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Prediction of bone metastasis
of prostate cancer based on
intratumoral and peritumoral
radiomics of MRI T2WI
combined with ADC images
Shiqian Lin1,2, Pingping He1 and Ruixiong You1*

1Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China,
2Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer
Hospital, Fuzhou, China
Objective: To investigate the value of intratumoral and peritumoral MRI radiomic

models in predicting bone metastasis of prostate cancer patients using T2WI

combined with ADC images.

Materials and method: A total of 144 patients with prostate cancer who

underwent preoperative MRI (T2WI and DWI) were retrospectively included. All

patients were categorized into two groups based on the presence of bone

metastasis. The radiomics features were calculatd for the entire tumor and 3mm-

peritumoral components on pre-processed T2WI combined with ADC images.

The radiomics models based on intratumoral features, peritumoral features as

well as their merged features were respectively constructed. The independent

risk factors of bone metastasis of prostate cancer were used to constructed

clinical prediction model. The performance of the clincal model, radiomics

models and clinic-imaging combined models was evaluated by the receiver

operating characteristic curve and compared with the bootstrap methods. T-test

was used to compare the evaluation indicators of different prediction models.

Results: The clinic-imaging combined model had the best predictive efficacy

among all models. The area under the curve (AUC) of the clinic-imaging

combined model for predicting bone metastasis of prostate cancer in the training

dataset and test dataset were 0.937 and 0.893, respectively. The accuracy, sensitivity

and specificity of this model in predicting bone metastasis of prostate cancer in the

training dataset were 84.2%, 91.2% and 80.6%, respectively; the accuracy, sensitivity

and specificity of the testing dataset were 76.7%, 73.3% and 78.6%, respectively.

Conclusions: T2WI and ADC intratumoral and peritumoral radiomic models can

be used to noninvasively predict the primary diagnosis of PCa BM, and

peritumoral radiomic model can add independent predictive value. And the

clinic-imaging combined model has the better predictive value.
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Introduction

Prostate cancer (PCa) is the world’s second most frequent

cancer and the fifth leading cause of cancer death among males

(1). Bone is the most common metastatic site of PCa, accounting for

more than 80% of all (2, 3). Patients with bone metastasis (BM) in

PCa tend to have worse prognosis and higher mortality than the

patients without BM (4, 5). Whether bone metastasis occurs affects

the final clinical treatment plan of patients. However, the vast

majority of patients with BM in PCa have no obvious symptoms

in the early stages, so they often present with BM at the initial visit

(6). Therefore, early and accurate identification of the PCa BM is

useful for individualizing strategies for treatment and improving

patients’ survival prognosis.

The whole-body skeletal imaging using 99m Technetium

Methylene Diphosphonate (99mTc-MDP) is currently the

preferred method for PCa BM screening. Positron Emission

Tomography-Computed Tomography (PET-CT) can provide

more detailed images with high diagnostic accuracy (7). CT could

also be used to evaluate BM. However, these examinations have lots

of disadvantages including radiation exposure and low specificity

which limits clinical application (8). Traditional MRI has high

sensitivity and specificity in diagnosing BM. While the evaluation

using traditional MRI obtained few quantitative features and

relatively poor repeatability (9, 10). Therefore, more objective and

effective methods need to be explored to predict the occurrence of

PCa BM.

Previous studies have confirmed that MRI radiomics has good

effects in the diagnosis, efficacy evaluation, recurrence prediction,

and other aspects of PCa patients (11–14). Radiomics is the process

method of extracting a large amount of information from medical

images through converting digital images into quantitative high-

dimensional data, which could characterize histologic or

pathophysiologic information. MRI radiomics was also used for

prediction of PCa BM, Wang et al. found that multiparametric

MRI-based texture features were significant predictor for BM in

PCa (AUC=0.898) (15).

However, most of the PCa radiomics studies mainly focus on

the extraction and related analysis of radiomics features of the

primary tumor lesion other than the surrounding area of the lesion.

The intratumoral radiomics features may not characterize the

information of tumors fully. Ding et al. found that the prediction

model of lymph node metastasis of breast cancer combined with

intratumoral and peritumoral radiomic features is more accurate

than the single intratumoral radiomic model (16). Zhang et al.

found that peritumoral radiomic model outperformed both only

intratumoral or peritumoral combined with intratumoral radiomic

model in predicting recurrence-free survival in hepatocellular

carcinoma (17). MRI peritumoral radiomic features may provide

additional predictive or diagnostic value for tumors, but the study

using peritumoral radiomics to predict PCa BM remains unclear.

Thus, our study established and analyzed the intratumoral and

peritumoral MRI radiomics models in PCa patients. T2WI and

DWI are the most commonly recommended sequences in PCa MRI

(18). ADC is the main evaluation parameter of DWI, and numbers
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of previous studies have converted the DWI images to ADC maps

for further research (9, 19), so we chose T2WI and ADC images for

further study. We aimed to investigate the value of radiomic models

in predicting PCa BM and determine whether peritumoral

radiomics can provide additional prediction value.
Materials and methods

Patients

We retrospectively enrolled PCa patients who underwent

prostate MRI examination and prostate biopsy or radical

resection surgery at the First Affiliated Hospital of Fujian Medical

University, whose detailed pathological results were obtained after

biopsy or surgery from July 2017 to December 2023.

The inclusion criteria were as follows: (1) Not undergoing

biopsy or surgery prior to MRI examination; (2) Complete MRI

examination images(including T2WI, DWI and ADC images) and

clinical laboratory data; (3) Preoperative PET-CT or whole-body

skeletal imaging examination, which is performed within 4 weeks

after the MRI examination.

The exclusion criteria were as follows: (1) History of

radiotherapy, chemotherapy, hormone therapy, or targeted

therapy prior to MRI examination; (2) Due to the presence of

other primary malignant tumors, the origin of BM cannot be

determined; (3) Combined with a history of other bone injuries

and bone metabolism disorders; (4) Poor image quality and artifacts

make it impossible to evaluate; (5) PCa lesions with a length

diameter of less than 1cm. We enrolled 144 patients in this study

finally. We collected clinical and pathological data of patients,

including age, the Serum Total Prostate Specific Antigen (tPSA),

Gleason Score (GS) and Clinical Tumor-staging x (cTx).
Image data acquisition

All patients underwent preoperative prostate MR imaging on

3.0 MR scanner (Siemens Skyra, Siemens Magnetom Verio,

Siemens Prisma, Philips Ingenia) with phased array coils on the

body. The sequences included transverse T2WI and DWI. The

corresponding ADC maps are automatically fitted and generated by

the MRI post-processing system. The sequences parameters for the

different machines are shown in Supplementary Table S1.
Image data preprocessing

All MRI images underwent a standard image preprocessing

protocol. N4 bias field correction was applied to all images before

further processing to reduce intensity inhomogeneity using Simple

ITK. We used the REST plus software (version 1.25, http://

restfmri.net/forum/RESTplus) based on the MATLAB R2022a

platform to perform image resampling to minimize the effect of

differences in image spatial resolution on the histological features of
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the images, all MRI images and ROIs were resampled to 1 mm × 1

mm × 1 mm. Additionally, ANTs (Advanced Normalization Tools,

http://stnava.github.io/ANTs) was used to align ADC sequences to

the T2WI sequences.
Tumor segmentation

The volumes of interest (VOIs) of lesions were segmented using

3D Slicer software (version 5.4.0, https://www.slicer.org/). These

VOIs were manually annotated layer by layer along the tumor

margins by a radiologist (radiologist A) with 3 years’ diagnostic

experience in diagnosis of genitourinary imaging. T2WI is widely

used for prostate segmentation because it shows more detailed

prostate anatomy than other MRI sequences. The aligned prostate

segmentation can be applied to other image sequences (9). The

specific delineated method was as follows: (1) Intratumoral radiomic

model: we manually outlined the VOI of the lesion on the pre-

processed MRI transaxial T2WI images; (2) Peritumoral radiomic

model: on the basis of the intratumoral VOI, the peritumoral region

was automatically expanded in 3D space by using the “Hollow”

algorithm in the 3D Slicer software, starting from the tumor

boundary, and the range of the expansion was 3 mm. At the same

time, the VOI of the tumor drawn earlier was transformed into a

hollow volume. When the expanded VOI exceeded the prostate

parenchyma, the exceeded portion was manually erased.
Feature extraction

The Pyradiomics module in the opensource software FeAture

Explore (FAE, version 0.5.8) based on Python (version 3.7.6) was

used to perform quantitative radiomics feature extraction on the

outlined VOI images. All images were pre-processed before feature

extraction. The pre-processing steps include normalization, Mask

re-segmentation and Discretization.

A total of 851 features were extracted from each VOI of each

sequence including a set of original image features (14

morphological, 18 first-order statistical and 75 texture features)

and 8 sets of wavelet transformed image features (18 first-order

statistical and 75 texture features). The T2WI and ADC imaging

features were obtained using the above methods. Finally, 1702

radiomics features were obtained for each of the tumor lesion and

peritumoral area. The specific radiomic features extracted for this

study are shown in Supplementary Table S2.
Data preprocessing and feature selection

This study applies the Interclass Correlation Coefficient (ICC)

for preliminary screening of the extracted features to minimize the

impact of VOI segmentation bias on the construction of radiomics

models. Thirty lesions were randomly chosen for repetitive VOI

segmentation, which was performed by two radiologists to explore

the intra-observer and inter-observer stability of features. The
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radiomics features with both ICC values > 0.75 were retained for

further study.

All patients were randomly grouped into the training and

testing datasets in a ratio of approximately 7:3. The Mean value

method was applied to all feature matrices for feature

normalization. We used the Pearson correlation coefficient (PCC)

to reduce the dimensions of the row space of the feature matrix.

Then, we used Recursive feature elimination (RFE) to select the

most relevant feature subset. The Synthetic minority oversampling

technique (SMOTE) was used to improve learning via imbalanced

datasets to reduce the influence of data imbalance.
Development of prediction model

For radiomics model construction, we selected five classifiers,

namely, Gaussian process (GP), Logistic regression (LR), Linear

discriminant analysis (LDA), Random forest (RF), and Support

vector machines (SVM) to fit the data. Ultimately, five-fold cross-

validation was applied to select the final features from the most

relevant feature subset. The number of final selected features was set

according to the performance of cross-validation in the balanced

training cohort.

The model with the highest Area under the Curve (AUC) in the

validation set was selected as the optimal model to establish the

radiomics model including intratumoral model and peritumoral

model. The Prediction Value (Pred) of BM in each case was

automatically calculated from the final model. The radiomic features

extracted from the intratumoral and peritumoral VOIs were combined

to construct a combinatorial radiomic model, which is denoted as

“Merged model”. The above procedures were realized on FeAture

Explore (FAE, version 0.5.8) software based on Python (version 3.7.6).

The clinical variables in the training cohort that exhibited

statistically significant differences between the BM and non-BM

groups were screened for clinical model construction using the LR

classifier. The Pred of the radiomic model with the highest AUC in

the cross-validation set and clinical model was selected for clinic-

imaging combined model construction. Figure 1 shows the workflow

of this study. Figure 2 shows two examples of prostate cancer patients.
Statistical analysis

Statistical analysis was carried out using R software (version

4.3.2, http://www.Rprogject.org) and SPSS software (version

27.0.1.0). Continuous variables were compared by using the

Student’s t-test or the Mann−Whitney U test.Categorical variables

were compared using the Chi-square test or Fisher’s exact test.

Independent risk factors associated with bone metastasis were

screened using univariate and multivariable logistic regression

analysis. The performance of the models was evaluated by the

receiver operating characteristic curve, and the area under the curve

(AUC), accuracy (ACC), sensibility (SEN), and specificity (SPE)

were calculated. The precise-recall (PR) curve was used to valuated

the model performance additionally.
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To further compare the performances of the models, we

performed bootstrap random resampling 1000 times on each

dataset. Based on the evaluated variation for each model

performance, we used the paired t-test to identify the significant

differences of AUC,ACC,SEN and SPE between the predictive

models with Benjamini-Hochberg correction for the multiple

comparisons (20). All P-values are two-sided test results, and P <

0.05 was considered indicative of statistical significance.
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Results

Patients’ characteristics

According to the inclusion and exclusion criteria, a total

of 144 PCa patients were finally included in the analysis,

including 49 patients in the BM group and 95 patients in the

non-BM group.
FIGURE 1

The workflow chart of this study.
FIGURE 2

Examples of prostate cancer patients. DWI, ADC, T2WI, and whole-body skeletal imaging images of prostate cancer patients with bone metastasis
(A) and without bone metastasis (B), respectively.
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The distribution of patients’ age, tPSA, GS, and cTx between the

BM and non-BM groups was statistically different (P < 0.05). The

distribution of clinical and pathologic data is shown in Table 1.

There were 101 patients in the training dataset (BM = 34, non-

BM = 67) and 43 patients in the testing dataset (BM = 15, non-BM =

28). In the training dataset, the differences in age, tPSA, GS, and cTx

of patients were statistically significant (P < 0.05). There was no

significant difference in the distribution of baseline information

between the training and testing datasets (P > 0.05). The

distribution and comparison of baseline information between the

training and testing datasets are shown in Table 2.

The results of univariate logistic regression analysis of the

training set showed that age, tPSA, GS and cTx were all

associated risk factors for BM in PCa (P < 0.05); the results of

multivariable logistic regression analysis of the training set showed

that age and GS were independent risk factors for the development

of BM in PCa patients (P < 0.05), as shown in Table 3.
Radiomic models constructing results

After the ICC analysis, 1414 intratumoral features and 901

peritumoral radiomic features with favorable reproducibility were

retained, respectively, for subsequent analysis.

After dimensionality reduction and feature selection, LDA

(AUC = 0.599 in the cross-validation cohort) were identified as

the optimal classifier used for peritumoral radiomic model

constructions, which incorporated 7 features. Intratumoral and

merged radiomic models’ selection using the same methods

described above. Intratumoral radiomics models based on SVM

(AUC = 0.694 in the cross-validation cohort) were identified as the

optimal classifier incorporating 3 features. The highest efficacy
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(AUC = 0.722) was found in the cross-validation set of the GP

classifier-based merged radiomic model, which incorporated a total

of 14 features.
Clinical models constructing results

Independent risk factors from the training dataset including age

and GS were incorporated into the LR classifier for clinical model

construction. The AUC of the clinical model cross-validation set

was higher when 2 features were included (AUC = 0.802).
Clinic-radiomic combined model
constructing results

Among the above three radiomic models, the cross-validation

set of the merged radiomic model had the highest efficacy (AUC =

0.722). the Pred of the merged model was combined with the Pred

of the clinical model for the construction of the clinic-radiomic

combined model. The model incorporating the predictions of both

models had the higher AUC in the cross-validation set, with AUC =

0.937, ACC = 0.842, SEN = 0.912, SPE = 0.806, 95% CI [0.893-

0.981] in the training dataset and AUC = 0.893, ACC = 0.767, SEN

= 0.733, SPE = 0.786, 95%CI[0.793-0.993] in the testing dataset. The

ROC curves of the clinic-radiomic combined model, the

performance of different feature models in the validation set, and

the feature contribution are shown in the Figure 3. The PR curves of

the clinic-radiomic combined model are shown in the Figure 3d.

The predictive performance of the peritumoral model, intratumoral

model, merged model, clinical model and clinic-radiomic combined

model are shown in Table 4.
Comparison of predictive efficacy
of models

The performance of the intratumoral radiomic model, merged

radiomic model, the clinical model and the combined model after

bootstrap as well as the comparison of the statistical results between

different models are shown in Table 5. Both in the training set and

the testing dataset, the AUC, ACC, SEN, and SPE values of merged

radiomic model were better than those of the intratumoral radiomic

model (P < 0.05). The combined model was better than the merged

radiomic model and the clinical model (P < 0.05). The differences of

the predicted values of the combinedmodel and those of the different

models were statistically significant. In the testing dataset, the

differences between the predicted values of the combined model

and the different models were statistically significant (P < 0.05).
Discussion

In this study, we retrospectively analyzed the diagnostic efficacy

of intratumoral and peritumoral MRI radiomic models based on
TABLE 1 Patients’ clinical and pathological information.

Features BM (n = 49) Non-BM (n = 95) P-value

age (year) 73.71 ± 7.54 69.38 ± 8.20 0.003*

tPSA (ng/ml) 84.18 [31.60,100.00] 19.00[11.80,39.41] < 0.001*

GS < 0.001*

GS < 7 1 (2.04%) 9 (9.47%)

GS = 7 5 (10.20%) 60 (63.16%)

GS > 7 43 (87.76%) 26 (27.37%)

cTx < 0.001*

T2a 3 (6.12%) 12 (12.63%)

T2b 2 (4.08%) 10 (10.53%)

T2c 5 (10.20%) 35 (36.84%)

T3a 13 (26.53%) 29 (30.53%)

T3b 21 (42.86%) 9 (9.47%)

T4 5 (10.20%) 0 (0.00%)
BM, bone metastasis; tPSA, the Serum Total Prostate Specific Antigen; GS, Gleason Score;
cTx, clinical tumor-staging x. *P < 0.05, represents significant difference between groups.
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TABLE 2 Clinical and pathological information between patients with BM and with non-BM in the training dataset and test dataset.

Feature
the training dataset (n=101) the test dataset (n=43)

Pcvalue
BM (n=34) Non-BM (n=67) Pavalue BM (n=15) Non-BM (n=28) Pbvalue

Age (year) 74.44 ± 7.77 69.81 ± 7.64 0.006* 72.07 ± 6.71 68.36 ± 9.32 0.190 0.256

tPSA (ng/ml) 68.00 [21.70,100.00] 18.00 [10.20, 40.20] < 0.001* 84.18 [36.00,100.00] 20.50 [14.90,33.00] 0.003* 0.508

GS < 0.001* < 0.001* 0.222

GS < 7 1 (2.94%) 8 (11.94%) 0 (0.00%) 1 (3.57%)

GS = 7 3 (8.240%) 39 (58.21%) 2 (13.33%) 21 (75.00%)

GS > 7 30 (88.24%) 20 (29.85%) 13 (86.67%) 6 (21.43%%)

cTx < 0.001* 0.009* 0.656

T2a 3 (8.82%) 7 (10.49%) 0 (0.00%) 5 (17.86%)

T2b 2 (5.88%) 8 (11.94%) 0 (0.00%) 2 (7.14%)

T2c 3 (8.82%) 25 (37.31%) 2 (13.33%) 10 (35.71%)

T3a 9 (26.47%) 21 (31.34%) 4 (26.67) 8 (28.57%)

T3b 15 (44.18%) 6 (8.96%) 6 (40.00%) 3 (10.71%)

T4 2 (5.88%) 0 (0.00%) 3 (20.00%) 0 (0.00%)
F
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BM, bone metastasis; tPSA, the Serum Total Prostate Specific Antigen; GS, Gleason Score; cTx, clinical tumor-staging x; Pa represents the statistically significant level of the difference between the
two groups in the training set, Pb represents the statistically significant level of the difference between the two groups in the test set, and Pc represents the statistically significant level of the feature
distribution difference between the training group and the test group. *P < 0.05, represents significant difference between groups.
TABLE 3 Univariate and multivariable logistic regression analysis of patients’ clinical and pathological features of the training dataset.

Univariate logistic regression analysis Multivariable logistic regression analysis

P OR (95%CI) P OR (95%CI)

age 0.008* 1.084 (1.021-1.151) 0.040* 1.080 (1.003-1.162)

tPSA 0.030* 1.005 (1.000-1.010) 0.158 1.003 (0.999-1.007)

GS < 0.001* 10.825 (3.774-31.047) < 0.001* 6.513 (2.179-19.465)

cTx 0.001* 2.012 (1.326-3.052) 0.290 1.286 (0.807-2.050)
BM, bone metastasis; tPSA, the Serum Total Prostate Specific Antigen; GS, Gleason Score; cTx, clinical tumor-staging x; OR, Odds Ratio, CI, Confidence Interval. *P < 0.05, represents significant
difference between groups.
FIGURE 3

Performance of the clinic-radiomic combined model. (a) Receiver operating characteristic curves of the combined model using different datasets;
(b) The AUC value of cross-validation dataset reached the highest value when this model contains 2 features; (c) Names and coefficients of the
features in combined model; (d) Precision-Recall curves of the combined model using different datasets.
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T2WI and ADC images combined with some clinical data

(including age and GS) to predict BM in PCa patients. The

results showed that the intratumoral radiomic model was superior

to the peritumoral radiomic model; the merged radiomic model

improved diagnostic efficacy, and the merged radiomic model was

superior to the clinical model. Combining clinical data and

radiomic features could further improve the predictive efficacy of

the model.
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Numerous studies have shown that the tPSA level, GS and cTx

can be used as predictors of whether patients need to be tested for

PCa BM, and they are generally considered to be the main factors in

assessing the prognosis of PCa (21, 22). We screened the

independent risk factors of PCa BM of our study to constructed

clinical prediction model, which showed good prediction value

(AUC = 0.833 in the testing dataset). However, there are lots of

shortcomings using clinical factor to predict PCa BM. The PSA test
TABLE 4 The predictive performance of the peritumoral model, intratumoral model, merged model, clinical model, and combined model.

Model type Dataset AUC 95%CI Cutoff ACC SEN SPE AUPRC

Peritumoral
Radiomic

Training 0.848 0.766-0.930 0.443 0.772 0.882 0.716 0.737

Testing 0.788 0.653-0.923 0.443 0.721 0.533 0.821 0.637

Intratumoral
Radiomic

Training 0.784 0.685-0.884 0.633 0.822 0.588 0.940 0.721

Testing 0.850 0.738-0.962 0.633 0.721 0.400 0.893 0.714

Merged
Radiomic

Training 0.928 0.880-0.975 0.485 0.852 0.853 0.851 0.866

Testing 0.867 0.758-0.976 0.485 0.791 0.733 0.821 0.724

Clinical
Training 0.826 0.742-0.870 0.312 0.762 0.912 0.687 0.651

Testing 0.833 0.702-0.964 0.312 0.791 0.867 0.750 0.671

Clinic-Imaging
Combined

Training 0.937 0.893-0.981 0.390 0.842 0.912 0.806 0.891

Testing 0.893 0.793-0.993 0.390 0.767 0.733 0.786 0.724
AUC, Area Under the Receiver Operating Characteristic Curve; CI, Confidence Interval; ACC, Accuracy; SEN, Sensibility; SPE, Specificity; AUPRC, Area Under the Precision-Recall Curve.
TABLE 5 Statistical comparisons between developed predictive models accepting bootstrap.

Model
Performance

Intratumoral
Radiomic
model

Clinical
model

Merged
Radiomic
model

Combined
model

P-value

Merged
vs.

Intratumoral

Clinical
vs.

Merged

Clinical
vs.

Combined

Merged
vs.

Combined

the training dataset

AUC 0.783 ± 0.051
0.826
± 0.043

0.928 ± 0.024 0.937 ± 0.022 < 0.001* <0.001* < 0.001* < 0.001*

ACC 0.813 ± 0.055
0.777
± 0.043

0.858 ± 0.045 0.873 ± 0.043 < 0.001* <0.001* < 0.001* < 0.001*

SEN 0.637 ± 0.114
0.912
± 0.055

0.919 ± 0.085 0.898 ± 0.086 < 0.001* 0.046* < 0.001* < 0.001*

SPE 0.902 ± 0.108
0.709
± 0.067

0.827 ± 0.097 0.860 ± 0.091 < 0.001* <0.001* < 0.001* < 0.001*

the testing dataset

AUC 0.818 ± 0.071
0.831
± 0.068

0.868 ± 0.056 0.893 ± 0.052 < 0.001* <0.001* < 0.001* < 0.001*

ACC 0.774 ± 0.073
0.823
± 0.060

0.827 ± 0.068 0.869 ± 0.064 < 0.001* 0.117 < 0.001* < 0.001*

SEN 0.925 ± 0.111
0.842
± 0.105

0.878 ± 0.106 0.865 ± 0.119 < 0.001* <0.001* < 0.001* 0.012*

SPE 0.693 ± 0.136
0.811
± 0.114

0.800 ± 0.128 0.873 ± 0.128 < 0.001* 0.033* < 0.001* < 0.001*
AUC, Area Under the Receiver Operating Characteristic Curve; CI, Confidence Interval; ACC, Accuracy; SEN, Sensibility; SPE, Specificity. *Significant difference is identified based on the t-test;
P-Values was corrected by Benjamini-Hochberg method. *P < 0.05, represents significant difference between groups.
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lacks specificity: prostate hyperplasia, prostate inflammation,

prostate trauma, and urinary stones can cause disruption of the

prostate peritoneal barrier, which can lead to an increase in PSA

(23). The results of GS are related to the site of puncture, the

material used for the specimen and the subjective judgment of the

pathologists, some subjective and objective errors could not be

completely avoided (24).The cTx results are dependent on the co-

diagnosis of pathologists and imaging physicians (25). Therefore,

we should explore more objective and effective features to predict

the occurrence of PCa BM.

Previously, MRI radiomics has been proved to be effective in the

diagnosis and prognostic assessment of PCa patients. Numerous

studies have demonstrated the value of radiomics features extracted

from single or multiple scan sequences of prostate MRI in the

detection and differential of PCa (26), assessment of invasiveness

(27), prediction of biochemical recurrence (12)and treatment

response (28). In recent years, there has been a gradual increase

in the number of studies on the radiomics value on prediction of

PCa BM. Zhang found that the radiomics nomogram, which

incorporates the multiparametric MRI-based radiomics signature

and clinical risk factors, can be used to promote individualized

prediction of BM in patients with newly diagnosed PCa with the

AUC of 0.92 (29).Our study came to a similar conclusion to theirs.

Our study also found that T2WI and ADC intratumoral radiomic

model can be used to predict PCa BM well with the AUC of 0.850.

Currently, there is few PCa-related peritumoral radiomics

studies. Bai et al. found that peritumoral radiomics can better

predict the presence of preoperative PCa extraperitoneal invasion

compared to intratumoral radiomic and clinical features (30).

Algohary et al. found that peritumoral radiomics have good

predictive efficacy for PCa risk stratification (31). Our study

analyzed the relationship between peritumoral MRI radiomics

model and BM. In our study, the peritumoral radiomic model’s

predictive efficacy was lower than that of the intratumoral radiomic

model (AUC = 0.850), but it still had a relatively high predictive

value for BM (AUC = 0.788), which complemented previous MRI

radiomics for the prediction of PCa BM without analysis of the

peritumoral region. Bova et al. found that the correlation between

histological changes in the peritumoral zone and proliferative

activity of tumor cells is a predictor of cancer progression (32). In

addition, Algohary et al. found that a relatively higher concentration

of peritumoral epithelial cells and lymphocytes were identified of

high-risk lesions, which was reflected in terms of higher

heterogeneity observed on T2WI peritumoral radiomic features

compared to low-risk lesions (31). Thus, MRI peritumoral radiomic

features may reflect different microenvironments around the tumor

and the status of the tumor to some extent (33). We further merged

the intratumoral with the peritumoral radiomic features for the

prediction of PCa BM and obtained AUC of 0.867, which shows

combined analysis of intratumoral and peritumoral information

allows for a more complete portrayal of tumor heterogeneity.

Peritumoral radiomic model could add additional diagnostic

efficacy for single intratumoral radiomic model.

Among the five predictive models in our study, the clinic-

radiomic model achieved the best efficiency, whose predictive values
Frontiers in Oncology 08
were better than any other models with the AUC of 0.893 in the

testing dataset, suggesting that this model may promote prediction

of PCa BM. The clinic-radiomic model includes not only clinical

information but also radiomic features; hence in our future work,

we can take a more comprehensive view to predict PCa BM, which

may be more useful for clinician’s decision making and bring

greater benefits to patients.
Limitations and prospects

First, this study is a retrospective, single-institution study with a

small sample size, which makes selection bias inevitable. In the

future, the sample size can be further expanded and an external

validation design could be adopted to verify the model efficacy.

Second, the metastatic lesions detected by PET-CT or 99mTc-MDP

whole-body skeletal imaging were not confirmed by pathology, so

there was a certain possibility of false positives. Third, this study did

not include peritumoral areas larger than 3 mm in the construction

of the peritumoral model, and the performance of peritumoral areas

of different ranges should be further explored in the future. Finally,

the present study did not further investigate the relationship between

the long-term prognosis of PCa BM patients, which can be further

explored by enriching the content of the study in the future.
Conclusion

In summary, T2WI and ADC intratumoral and peritumoral

radiomic models could be used to noninvasively predict the primary

diagnosis of PCa BM, and peritumoral radiomic model could add

additional diagnostic efficacy. The combined clinic-imaging model

can significantly improve the predictive efficacy of prostate cancer

bone metastasis and can be used as an effective aid in clinical

decision-making.
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