings highlight the potential

effects of selenium supplementation as a therapeutic approach to

reduce the risk of HBV- and HCV-induced HCC (Figure 1).
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2.2 Selenium reduces the incidence of
HCC caused by metabolic abnormalities

2.2.1 Selenium has the potential to prevent
obesity-induced HCC

Obesity is an independent risk factor or HCC (51, 52). A meta-

analysis encompassing of 28 prospective cohort studies with

8,135,906 subjects revealed that an increase in body mass index

(BMI) was associated with the occurrence of HCC (53). A

prospective study involving over 900,000 American adults also

corroborated that an increased BMI is significantly linked to

heightened mortality rates due to cancer, including HCC (54).

In obese individuals, adipose tissue secretes pro-inflammatory

cytokines like TNF-a and IL-6, which facilitate inflammation and

tumorigenesis within the liver (55). Additionally, obesity is frequently

associated with insulin resistance, which enhances the biological

activity of IGF-1. A significant amount of evidence suggests that

the IGF-1/IGF-1R pathway is crucial in the development of various

cancers, including HCC (56). Moreover, obesity-induced gut

microbiota alterations promote HCC development by generating

harmful metabolites like deoxycholic acid (DCA), which trigger

DNA damage and a senescence-associated secretory phenotype

(SASP) in hepatic stellate cells, fostering a pro-inflammatory,

tumorigenic liver microenvironment (57).

Selenium has been extensively investigated for its anti-

inflammatory effects. A study demonstrated that SeNPs could

influence the expression of genes associated with adipogenesis

and oxidative stress in adipose tissue, suggesting a molecular

mechanism through which selenium might affect obesity (58).

Also, selenium supplementation has been shown to manage

hyperlipidemia, by modulating oxidative stress and improving

metabolic functions (59). Additionally, selenoprotein enzyme

activity is crucial for maintaining the balance of pro-

inflammatory and anti-inflammatory signals, which are integral

components of the SASP (60). These experiments indicate that

selenium may play an important role in preventing obesity-

induced HCC.

A research investigation explored the correlation between

fingernail selenium content and the risk of obesity among

Chinese children. The findings suggested an inverse relationship,

where higher selenium levels were associated with a reduced risk of

obesity, indicating a potential protective role of selenium against

childhood obesity (61). Similar result was highlighted in women

(62). Also, a study assessing the impact of L-arginine and selenium

supplementation on women with central obesity revealed that

selenium markedly reduced fasting insulin levels and enhanced

insulin sensitivity, thereby emphasizing its potential utility in

addressing obesity-related metabolic disorders (63).
2.2.2 The influence of selenium on
diabetes mellitus

Diabetes mellitus has been increasingly acknowledged as a

crucial risk factor influencing the onset of HCC. Numerous meta-
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analyses have substantiated the association between diabetes and

the incidence of HCC (20, 64). A longitudinal study conducted in

Taiwan, encompassing 23,820 participants monitored over a 14-

year period, demonstrated that diabetes is associated with a

threefold increase in the risk of developing HCC (19).

The dysregulation of glucose metabolism in diabetic individuals

can also lead to the accumulation of advanced glycation end-

products (AGEs), which contribute to cancer progression by

inducing oxidative stress and inflammation (21). Insulin

resistance is linked to heightened oxidative stress and persistent

inflammation (65, 66). Additionally, high glucose levels can

promote HCC metastasis through mechanisms involving

metabolic enzymes like PKM2 (22).

Selenium plays a significant role in modulating diabetes,

primarily by mitigating oxidative stress (59, 67). It also influences

glucose metabolism by modulating phosphoinositide-3-kinase/

protein kinase B (PI3K/Akt) signaling pathway, which is

important for insulin action and glucose uptake. Additionally,

selenium’s impact on selenoprotein P has been associated with

hepatic gluconeogenesis and insulin resistance (23). Moreover,

interactions between selenium levels and genetic variations in

selenoprotein genes, as well as other redox-related genes, have

been shown to affect diabetes risk (68). Epidemiological

investigations have yielded inconsistent findings on the

association between selenium levels and the likelihood of

developing diabetes. Certain studies indicate that sufficient

selenium intake may confer protective effects against diabetes,

especially in populations with initially low selenium levels (69,

70). In contrast, other research suggests that elevated selenium

exposure may be linked to an increased risk of diabetes mellitus,

particularly in populations with adequate selenium status (71, 72).
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Thus, further research is required to determine the optimal

selenium intake for diabetes prevention and management.

2.2.3 The effects of selenium on non-alcoholic
fatty liver disease

NAFLD is rapidly becoming the most prevalent cause of HCC

(73), affecting an estimated 2 billion individuals worldwide (74).

NAFLD typically starts as simple fatty liver and can progress to

nonalcoholic steatohepatitis (NASH), cirrhosis, and eventually

HCC (24). Although the exact mechanisms underlying NAFLD

remain unclear, oxidative stress is recognized as a key factor in its

development (25). Hepatic iron, which facilitates electron transfer

and catalyzes the generation of reactive oxygen species (ROS), is

often elevated in NAFLD patients (26). As oxidative stress increases,

lipid peroxidation occurs, leading to the formation of lipid

hydroperoxides. These lipid hydroperoxides, along with elevated

cytokines, contribute to the direct damage of liver cell membranes

and the worsening of intrahepatic inflammation. The thiol redox

systems, mainly glutathione and thioredoxin, work to counteract

oxidative stress within cells by reducing H2O2 and lipid

hydroperoxides (75). Consequently, therapeutic strategies

focusing on modulating thiol redox systems have been proposed

as potential interventions for NAFLD (76) (Figure 1).

Selenium, a key component of thiol-containing enzymes, has

been extensively investigated for its role in NAFLD. Research in

animal models has provided significant insights into its therapeutic

potential. For instance, Ozardali et al. showed that selenium

supplementation in rodents with NAFLD induced by carbon

tetrachloride (CCl4) not only restored liver enzyme activity but

also reduced the number of stellate cells and alleviated fibrosis (28,

29). Similarly, Zhang et al. found that organic selenium could
FIGURE 1

The potential roles and mechanisms of selenium in t he prevention of HCC. The effects and underlying mechanisms of selenium on the primary risk
factors for HCC, including viral infections, metabolic abnormalities and lifestyle factors.
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alleviate NAFLD in mice fed a high-fat diet and exposed to CCl4 by

modulating the 5-hydroxytryptophan (5-HT)/bile acid (BA)

enterohepatic circulation (31). Wang et al. demonstrated that

adding selenium to the diet significantly decreased liver damage

and insulin resistance in the progression of NAFLD by modulating

the KEAP1/Nrf2 pathway, thereby counteracting oxidative stress

through increased selenoprotein P production (27). Additionally,

the administration of selenium-enriched yeast and Lactobacillus

was shown to decrease hepatic oxidative stress and mitigate the

profibrotic response in rats with CCl4-induced liver injury (32, 33).

Moreover, selenium and zinc co-supplementation was found to

reverse NAFLD progression by improving serum biochemical

parameters and reducing lipid droplet accumulation and size in

the livers of Sprague–Dawley rats (30). Notably, Shen et al.

demonstrated that selenium nanoparticles (SeNPs) significantly

reduced liver lipid accumulation caused by polystyrene

microplastics (34), further highlighting the versatile protective

effects of selenium in liver health (Figure 1).

In the field of nutritional epidemiology, previous research has

highlighted a significant decrease in selenium levels among

individuals with NAFLD (6). A study by the Health Management

Center at Xiangya Hospital found that middle-aged and older adults

with greater selenium consumption in their diet, even though it was

less than the recommended dietary allowance in China, showed a

higher occurrence of NAFLD in a dose-response manner (35).

Furthermore, in a study conducted with 8,550 Chinese adults aged

40 and older in Shanghai, it was observed that participants with

plasma selenium levels in the highest quartile (>247.4 mg/L) had a

54% greater prevalence of NAFLD than those in the lowest quartile

(<181.6 mg/L), indicating a potential connection between elevated

selenium levels and the prevalence of NAFLD (36). Additionally, a

study on U.S. adults examined the relationships among serum

selenium concentrations, serum alanine aminotransferase (ALT)

activity, and the prevalence of NAFLD. The findings indicated a

positive correlation between serum selenium levels and NAFLD

prevalence when selenium concentrations surpassed 130 mg/L,
while no significant association was observed for levels below this

threshold (77) (Figure 1).

2.3 Selenium reduces the risk of HCC
associated with certain lifestyle factors

2.3.1 Selenium alleviates the incidence of HCC
induced by alcohol consumption

Excessive alcohol consumption leads to alcoholic liver disease

(ALD), progressing sequentially from fatty liver to alcoholic

steatohepatitis, cirrhosis, and ultimately HCC. Although the

precise mechanisms are not fully understood, it is widely

recognized that protein and lipid peroxidation, driven by free

radical reactions, play a significant role in the development of

ALD (78). In a cohort study of 80 male patients with alcoholic

cirrhosis and 70 healthy male non-alcoholic controls, MDA levels, a

known marker of lipid peroxidation, were significantly higher in

those with alcoholic cirrhosis.Additionally, a negative correlation

was found between MDA levels and the activities of antioxidant
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enzymes such as superoxide dismutase (SOD), GPx, and

glutathione (GSH), indicating heightened oxidative stress and

impaired antioxidant defense in ALD patients (79) (Figure 1).

These findings strongly support the potential role of selenium in

mitigating ALD (80).

In fact, a prevalence study of 99 patients with alcoholic cirrhosis

and 20 healthy subjects revealed a significant depletion of serum

selenium levels in ALD patients (38). Similarly, Rui M. Rua et al.

reported that individuals suffering from alcohol use disorder and liver

disease exhibited notably lower serum selenium concentrations,

especially those diagnosed with ALD, and these levels were

associated with the activity of GPx (39) (Figure 1). These

observations suggest that selenium could be a potential therapeutic

agent for ALD and a preventive measure against HCC (Figure 1).

2.3.2 Selenium reduces the risk of HCC induced
by smoking

Smoking is another factor leading to increased HCC risk.

Numerous epidemiological studies have indicated a link between

tobacco smoking and the development of HCC. For instance, the

Singapore Chinese Health Study, demonstrated a dose-dependent

relationship between the number of cigarettes smoked and the risk

of HCC (81). Additionally, a meta-analysis highlighted the

synergistic effect of smoking with HBV and HCV infections in

increasing the risk of HCC, highlighting the need to tackle smoking

cessation in conjunction with the prevention and treatment of viral

hepatitis (82). Smoking is known to enhance the generation of

reactive oxygen species, which can result in oxidative DNA damage,

cytokine synthesis, and telomere dysfunction, contributing to liver

carcinogenesis (83). Additionally smoking can alter the epigenetic

landscape of liver cells, particularly in the context of HCV-related

HCC (84).

Selenium can reduce oxidative stress by neutralizing ROS

generated during smoking (42). Also, by enhancing immune

function, selenium may help mitigate the immunosuppressive

effects of smoking (40). Smokers have lower serum and plasma

selenium levels compared to non-smokers (85, 86). Epidemiological

research has looked into the connection between selenium levels

and the likelihood of cancer in smokers. Some studies suggest that

exposure to selenium might be connected to a decreased likelihood

of lung and prostate cancer among those who have ever smoked (41,

87). Overall, selenium appears to play a multifaceted role in

mitigating the adverse effects of smoking through its antioxidant

and immune-modulating properties.

2.3.3 Selenium averts the HCC-causing effects of
aflatoxin exposure

Aflatoxin B1 (AFB1), a mycotoxin from Aspergillus species

found in poorly stored food, has been extensively investigated for its

contribution to the pathogenesis of HCC. The metabolic processing

of AFB1 involves its conversion into a highly reactive epoxide

derivative, AFB1-8,9-epoxide (AFBO). This epoxide is capable of

forming covalent bonds with DNA, resulting in the formation of

AFB1-DNA adducts, which are pivotal in the mutagenic process

(88). Research has demonstrated that AFB1-DNA adducts are
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prevalent in regions with high levels of AFB1 exposure and are

correlated with increased incidence of HCC (89). Furthermore,

exposure to AFB1 combined with HBV infection significantly

increases the likelihood of developing HCC (90). Besides its

genotoxic effects, AFB1 has been shown to impair mitochondrial

function and induce apoptosis through both intrinsic and extrinsic

pathways, thereby causing oxidative stress and inflammation, which

exacerbate liver damage and promote carcinogenesis (91, 92).

Research has shown that selenium can mitigate the toxic effects

of AFB1 through several mechanisms. For one thing, selenium

enhances antioxidant defense systems against AFB1 toxicity. It has

been demonstrated to reduce AFB1-induced DNA damage and

histological changes in the liver (43). For another thing, selenium

supplementation can lessen the negative effects of AFB1 on liver

mitochondrial respiratory chain complexes and improve the ratios

of mitochondrial respiratory control (44). Additionally, in broilers,

selenium supplementation has been observed to improve the

cellular immune function impaired by AFB1, as evidenced by

increased spleen weight and enhanced T cell subsets (93).

Moreover, selenium’s involvement in cell cycle regulation has

been underscored in studies where selenium supplementation

prevented AFB1-induced G2/M phase arrest (45). Collectively, the

protective effect of selenium is crucial in preventing the mutagenic

and carcinogenic consequences of aflatoxin exposure.
3 The potential of selenium in
inhibiting HCC progression

In addition to its role in the incidence of HCC, selenium has

been shown to affect various aspects of HCC progression, including

tumor growth, metastasis, and the immune microenvironment.
3.1 The impact of selenium and
HCC growth

Selenium has been shown to influence all phases of the cell cycle

(94). Its anti-proliferative and pro-apoptotic effects on HCC have

been extensively investigated (95) (Figure 2). Yang et al. reported that

selenium sulfide (SeS2) could inhibit the C-MET/STAT3, AKT/

mTOR, and MAPK signaling pathways, and trigger Bcl-2/Cyto C/

Caspase-mediated intrinsic mitochondrial apoptosis both in vitro and

in vivo (96) (Figure 2). Additionally, in the Hep3B cell line and its

xenograft tumors, selenium promoted apoptosis by activating the

GSK3b-independent AMPK/b-catenin pathway (97). Cheng Wang

and colleagues demonstrated that under hyperoxic conditions, H2Se,

a product of selenium compound metabolism, is oxidized into H2O2,

which blocks the Nrf2 signaling pathway, activates the MAPK

signaling pathway, and enhances cell apoptosis in HepG2-bearing

mice (98). A selenium containing MAPK and PI3K inhibitor (Se,Se’-

1,4-phenylenebis(1,2-ethanediyl) bisisoselenourea, PBISe) has also

been shown to exert chemotherapeutic effects by inhibiting the

PI3K, MAPK, and STAT3 signaling pathways, leading to a

significant reduction in tumor sizes in a transgenic murine HCC
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model (99) (Figure 2). Furthermore, Tohada M Al-Noshokaty and

colleagues found that selenium can overcome sorafenib resistance

in thioacetamide (TAA) induced HCC in rats by modulation of

mTOR, NF-kB pathways and LncRNA-AF085935/GPC3 axis

(100) (Figure 2).

In addition to selenium compounds, selenium nanocomposites,

especially those incorporating additional functional components,

have garnered increasing attention for their role in influencing

tumor progression (101). Research by Jianshuang Jiao and

colleagues revealed that selenium nanoparticles conjugated with

astragalus polysaccharides induce significant morphological

changes in HepG2 cells, arrest the cell cycle in the S phase and

induce apoptosis through the mitochondrial route (102). Similarly,

selenium nanoparticles combined with polysaccharides from

Marsdenia tenacissima were shown to effectively suppress the

proliferation, invasion, and metastasis of HepG2 cells, a result

attributed to the triggering of the Bax/Bcl-2/Caspases and p21/

Akt/Cyclin A2 signaling pathways (103). Xiao Zhang et al. claimed

that selenium nanoparticles conjugated with cordyceps sinensis

exopolysaccharides inhibit HepG2 cell proliferation in a manner

dependent on both dose and selenium content. This inhibition is

linked to disruptions in cellular membrane integrity and

mitochondrial function, along with elevated levels of Bax,

cytochrome c, cleaved caspase-9, cleaved caspase-3, Fas, p53, and

cleaved caspase-8, and reduced levels of Bcl-2 and PARP (104)

(Figure 2). Additionally, selenium nanoparticles decorated with

polysaccharides derived from the fermented broth of Lactarius

deliciosus (FLDP) demonstrated a synergistic effect in reducing

toxicity and enhancing the suppression of HepG2 cells. This was

achieved by promoting early apoptosis via mitochondria-mediated

cytochrome C-caspase activation and ROS-induced DNA damage

pathways (105).

Khaled et al. reported that berberine-loaded selenium

nanoparticles exhibited a notable antitumor impact on HepG2

cells, primarily by triggering apoptosis, which was facilitated by

increased expression of p53, Bax, cytosolic cytochrome C, and

caspase-3 activity, along with decreased levels of Bcl-2 (106)

(Figure 2). In a similar vein, Chi et al. demonstrated that selenium-

rich royal jelly induces apoptosis in H22 tumor-bearing mice through

the activation of caspase-9 and caspase-3 (107) (Figure 2). Moreover,

selenium-enriched malt was effective in counteracting the decline in

plasma glucose levels and the rise in serum calcium levels in rats with

hepatoma induced by diethylnitrosamine (108). Selenium-rich amino

acids were found to induce cell apoptosis in human hepatoma cells

SMMC-7721 by promoting the generation of ROS (109). These

studies together emphasize selenium’s potential in curbing the

progression of HCC (Figure 2, Table 2).
3.2 Selenium inhibits the metastasis of
HCC through multiple mechanisms

The metastatic capability of liver cancer cells presents a

significant challenge, greatly affecting the unfavorable prognosis

of HCC. Research by Cheng Huang and colleagues has revealed a
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reduction in the expression of selenium-binding protein 1 (SBP1), a

key protein involved in selenium metabolism, enhances the invasive

characteristics of HCC. Patients with reduced SBP1 levels had

shorter overall survival and increased disease recurrence rates

(110, 111) (Figure 2). These results indicate that selenium

supplementation could be pivotal in mitigating the metastatic

progression of HCC.

To date, many studies have explored the impact of selenium on

the migration and invasion of HCC. For instance, Yu Xia and

colleagues discovered that selenium nanoparticles loaded with

anisomycin significantly inhibit the invasive and migratory

capabilities of HepG2 cells (112). Additionally, tumor metastasis

relies on the development of new blood vessels, a process known as

angiogenesis, which selenium has been shown to suppress by

modulating the expression of vascular endothelial growth factor

(VEGF). Nataliya Rohr-Udilova et al. observed that selenium

treatment in a rat model of HCC enhanced hepatic GPx4

expression while decreasing VEGF (Figure 2). Further analysis

confirmed that selenium levels had an inverse relationship with

VEGF, IL-8, and the size of tumors in HCC patients (113)
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(Figure 2). Also, Fabiola Rusolo et al. reported that increasing

selenite concentrations in HepG2 and Huh7 cells led to reduced

levels of VEGF and three pro-inflammatory cytokines: IL-6, IL-8,

and IL-17 (114) (Figure 2). Jia-Guo Liu et al. demonstrated that

selenium-enriched malt inhibited HCC angiogenesis in rats, partly

through the downregulation of VEGF and interactions with key

factors such as insulin-like growth factor II (IGF-II), tumor necrosis

factor-alpha (TNF-a), nitric oxide (NO), and tumor-associated

nitric oxide synthase (T-NOS) (115, 116) (Figure 2). These

findings were supported by a cohort of 29 HCC patients, where

selenium levels had an inverse correlation with VEGF and IL-8

(113). The results emphasize selenium’s promise as a therapeutic

option to prevent HCC metastasis (Table 3).
3.3 The impact of selenium on HCC
immune microenvironment remodeling

The tumor immune microenvironment (TIM) plays a crucial

role in the progression of various cancers by regulating the
FIGURE 2

The capability of selenium to inhibit HCC progression. The roles and mechanisms by which selenium influences the growth, metastasis, and immune
microenvironment of HCC.
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infiltration and function of immune cells within the tumor milieu.

Recently, an increasing number of studies have emphasized the

effects of selenium on immune cell activity, garnering greater

attention from the scientific community.
3.3.1 The influence of selenium on T
cell activation

T cells are capable of directly eliminating cancer cells and are

crucial in orchestrating the immune response against tumors.

Selenium has been shown to enhance T cell function, including

proliferation, activation, and cytotoxic activity (117, 118). A Phase I

clinical trial indicated that selenite treatment effectively induced

tumor shrinkage in patients with squamous cell lung carcinoma.

Notably, tumor reduction was observed 4 months after the

initiation of selenite therapy at a dosage of 1 mg/m². Additionally,
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dynamic and individual variations in sPD-L1 levels were noted, and

there was considerable variability in survival rates among patients.

These observations suggest that selenium may possess potential

therapeutic value in cancer immunotherapy (119). In mice,

selenoprotein deficiency impairs T cell maturation and their

response to T cell receptor stimulation (120). Supplementation of

selenium in male C57B1/6J mice increases the expression of GPx4

within T cells, thereby boosting the population of T follicular helper

cells (121). Also, the nanocomplex of selenium and the

polysaccharide component of Pholiota adiposa significantly

elevates the levels of CD3+ CD4+ T cells and CD3+ CD8+ T cell

in H22 tumor-bearing mice (122).

In human subjects, supplementing with selenium boosts GPx

enzyme activity in lymphocytes, which is linked to better T cell

functions, including enhanced proliferation and cytokine

production (123). Yi Hu and collaborators found that gd T cells

pretreated with SeNPs showed enhanced efficacy in killing cancer

cells and inhibiting tumor growth compared to untreated cells, as

SeNPs significantly upregulating cytotoxicity-related molecules like

NKG2D, CD16, and IFN-g while downregulating PD-1 expression

in gd T cells (124). A study derived from generally healthy

population also proposed that selenium’s immune-boosting

properties in humans may, at least in part, be due to enhanced

activation and proliferation of B-lymphocytes and potentially

improved T-cell function (125). These findings highlight the

potential of selenium to activate T cells (Figure 2).

3.3.2 The role of selenium in NK cell functions
Natural killer (NK) cells, which play a pivotal role in the innate

immune system, enable the recognition and eradication of virus-

infected and tumor cells through their cytotoxic functions (126).

Research has shown that selenite, an inorganic form of selenium,

can increase the susceptibility of tumor cells to NK cell-mediated

cytotoxicity by reducing the expression of HLA-E (127). In male

C57B1/6J mice, selenium led to a substantial boost in the lytic
TABLE 3 Selenium possesses the ability to inhibit HCC Metastasis.

Selenium
formation

Research
model

Related signal-
ing pathways

Reference

selenium-
binding protein

1 (SBP1)
HCC patients GPX1↓ (110)

selenium-
binding protein

1 (SBP1)

HCC cell
lines Huh-7
and 7721

HCC patients

EMT↓, CXCR4↓,
AKT signaling↓

(111)

Selenium
nanoparticles

HepG2 cells
Cell cycle↓, CDK-2 and

ICBP90↓, cascade
caspase signaling↑

(112)

Selenium
supplementation

HCC patients VEGF, IL-8↓ (113)

SELK,
SELENBP1

HepG2 and
Huh7 cells

IL-6, IL-8, IL-17
and VEGF↓

(114)

selenium-
enriched malt

HCC rats,
HCC patients

VEGF, IGF-II, TNF-a,
NO, T-NOS↓

(115, 116)
TABLE 2 Selenium has the potential to inhibit the proliferation of HCC
and promote its apoptosis.

Selenium
formation

Research
model

Related sig-
naling

pathways
Reference

SeS2
Hep3B cells
Huh‐7 cells

C-MET/STAT3,
AKT/mTOR MAPK
signaling pathways↓

(96)

selenium
Hep3B cell line and

its
xenograft tumors

GSK3b-AMPK/b-
catenin pathway↓

(97)

Na2SeO3

CysSeSeCys

HepG2 cells and
HepG2-bearing
mice under
hyperoxic
treatment

Nrf2 signaling↓;
MAPK signaling↑

(94, 98, 108)

PBISe
Skhep1,HepG2,
C3A and Huh7

cell lines

PI3K, MAPK, STAT3
signaling pathways↓

(99)

SeNPs
TAA-induced HCC

in rats

mTOR, NF-kB
pathway↓LncRNA-

AF085935/
GPC3 axis↓

(100)

Nano-
complex of
selenium/

polysaccharide

HepG2 cells

Mitochondrial
pathway

Bax/Bcl-2/Caspases
and p21/Akt/Cyclin

A2 signaling
pathways↑

Bax, Cytochrome c,
cleaved caspase-9,
cleaved caspase-3,

Fas, p53, and cleaved
caspase-8↑

(95, 101–105)

Berberine-
loaded
selenium

nanoparticles

HepG2 cells

p53, Bax, cytosolic
cytochrome C levels,

and caspase-3
activity↑Bcl-2↓

(106)

Selenium-
rich food

H22 tumor-bearing
mice

Diethylnitrosamine-
induced HCC rats
SMMC-7721 cells

Caspase-3, Caspase-
9↑

Apoptosis↑
(107–109)
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activity of activated NK cells, which demonstrated a marked

increase in intermediate affinity interleukin-2 receptors (128). In

mice bearing H22 tumors, seleno-ovalbumin has been shown to

enhance NK cell cytotoxicity (129). Selenium-containing

nanoparticles have been demonstrated to enhance NK cell

function, which can be synergistically combined with

radiotherapy and chemotherapy in tumor-bearing mice (130).

Additionally, selenium-based nanocomplexes have been found to

reverse NK cell exhaustion by downregulating the immune

checkpoint PD-L1 (131, 132). Moreover, research found that in

liver cancer patients, selenium metabolism in CD8+ T cells and NK

cells within tumor tissues is abnormal, characterized by increased

SEPP1 and decreased SELENBP (133, 134) (Figure 2).

3.3.3 Selenium is important for the activation and
differentiation of DCs

Selenium has also been reported to enhance the immune

response by modulating the function of DCs. It can increase the

expression of co-stimulatory molecules on the surface of DCs, such

as CD80 and CD86, which are essential for the activation of T cells

(135, 136). In addition, selenium influences cytokine production by

DCs, promoting the secretion of pro-inflammatory cytokines like

interleukin-12 (IL-12), which is essential for fostering a Th1

immune response that is advantageous in combating viral

infections and suppressing tumor growth (136).
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Research by Zhepeng Sun and colleagues revealed that selenium

deficiency significantly inhibits the differentiation and immune

function of chicken DCs by decreasing the expression of CD11c,

CD40, CD86 and MHCII, as well as altering the secretion of IL-10,

IL-12p40, and IFN-g (137). Similarly, Liangliang Zhang and his

team found that selenium modulates the immune function of

mouse DCs through the ROS- and SELENOK-mediated ERK,

Akt, and RhoA/ROCK signaling pathways (138). In both mouse

and swine models, selenium nanoadjuvants have been

demonstrated to be more effective than commercial inactivated

vaccines in activating DCs by engaging Toll-like receptor 4 (TLR4)

signaling and regulating selenoprotein expression (139).

Mohammad Hossein Yazdi et al. also revealed that administering

SeNPs to mice enables DCs to generate IL-12 after interacting with

tumor antigens (140). These studies collectively highlight the vital

role of selenium in the differentiation and activation of

DCs (Figure 2).

3.3.4 The potential effects of selenium on
macrophage remodeling

Selenium has the ability to modulate macrophage polarization

towards an anti-tumor phenotype, thereby enhancing the immune

response against cancer cells. Research by Jie Xu and colleagues

showed that SeNPs significantly activated the Tlr4/Myd88/NF-kB
signaling pathway, leading to the conversion of M2 macrophages
FIGURE 3

Future research directions regarding selenium investigation in HCC. The dosage and types of selenium, as well as their impact on the HCC
microenvironment, should be further elucidated to establish optimal clinical application strategies.
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into M1 macrophages and effectively stimulating an anti-tumor

immune response in mice with the H22 tumor model (122).

Similarly, Shuang Li et al. found that selenium-containing

membrane components can inhibit the M2-like polarization,

thereby slowing the in vivo growth of transplanted H22 ascites

hepatoma cells (141). Moreover, selenium-enriched lactobacilli

have been demonstrated to alleviate CCl4-induced liver damage in

mice by boosting macrophage functional activity (33). Moreover,

inhibition of selenoprotein synthesis in myeloid cells led to reduced

macrophage migration within a protein gel matrix (142).

Additionally, the absence of selenoprotein K was linked to

reduced receptor-mediated Ca2+ flux in macrophages (143).

These findings highlight the crucial role of selenium in

macrophage remodeling.
4 Conclusion and outlook

This study has reviewed the role of selenium in HCC,

highlighting that selenium supplementation appears to be a

promising approach for preventing and mitigating the progression

of HCC, based on experimental trials and epidemiological data.

Selenium shows great promise in lowering risk factors associated

with HCC, such as viral infections, metabolic abnormalities, and

lifestyle factors, primarily due to its potent antioxidant properties

(Figure 1). Moreover, selenium has been shown to inhibit the growth

of HCC cells and promote their apoptosis by enhancing its pro-

antioxidant effects and modulating pathways associated with tumor

development. Selenium also holds promise in controlling cancer cell

migration and invasion, thereby reducing the risk of HCC recurrence

and relapse. Additionally, selenium may act as an immunostimulant,

activating immune cells and counteracting immune checkpoint-

mediated immunosuppression within the tumor microenvironment

(Figure 2). Despite the encouraging findings and notable

advancements, several critical issues require careful consideration,

and further research is needed before selenium can be widely

implemented in clinical practice.

First, the dosage is crucial (Figure 3). Selenium demonstrates a

bimodal effect. At low, nutritional doses, selenium serves as an

antioxidant, mitigating oxidative stress and thereby reducing the

primary risk factors associated with HCC. In contrast, at supra-

nutritional, pharmacological levels, selenium might act as a pro-

oxidant, which could result in cell death in HCC. However, there is

currently no consensus on the optimal reference intake levels of

selenium, primarily due to the insufficient epidemiological data

regarding the dose-response link between selenium and certain

health effects. Given the narrow range between preventive and

therapeutic doses of selenium, it is essential to conduct dose-specific

preclinical studies and clinical trials to effectively utilize selenium in

the prevention and treatment of HCC.

Second, the form of selenium is also of paramount importance, as

it significantly influences its absorption and effects (Figure 3).

Generally speaking, Selenium is typically absorbed from dietary

sources in both inorganic and organic forms. The inorganic forms,
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primarily consisting of selenate (Na₂SeO₄) and sodium selenite

(Na₂SeO₃), are relatively simple to synthesize and can be produced

on a large scale (144). However, their bioavailability is limited, and

they may exhibit genotoxic effects in the human body. In contrast,

organic forms of selenium, such as selenocysteine and

selenomethionine, are more readily absorbed (145). In a study

involving ten groups of selenium-deficient individuals, participants

were randomly assigned to receive either a placebo or daily doses of

200 or 600 mg of selenium in various supplement forms, including

selenomethionine, sodium selenite, or high-selenium yeast. The

differences between various selenium types in their bioavailability

have not been fully elucidated. In a study, ten groups of individuals

lacking selenium were randomly given either a placebo or daily doses

of 200 or 600 mg of selenium in different supplement forms, such as

selenomethionine, sodium selenite, or high-selenium yeast. Urinary

excretion data revealed that selenomethionine had the highest

bioavailability, while selenite showed the lowest (146). Recently,

selenium nanoparticles have emerged as a novel supplementation

approach, encapsulating zero-valent selenium within nano-carriers

like proteins and polysaccharides to improve stability (147). This

nanoform has attracted growing interest due to its enhanced

bioavailability and reduced toxicity compared to traditional

inorganic and organic forms. For example, Gao and colleagues

demonstrated the antioxidant properties of hollow spherical

selenium nanoparticles, suggesting their potential to mitigate

systemic toxicity through targeted delivery (148). Consequently,

selenium nanoparticles may represent a promising trend in future

selenium supplementation.

Finally, the impact of selenium on HCC microenvironment

warrants further exploration (Figure 3). While a substantial body of

literature has highlighted the effects of selenium on immune cells,

more in-depth investigations are essential to uncover the underlying

molecular mechanisms. Comprehensive studies are also needed to

evaluate the role of selenium on other elements of the tumor

microenvironment (TME), including the extracellular matrix and

fibroblasts, particularly at the clinical and pharmacological stages.

In summary, although selenium exhibits promise in mitigating

the occurrence and progression of HCC, additional research is

required to fully elucidate its effects, mechanisms, and to develop

optimal strategies for its clinical implementation.
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