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In the care of lung cancer patients, early diagnosis followed by timely therapeutic

procedures can have a significant impact on overall survival and patient anxiety.

While robotic-assisted lung resection is now a widely accepted surgical

approach, robotic-assisted bronchoscopy is a more recent diagnostic

procedure that improves reach, stability, and precision in the field of

bronchoscopic lung nodule biopsy. The ability to combine lung cancer

diagnostics with curative-intent surgical resection into a single-setting

anesthesia procedure has the potential to decrease costs, improve patient

experiences, and most importantly, reduce delays in cancer care. In addition,

with the expected adoption of sublobar resection for stage I lung cancer ≤2cm,

combining robotic-assisted bronchoscopy with robotic surgery offers a single-

setting pathway to take advantage of the precision biopsy and localization

technique offered by robotic-assisted bronchoscopy and the precision

operation offered by robotic surgery. We herein describe our approach to this

single-setting procedure. While limited studies suggest that the combined

approach results in shorter overall operative time and cost, we need future

work to better characterize the overall operative time, complication rates, long-

term oncologic outcomes, and cost analysis.
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Introduction

With advances in technology and initiation of lung cancer screening programs, the

frequency of localized lung cancer amenable to curative intent has increased. Though only

accounting for a small portion of total lung cancer diagnoses, the 5-year survival for only

localized lung cancer is 65% (1). A vital part of lung cancer management is minimizing the

time from diagnosis to therapeutic treatment. Delays in treatment, which are defined as

resection 8 weeks or more after diagnosis, are associated with higher rates of upstaging,

increased 30-day mortality, and decreased median survival (2). Delays in treatment are also

accompanied with higher overall healthcare resource utilization and cost. Initiation of

diagnostic workup does not always immediately yield a tissue diagnosis either. 46% of lung

cancer patients will require two or more biopsies. In such cases, wedge resection for surgical

biopsy can be required. Despite being a more invasive option, these can be in turn
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associated with 10-20% benign resection rate (3). Therefore, the

ability to combine precise diagnostic procedures and therapeutic

surgical resection, hence reducing delays and resultant rates of

upstaging at diagnosis, may allow for less resource utilization and

eventual cost. Higher stages have been shown by retrospective

analysis to be associated with significantly higher total healthcare

costs (4).

In the management of lung nodule/cancer, robot-assisted

bronchoscopy (RAB) is an emerging technology to biopsy lung

lesions. Combining RAB with robot-assisted thoracoscopic surgery

(RATS) offers an approach that takes advantage of the two

technologies (5). With the changing landscape of early-stage lung

cancer treatment, combining RAB with RATS may offer several

advantages with the primary benefit being single setting lung cancer

diagnostics, mediastinal staging and definitive treatment while

expediting overall lung cancer care. We herein review our

approach to single setting RAB/RATS and various factors in this

combined setting, such as cost and outcomes.
Lung cancer diagnostics

The American College of Chest Physicians and National

Comprehensive Cancer Network guidelines both recommend

obtaining a diagnosis of the primary lesion, resultant staging, and

tissue for molecular testing by using the least invasive modality.

Ideally, this would be a single procedure (6, 7). An initial

bronchoscopic approach allows for biopsies of both the primary

lesion of interest as well as mediastinal nodes for staging. The set of

bronchoscopic procedural tools and technologies that aid in airway

navigation, confirmation of target proximity, and tissue sampling

are collectively known as guided bronchoscopy (8). The main

components of guided bronchoscopy comprise image-mapped

airway navigation, videoscopic real-time airway visualization,

intraprocedural confirmatory imaging, and specimen acquisition

devices. Studies have defined various metrics of guided

bronchoscopy (9–16), defining diagnostic yield and safety, and

comparing guided bronchoscopy methods with percutaneous

sampling, consistently finding it to be safer relative to

transthoracic sampling (17, 18). One published downside of the

bronchoscopic approach is the diagnostic yield, which has been

inconsistent in randomized controlled trials, with yields from 44%

to 74%, compared with rates above 90% for percutaneous sampling

(10–18). The novel technology of RAB allows us to overcome this

main limitation, and there are different available platforms (19, 20).

The Ion Robotic-Assisted Endoluminal Platform (Intuitive Surgical,

Inc.) is based on novel shape-sensing RAB (ssRAB) technology

(Figure 1) (21, 22). The Monarch RAB platform (Auris Health, Inc.)

is based on electromagnetic navigation (EMN RAB) technology

(23). RAB is designed to allow navigation into the lung periphery

via endobronchial approach. The robotic control allows for

increased catheter stability and guidance to maximize accuracy

and precision for biopsy while still providing direct and/or virtual

visualization of peripheral airways with simultaneous computer

mapping of the catheter’s path and target (Figure 2). These
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advantages of RAB have been demonstrated in cadaveric models

and subsequently supported by several clinical studies

demonstrating a navigational success rate between 96.2% to 100%

(24–31). Diagnostic yield for malignancy has been shown to be

69.1% using EMN RAB and as high as 88% using ssRAB, improved

from comparative non-robotic bronchoscopic approaches for

peripheral lesions (24–29, 31). The RAB technology is also well

positioned to allow for integration with other existing valuable

resources for the diagnosis, staging, and treatment of lung lesions

such as endobronchial ultrasound (EBUS), radial EBUS,

fluoroscopy, cone beam computed tomography and the da Vinci

Surgical System.

Another advantage of RAB is its ability to definitively mark

small peripheral lung lesions for eventual resection. Especially with

improved efforts in lung cancer screening, we will encounter more

small peripheral lesions, often ground glass in nature. Identifying

these lesions intra-operatively can frequently pose a challenge, and

the ability to localize these lesions pre-operatively can be useful,

especially when this can be done at the same time as the surgical

resection. Current methods for marking lung nodules include coils,

hook-wire, or radiotracer placement percutaneously placed under

CT guidance by interventional radiologists. Although these

transthoracic methods have been found to be effective in

delivering their markers, the higher rate of pneumothorax,
FIGURE 1

Ion robotic-assisted endoluminal platform (Intuitive Surgical, Inc).
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bleeding, hematoma and dislodgement of tracer are noted

limitations when compared to bronchoscopic approach (32, 33).

Furthermore, these techniques and interventions require

coordination and scheduling across multiple specialists and

frequently result in significant delay to surgical resection (32–36).

Bronchoscopic lung nodule marking has been found to be effective

and safe in comparison with other methods (37, 38). Available

techniques for peripheral lung nodule marking using RAB include

but are not limited to dye marking (using methylene blue,

indocyanine green or iopamidol) or fiducial marker placement.
On-site diagnosis

Based on the systematic review and expert panel convened by

the College of American Pathologists (CAP), rapid on-site

evaluation (ROSE) is recommended, if available in EBUS-

transbronchial needle aspiration (TBNA) and strongly

recommended if clinically feasible in transthoracic needle
Frontiers in Oncology 03
procedures (39). Oki et al. performed a prospective randomized

clinical trial on patients undergoing EBUS- TBNA and showed a

statistically significant reduction in the need for additional

procedures with ROSE (11% of patients in ROSE vs 57% in non-

ROSE group; p<0.001) (40). ROSE has also shown to slightly

improve diagnostic yield (absolute percentage increase of 2.9% –

8%) (41–43). In addition, studies suggest ROSE can ensure the

adequacy of material obtained for ancillary studies and minimize

molecular testing failures (44, 45). However, the lack of trained

personnel, time commitment and other resources associated with

ROSE may act as barriers against its use and thus may not be

available in all hospital settings.
Lung cancer resection

Another instance in which RAB/RATS combination may be

beneficial is in the treatment of ≤2cm lesions, which we expect to see

more of with improved lung cancer screening. With the recent
FIGURE 2

Robotic assisted bronchoscopy is designed to allow endobronchial navigation into the lung periphery while allowing direct visualization of peripheral
airways and maintaining catheter stability and shape to maximize precision during sampling.
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findings from the JCOG 0802 and CALGB 140503 studies, sublobar

resection for stage I lung cancer ≤2cm has become an acceptable

surgery (46, 47). Hence, we may see an increase in the number of

sublobar cases being performed for ≤2cm lesions, further

emphasizing the importance of precision biopsy as well as the

need for reliable localization technique to aid with the surgery.

Segmentectomy can be a more technically demanding operation

compared to lobectomy as it requires familiarity of the segmental

anatomy. Features of the robotic platform may mitigate the

technical demands of more distal dissection that is required in

performing segmentectomy. In conjunction with the improved

diagnostic tool in RAB, we may be able to obtain accurate

diagnosis even in these small lesions, which subsequently could

increase the number of segmentectomies being performed.
Single setting anesthesia event

Pre-operative evaluation

Preoperative evaluation is performed in a standard fashion,

including CT and positron emission tomography (PET). We prefer

a thin slice (1.0mm slices) chest CT imaging for pre-procedural

planning and staging purposes. Pathway to the nodule is planned

based on thin slice chest CT and can be done before the actual

procedure. The patient is consented for both the RAB and RATS (in

case if malignancy is confirmed on examination intraoperatively).

Both procedures will be completed under a single anesthesia

event (5).
Pre-operative selection

Patient selection for the single anesthetic pathway is essential,

and one must consider optimizing operating room block time,

minimizing occult N2 nodal disease rate, and limiting benign

resections. Although no published criteria exist for the single

anesthetic pathway, the following are criteria our program follows:
Fron
• Nodule suspicious for NSCLC and ≤3cm.

• No chest wall or surrounding structure invasion which

would make the lesion ≥T3.

• Clinical stage 1-2 NSCLC.

• No mediastinal adenopathy by CT nor PET criteria.

• Adequate PFTs with good performance status for the

proposed resection.

• Patients who travel from far distance to receive treatment.

• Agreeable and trusting patient.
Team training and preparation

As the single anesthesia RAB/RATS approach requires multi-

disciplinary approach, pre-procedure planning is of paramount
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importance. We have a workflow in which CT scans are

performed per robotic navigational bronchoscopy protocols with

the appropriate slice thickness and amount of overlap. Essential to

this approach is a pathology team, as the cytologist not only has to

make intraoperative judgements on tissue adequacy but also

provide a diagnosis of malignancy or benign. Discussion with the

anesthesia team involves single lumen intubation for RAB portion

and double lumen for RATS. Communication between the

interventional pulmonologist and thoracic surgeon can have

various permutations. The pulmonologist may first perform the

RAB biopsy and EBUS, then the surgeon performs the RATS in the

same room if the set-up allows. Some have done RAB biopsy and

EBUS in a bronchoscopy or endoscopy suite and then move the

patient to the operating room for resection, while most will perform

all stages of the single anesthetic event in the operating room.
Intraoperative methods

We describe our intraoperative RAB/RATS workflow

below (Figure 3).
Part I: RAB

Patient is placed under general anesthesia with muscle paralysis

in the supine position. Patient is then intubated with a single lumen

endotracheal tube (ETT), at least 8.0 in size. We perform a standard

flexible bronchoscopy to ensure the tip of ETT is at least 2-3 cm

from the carina and to clear any secretions.

The robot is docked to an endotracheal tube adapter. The

virtual bronchoscopy is registered to the patient’s airway in real

time by marking the main carina as well as each subsegment of the

upper and lower lobes. After registration, navigation begins using

real-time bronchoscopic view of the patient ’s airways

complemented with a virtual bronchoscopy image, which

navigates the user towards the lesion. When the target lesion is

within 1-3cm from the tip of the catheter, the vision probe is

removed (when using Ion Endoluminal System), and a radial

endobronchial ultrasound (R-EBUS) is utilized to identify and

confirm lesion. If biopsy requires traversing a cartilaginous

bronchial wall, a needle is first used to puncture the wall to create

a path for the R-EBUS probe. Once confirmed, biopsies are taken

under image guidance with tools such flexible needles for fine

needle aspiration (FNA) samples and forceps for frozen section

specimens. Adjunct imaging to help with the biopsy include 2D

fluoroscopy, 3D fluoroscopy, or cone-beam CT scan. Cytology

slides from FNA samples can be read with ROSE. Forcep

specimens can be processed by frozen section for intraoperative

interpretation or by touch-prep and cytologic interpretation.

Once a diagnosis of malignancy is confirmed, the proceduralist

has the option to mark the nodule. Our program uses a mixture of

0.5mL of methylene blue and 0.5mL of ICG. The 1.0mL total

volume includes priming of the needle, and it is not necessary to

clear the needle with air. This prevents spraying of the dye and
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maximizes the concentration of the dye at the site of the lesion.

Utilization of dye marking may help the surgeon when performing

segmentectomies to confirm appropriate anatomic location as well

as ensuring adequate margin (48). Thereafter, the optical probe is

then inserted again through the catheter to confirm adequate

hemostasis. The robotic bronchoscope is then withdrawn and

undocked from the ETT.
Mediastinal staging

Mediastinal staging, if applicable, is then performed, usually

with EBUS. ROSE or intraoperative cytology interpretation then

confirms the absence or presence of metastatic malignant disease. If

the nodule biopsy confirms malignancy and mediastinal staging

examination is negative for N2 metastatic disease, the patient in the

same setting undergoes RATS for surgical treatment of their

lung cancer.
Part II: RATS

Once the RAB portion is done, the single lumen ETT is

exchanged for a double lumen ETT, and the patient is positioned

in the lateral decubitus position in preparation for the surgical

resection with the da Vinci Surgical. The operative lung is isolated,

and the robotic ports are placed. Intraoperatively, the firefly

function can be used to locate the lesion, which has been marked.
Frontiers in Oncology 05
Advantages of a single
anesthesia event

The combination of both the diagnostic biopsy and resection

into a single event offers multiple benefits for patients and surgeons.

The ability to place dye to mark the lesion can certainly make

visualization of the lesion easier in the subsequent resection. This is

particularly important with RATS where the surgeon does not have

the tactile feedback of lesions that would be available in a traditional

video-assisted thoracoscopic surgery (VATS) or thoracotomy that

can help with target lesion localization and instead has to rely solely

on visual cues. Furthermore, for ground-glass predominant lesions,

tumor palpation can still be difficult, and preoperative localization

may help. The dye or fiducial marker from the preceding

bronchoscopy can help the surgeon ensure the specimen contains

both the target lesion and adequate margins. Similarly, the lesion

marking can aid with intra-operative decision making regarding the

extent of the resection.

Beyond the technical advantages of the single-setting

procedures, the decrease in time interval between biopsy proven

diagnosis and resection also has tangible benefits for patients.

Increases in time between initial biopsy and subsequent resection

have been associated with higher rates of pathologic upstaging and

decreased cancer-specific and overall survival (2, 49, 50). Obtaining

tissue diagnosis and subsequent definitive resection immediately

eliminates any delay in treatment. For patients who live remotely

with extensive travel to referral centers with thoracic surgeons or

who have other barriers to accessing care, a single episode of care

with both procedures certainly can ease the burden on these
FIGURE 3

Protocolized flowchart of a single-setting robotic-assisted bronchoscopy and thoracic surgery (created with BioRender.com). RAB, robot-assisted
bronchoscopy; EBUS, endobronchial ultrasound; ROSE, rapid on-site evaluation; ICG, indocyanine green.
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patients. A single anesthesia event can also be safer for patients with

other comorbidities that carry risk with repeated anesthetic

induction. Eliminating the time between biopsy and surgery also

lessens the natural anxiety associated with carrying a new cancer

diagnosis and an impending surgery.
Clinical outcomes

As the combined RAB/RATS in one setting is a new approach,

there is paucity of literature on various clinical and financial

outcomes. Study by Palleiko et al. compared their experience of

36 combined RAB/RATS cohort to 35 who underwent standard

workup and provides insights into some of the important clinical as

well as financial outcomes (51). In their experience, the combined

approach added 73 minutes to lobectomies although when looking

at total operating room time, the combined approach was 54

minutes shorter (459 minutes for combined vs 513 minutes for

standard). Median hospital stay was similar (3 days) as well as

postoperative complication rates between the two groups. In

addition, the combined approach resulted in lower direct and

indirect costs compared to the traditional workup when

comparing the lobectomy cohort. Wong et al. reported their

series of 15 combined RAB/RATS approach. While they do not

compare their cohort to any control, their study provides insight

into time in the OR – median of 284 minutes for RAB plus RATS

and 355 minutes when EBUS was added (52). For long term

oncologic outcomes, we will have to await for future studies to

determine if the combined approach is different from standard.
Conclusion

Lung cancer patients depend on timely diagnosis and treatment.

Beyond poorer oncologic outcomes, heavy emotional tolls,

increased utilization of health care resources, and increased

overall cost of care to patients and the system are all deleterious

outcomes from delays in diagnosis and treatment (53). Timeliness is

a vital part of delivering quality oncologic care, and it has been

named as one of the six dimensions of health care quality by The

Institute of Medicine’s Committee on Quality Health Care in

America (54). Reflecting this for the treatment of lung cancer

specifically, the RAND Corporation (following guidelines by the

British Thoracic Society) targeted timeliness for the care of lung

cancer (55). These recommendations advocate that lung cancer

diagnoses should be established within 2 months after initial

abnormal imaging and treatment offered within 6 weeks after

diagnosis (55). Subsequently, updated guidelines were proposed

in the United Kingdom’s National Optimal Lung Cancer Pathway

which set maximum waiting times of 14 days for diagnosis and 28

days for treatment (56). Jacobsen et al. published a comprehensive

systematic review on timeliness of lung cancer care and reported a

median wait time from PCP referral to specialist consultation of 1 to
Frontiers in Oncology 06
17 days, range median delay from diagnosis to treatment of 6 to 45

days, and estimated 15-63% of patients not receiving treatment

within 31 days of diagnosis (Figure 3) (57). Authors cite within the

constituent studies various barriers to care such as numerous

procedures, necessary repetitive procedures, poor appointment

availability for specialist visits or procedures, and delays due to

physicians not initially suspecting cancer (57). These may reflect

broader issues across the field with fragmentation of care, sub-

specialization, and poor coordination between providers.

Multidisciplinary evaluation and subsequent treatment offer a

potential solution that combines both to timely diagnosis and

optimal treatment (57, 58). This multidisciplinary approach is

reflected by single setting anesthesia events which offer robotic lung

nodule diagnosis with immediate RATS. Similarly to how

multidisciplinary clinics can eliminate gaps between evaluations by

various specialists, a single setting event can eliminate gaps between

tissue diagnosis and necessary resection. The use of robotic assisted

procedures has increased dramatically over the last decade despite

associated costs. Data are continually emerging that robotic assisted

procedures may offer improved lung cancer diagnostic capability and

surgical outcomes relative to traditional guided bronchoscopy and

VATS (24, 29, 30, 59–63). Close coordination of these technologies

offers an integration of the diagnosis, staging, and resection of lung

cancer. Multiple ongoing studies support the decreasing time from

diagnosis to treatment (64, 65). The following are proposed advantages

for the single anesthetic pathway to lung cancer care:
• Shortened timeline from nodule identification to surgery.

• Minimizing anxiety interval between diagnosis

and resection.

• Potential reduction in risks associated with multiple

anesthetic events.

• Enhanced target lesion identification and visualization in

RATS to help with sublobar resections.

• Decreased impact on family resources.

• Earlier return to usual lifestyle.

• Possible decreased cost in lung cancer care without

compromising oncologic standards.
Clinicians should target diagnostic and treatment modalities for

that maximize accuracy and timeliness while minimizing cost and

risk. A multidisciplinary approach in diagnosing and treating

malignancy can help provide this optimal pathway. Single setting

event robotic-assisted lung nodule diagnosis and resection offers a

valuable new tool and strategy in the pursuit of improving the

multidisciplinary treatment of lung cancer.
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