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Introduction: The early identification of brain tumors is essential for optimal

treatment and patient prognosis. Advancements in MRI technology have

markedly enhanced tumor detection yet necessitate accurate classification for

appropriate therapeutic approaches. This underscores the necessity for

sophisticated diagnostic instruments that are precise and comprehensible to

healthcare practitioners.

Methods: Our research presents CNN-TumorNet, a convolutional neural

network for categorizing MRI images into tumor and non-tumor categories.

Although deep learning models exhibit great accuracy, their complexity

frequently restricts clinical application due to inadequate interpretability. To

address this, we employed the LIME technique, augmenting model

transparency and offering explicit insights into its decision-making process.

Results: CNN-TumorNet attained a 99% accuracy rate in differentiating tumors

from non-tumor MRI scans, underscoring its reliability and efficacy as a

diagnostic instrument. Incorporating LIME guarantees that the model’s

judgments are comprehensible, enhancing its clinical adoption.

Discussion: Despite the efficacy of CNN-TumorNet, the overarching challenge

of deep learning interpretability persists. These models may function as ”black

boxes,” complicating doctors’ ability to trust and accept them without

comprehending their rationale. By integrating LIME, CNN-TumorNet achieves

elevated accuracy alongside enhanced transparency, facilitating its application in

clinical environments and improving patient care in neuro-oncology.
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1 Introduction

Brain tumors are abnormal growths within the central nervous

system that can significantly impact neurological function and overall

health. The manifestations of brain tumors might differ markedly

depending on their dimensions, position, and classification (1).

Prevalent symptoms encompass persistent headaches, seizures,

cognitive deficits, visual disturbances, and motor dysfunction. The

intricate and vital processes of the brain render the diagnosis and

treatment of brain tumors a significant issue. Malignant tumors are

notably severe, signifying aggressive and life-threatening illnesses

(2).Advanced imaging techniques, including computed tomography

(CT), magnetic resonance imaging (MRI), and positron emission

tomography (PET), are essential for the diagnosis and visualization

of malignant tumors. MRI is widely recognized as the preferred

modality for brain imaging due to its ability to provide detailed

anatomical images without the risks associated with radiation

exposure. It is particularly effective in identifying gliomas and

accurately assessing their size, location, and relationship with

surrounding tissues. Contrast-enhanced MRI further enhances the

ability to distinguish malignant tumors from normal brain tissue.

Gliomas are among the most common and aggressive forms of brain

cancer, originating from glial cells that support neuronal functions in

the brain and spinal cord (2). These tumors are heterogeneous and

present significant challenges for accurate diagnosis, often requiring

sophisticated classification methods. Traditionally, gliomas are

classified into subgroups, such as astrocytomas, oligodendrogliomas,

and ependymomas, based on the type of glial cells they originate from.

High-grade gliomas, particularly glioblastoma multiforme (GBM), are

characterized by aggressive growth and resistance to treatment,

contributing to a poor prognosis (3). Despite advancements in

treatment, high-grade gliomas remain a leading cause of mortality

among patients with brain tumors (4). Early detection and precise

categorization of gliomas are crucial for guiding treatment decisions

and improving patient outcomes. However, the manual analysis of

MRI images is time-consuming, prone to human error, and relies

heavily on radiologists’ expertise. As a solution, there has been a

growing shift toward automating this process using machine learning

(ML) and deep learning (DL) techniques, which offer promising

avenues for enhanced diagnostic accuracy (5–7).
1.1 Contribution

We introduce CNN-TumorNet, an innovative method for brain

tumor classification utilizing a deep convolutional neural network

(CNN) for the binary classification of MRI data. The model

incorporates several CNN layers, batch normalization, max-

pooling, and dropout techniques to enhance feature extraction.

CNN-TumorNet accurately distinguishes between tumor and non-

tumor brain tissue, achieving a classification accuracy of 99.9%.

Recognizing that DL models are typically regarded as black-box

systems, we enhance the interpretability of our CNN-TumorNet by

incorporating the LIME (local interpretable model-agnostic

explanations) technique. This post-hoc explainability approach
Frontiers in Oncology 02
provides insights into the model’s decision-making procedure,

particularly for malignant glioma classification, enhancing

transparency and building trust in its predictions.
2 Related work

CNNs, in particular, have demonstrated remarkable efficacy in

automatically detecting and classifying gliomas from MRI images.

By training on large datasets of labeled MRI images, CNNs can

identify subtle patterns and characteristics that distinguish gliomas

from other brain tumors (8). Furthermore, CNNs can be fine-tuned

to classify glioma subtypes based on distinct imaging features.

Alternative machine learning approaches, such as Support Vector

Machines (SVM), Random Forest (RF), and deep reinforcement

learning (RL), have also been explored to improve glioma diagnosis

and classification (9). Accurate tumor classification enhances

diagnostic confidence, reduces patient anxiety, and aids in the

selection of appropriate treatment plans (10). In addition, recent

developments in Explainable Artificial Intelligence (XAI) aim to

increase the transparency of these models, addressing concerns

about their ‘black-box’ nature and making them more interpretable

for clinical use (11).This work proposes a novel glioma classification

model that integrates a sophisticated CNN architecture with XAI

techniques to improve performance and interpretability. The

model’s workflow, as illustrated in Figure 1, begins with the

preprocessing of MRI images, ensuring that the data is adequately

prepared for analysis. Next, the CNN-TumorNet classification

network is trained and validated to distinguish between benign

and malignant tumors. After classification, the LIME method is

applied to elucidate the model’s decision-making process,

enhancing the understanding of how it arrives at its predictions.

This article is structured into six sections for clarity and

comprehensive discussion: Section 1 presents the context and

emphasizes the key contributions of this work. Section 2

delineates the approach, encompassing specifics regarding the

dataset and the techniques for its preparation. Section 3 provides

a comprehensive network architecture analysis, facilitating readers’

comprehension of the technological background. Section 4

addresses the explainabi l i ty process , e lucidat ing the

interpretability of the model’s decisions. Section 5 delineates the

conclusions derived from the study, while Section 6 encapsulates

the principal findings and examines prospective avenues for further

research. Tariq et al. (12) propose a lightweight human activity

recognition method for video surveillance called SDIGRU, which

integrates spatial and deep features extracted via MobileNetV2 to

improve accuracy. The method uses a multilayer GRU to capture

temporal dynamics in video frames while maintaining low

computational complexity and fast response times. Experiments

on benchmark datasets (HMDB51, YouTube11, UCF101) show that

SDIGRU outperforms state-of-the-art techniques with superior

recognition performance and efficiency. Tariq et al. (13) propose

a human activity recognition method using CNN for feature

extraction and Bi-GRU to capture temporal dynamics in video

frames. By selecting key features, they reduce complexity and
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improve performance. Experiments on YouTube11, HMDB51, and

UCF101 datasets show their method’s effectiveness compared to

existing techniques. Yawar Abbas et al. (14) introduce the ECMT

framework, combining memory analysis with ensemble machine

learning to detect IoT malware. By integrating models like

AdaBoost, ECMT achieves 96% accuracy in identifying malware

families, such as ransomware and trojans. The framework is

scalable, adaptable, and addresses concept drift, offering a robust

solution for IoT cybersecurity. Asif Rehman et al. (15) developed a

machine learning-based Intrusion Detection System (IDS) for

identifying attacks and anomalies in Smart Home IoT

environments. Using data from 41 IoT devices and 13 network

traffic features, they preprocessed and stratified the dataset to build

predictive models. They introduced a new Logit-Boosted algorithm,

the Logi-CatBoost Classifier (Logi-CBC), which achieved the

highest precision among similar algorithms with an accuracy of
Frontiers in Oncology 03
88.70%. Their research highlights the effectiveness of Logi-CBC in

classifying IoT device traffic and detecting abnormalities.
3 Methodology

3.1 Dataset description

The brain tumor MRI dataset utilized in our research includes

7,023 MRI images, rigorously separated into 4 specific categories

such as glioma (300 MRIs), meningioma (306 MRIs), pituitary

tumor (300 MRIs), and no tumor (405MRIs) (16). These images are

freely accessible in jpeg format, making them very suitable for ML

applications, especially those focused on binary or multiclass

classification jobs (see Figure 2). For our study, we emphasize the

glioma and no tumor categories, reducing the dataset to meet our
FIGURE 2

A few MRI images showing both benign and malignant cases.
FIGURE 1

Workflow of the proposed method.
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specific goal of binary classification. This approach enables us to

effectively organize the dataset for our experimental objectives while

maintaining a balanced representation of the two classes.

Furthermore, we annotated the dataset to ensure consistency and

accuracy. This stage confirms that the labels and data arrangement

are wholly aligned with our study’s specific needs, increasing the

reliability of the experimental results. The dataset does not provide

details on the diversity of patient demographics, such as age, gender,

and ethnicity. The class distribution in the dataset is as follows:

25.5% pituitary adenoma, 23.1% glioma, 23.4% meningioma, and

27.9% no tumor. This distribution suggests potential class

imbalances that could introduce bias, affecting the model’s

performance across different categories. Bibi et al. (17), used data

augmentation to generalize the dataset.
3.2 Preprocessing

Preprocessing is crucial for the efficacy of machine learning

models, particularly in the analysis of medical images (18). This

phase entails standardizing input data to improve computational

efficiency, enhance model accuracy, and facilitate interpretability.

Below, we analyze how each preprocessing technique contributes to

these objectives in the context of glioma identification

and classification.

Downsizing Images: All MRI images, including those of gliomas

and non-tumorous tissues, were resized to uniform dimensions to

ensure compatibility with the neural network input requirements.

This step reduces computational overhead and prevents

inconsistencies caused by varying image resolutions, leading to

improved convergence during training and better generalization.

Non-Local Means Denoising: The Non-Local Means Denoising

technique was implemented to reduce noise while preserving

essential image details, such as the intricate structures visible in

MRI scans. This method enhances the signal-to-noise ratio,

ensuring that the model focuses on diagnostically significant

features rather than noise artifacts, thereby improving the

accuracy and the interpretability of feature extraction by the model.

Contrast Limited Adaptive Histogram Equalization (CLAHE):

CLAHE was employed to enhance image contrast, particularly in

underexposed regions. This technique improves the visibility of subtle

details in dimly illuminated areas of MRI images, which is critical for
Frontiers in Oncology 04
detecting fine tumor boundaries and textures. By amplifying these

critical details without over-enhancing noise, CLAHE directly

contributes to more accurate tumor segmentation and classification

while aiding clinicians in interpreting the results.

Min-Max Normalization: Normalizing pixel intensities to a

range of [0, 1] ensures a consistent input scale for all images,

facilitating stable training and faster model convergence. This

normalization prevents biases in the model caused by varying

intensity ranges, thereby improving accuracy and ensuring that

the learned features are meaningful and comparable across

the dataset.

Anisotropic Diffusion Filtering: Anisotropic diffusion filtering

was applied to enhance regions of uniform intensity while

preserving edges and intricate patterns. This technique reduces

redundant information, sharpens critical features such as tumor

boundaries, and highlights diagnostically significant regions. These

enhancements lead to better feature extraction by the model,

ultimately improving classification performance and making

model outputs more interpretable by emphasizing relevant

structures. These preprocessing methods optimize the dataset and

significantly enhance the model’s ability to identify and classify

gliomas accurately. Furthermore, these techniques improve

interpretability by ensuring that the features learned by the model

align with clinically meaningful patterns in the MRI data.
4 Network architecture

In this study, we propose a unique CNN architecture as shown

in Figure 3 and described in Algorithm 1, for binary classification of

brain MRI images, distinguishing between two categories: glioma

(tumor) and no tumor. The network receives an image X ∈
RH×W×C, where H and W represent the image’s height and width

and C represents the number of channels (in our example, C = 3).

The initial layer of the network uses a 2D convolution operation

with 32 filters of size 3 × 3 to the input image X, succeeded by a

ReLU activation function:

X1 = ReLU o
32

i=1
(X * Wi + bi)

 !

Where X ∈ RH×W×C is the input MRI, with height H, width W,

and C channels.Wi ∈ R3×3×C are the filter weights for each of the 32
FIGURE 3

Proposed network.
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filters (kernel size 3×3, applied across all channels C). bi ∈ R are the

bias terms associated with each filter. The operation ∗ represents the
2D convolution between the input image and the filter Wi. The

activation function ReLU is applied element-wise after the

convolution operation, i.e., ReLU(x) = max(0,x). We use ‘same’

padding, meaning the resulting dimensions remain identical to the

input. The output X1 is then passed through a batch normalization

layer to stabilize the training process:

X2 = BatchNorm(X1) :

Subsequently, max pooling with a 2 × 2 filter size decreases the

spatial dimensions:

X3 = MaxPool2D(X2, (2, 2)) :

A dropout rate of 0.25 is used for regularization:

X4 = Dropout(X3, 0:25) :

The second convolutional block adopts a similar structure,

utilizing 64 filters of size 3� 3:

X5 = ReLU o
64

i=1
(X4*Wi + bi)

 !
Fron
1 X ∈ RH×W×C (Input image), Y (Output prediction)

2 Let Fl = [F1,F2,…,FN] be the filter sizes for each

convolutional block

3 Let Pl = [P1,P2,…,PN] be the pool sizes for each MaxPool

layer

4 Let Dl = [D1,D2,…,DN] be the dropout rates for each block

5 Let FFC be the number of units in the fully connected

layer

6 Initial Input Image: X0 = X

7 Iterating through convolutional blocks:

8 i = 1 to N

9 Xi = ReLU oFl(i)
j=1 (X0i − 1 * Wj + bj)

� �

10 Batch Normalization:

11 Xi = Xi−mi
si+e

· gi + bi

12 MaxPooling with pool size Pl(i):

13 Xi = MaxPool(Xi,Pl(i))

14 Dropout with rate Dl(i):
tiers in Oncology 05
15 Xi = Dropout(Xi,Dl(i))

16 Flatten the output from the last convolutional block:

17 XN+1 = Flatten(XN)

18 Fully connected layer:

19 XN+2 = ReLU(WFC · XN+1 + bFC)

20 Dropout after FC layer:

21 XN+3 = Dropout(XN+2,0.5)

22 Output layer with sigmoid activation:

23 Y = s(Wout · XN+3 + bout)

24 Output prediction:

25 Return: Y
Algorithm 1. CNN TumorNet.

Where, X4 ∈ RH
4
×W

4
×C

4 is the input to this layer, with

dimensions H4, W4, and C4 (the output of the previous layer). Wi

∈ R3×3×C
4 are the filter weights for each of the 64 filters (kernel size

3 × 3, applied across C4 channels). bi ∈ R are the bias terms

associated with each filter. The operation ∗ refers to the 2D

convolution between the input X4 and the filter Wi. The

activation function ReLU is applied element-wise following the

convolution procedure, i.e., ReLU(x) = max(0,x).

X6 = BatchNorm(X5)

Where batch normalization is applied element-wise to

normalize the activations of X5, which helps in accelerating

training and stabilizing the learning process. Next, max pooling

with a filter size of 2 × 2 is applied to decrease spatial dimensions:

X7 = MaxPool2D(X6, (2, 2))

The max pooling operation captures the maximum value in

each 2 × 2 window, effectively reducing the spatial size of the feature

map. Finally, dropout with a rate of 0.25 is used to regularize the

model and reduce overfitting:

X8 = Dropout(X7, 0:25)

Where dropout randomly sets 25% of the activations to zero

during training, preventing the network from relying too heavily

on any one neuron. Similarly, we added two additional

convolutional layers, followed by batch normalization (BN),

max pooling, and dropout layers, using 128 and 256 filters,

respectively.

X9 = ReLU o
128

i=1
(X8 * Wi + bi)

 !
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Where, X8 ∈ RH
8
×W

8
×C

8 is the input to this layer, with

dimensions H8, W8, and C8 (the output of the previous layer). Wi

∈R3×3×C
8 are the filter weights for each of the 128 filters (kernel size

3 × 3, applied across C8 channels).

X10 = ReLU o
256

i=1
(X9*Wi + bi)

 !

Where, X9 ∈ RH
9
×W

9
×C

9 is the input to this layer, with

dimensions H9, W9, and C9. Wi ∈ R3×3×C
9 are the filter weights for

each of the 256 filters (kernel size 3 × 3, applied across C9 channels).

Following the convolutional and pooling layers, the feature map

is reshaped into a 1D vector:

X11 = Flatten(X10) :

This flattened vector X11 ∈ RN, where N is the number of

features, is then passed to a fully connected (dense) layer with 512

neurons and ReLU activation:

X12 = Dense(X11, 512, activation = ReLU) :

A dropout layer with a 0.25 rate is introduced to help mitigate

overfitting

X13 = Dropout(X12, 0:25) :

Lastly, the resultant layer consists of a single neuron with a

sigmoid activation function, which produces a probability y ∈ [0,1]

Indicating the probability that the input MRI image is classified as

belonging to the glioma (tumor) class:

y = Dense(X13, 1, activation = sigmoid) :

The classification decision is determined by the value of y: if y

≥ 0.5, the model forecasts the image contains a glioma (tumor), and

if y< 0.5, the image is classified as “no tumor.”

This technique adeptly extracts hierarchical features from

input MRI images, systematically diminishing spatial dimensions

while encapsulating progressively intricate information. The model

guarantees strong performance on novel data by using dropout and

batch normalization approaches, effectively mitigating overfitting.

The model’s last component, a sigmoid output layer, yields a

probability interpreted as the classification outcome for each

image. The precise configurations employed in the network,

including learning rate, layer count, and dropout rates, are

outlined in Table 1, highlighting the network’s optimized

hyperparameters for enhanced performance. In our study, we

selected a dropout rate of 0.25 based on empirical results from

initial experimentation. We tested several dropout rates ranging

from 0.1 to 0.5 and found that 0.25 provided the best balance

between reducing overfitting and maintaining model accuracy.

Lower rates did not effectively reduce overfitting, while higher

rates led to underfitting. We chose this rate after evaluating model

performance on the training and validation sets and observed that

this rate helped the model generalize better without compromising

its ability to learn the data effectively.
Frontiers in Oncology 06
5 Explainability

Explainable Artificial Intelligence (XAI) techniques elucidate

the rationale behind profound learning model predictions, offering

clinicians insights into the foundational logic of a model’s

conclusions (19). This is particularly critical in medical

environments where the consequences of misdiagnosis are

significant, potentially resulting in grave results (20).

Incorporating explainability enables AI models to uncover and

mitigate biases more effectively, ensuring their adaptability across

diverse patient demographics and clinical environments (21). XAI

is essential for model validation and regulatory approval, enabling

healthcare professionals and regulatory bodies to scrutinize AI

decision-making processes, thereby ensuring compliance with

ethical and legal standards in clinical applications (7). The

advantages of XAI in glioma identification are numerous,

encompassing greater diagnostic precision, heightened clinician

confidence, and better patient outcomes. XAI improves AI

systems by fostering transparency in decision-making and

enabling more effective integration of sophisticated computational

techniques into clinical practices (22). The integration of deep

learning (DL) with explainable AI presents considerable potential

for enhancing the detection and treatment of gliomas (23), hence

increasing survival rates and improving the quality of life for people

afflicted by this severe ailment.

LIME (Local Interpretable Model-Agnostic Explanations) is a

method in explainable artificial intelligence (XAI) that elucidates

individual predictions of any machine learning model by locally

approximating its behavior using a more straightforward, more

interpretable approach (11). Our research employs LIME to

examine the predictions generated by the CNN-TumorNet model,

which is intended for brain tumor classification. LIME functions by

altering the input data and generating synthetic samples to analyze

the impact of modifications on the model’s predictions. This method

is crucial for determining the essential characteristics that affect a
TABLE 1 CNN model hyperparameters.

Hyperparameter Value

Input Shape (300,300,3)

Filters 32, 64, 128, 256

Kernel Size (3, 3)

Activation ReLU (for Conv2D and Dense layers)

Padding Same

MaxPooling2D Pool Size (2, 2)

Dropout Rates 0.25 (Conv2D layers), 0.5 (Dense layer)

Dense Layer Units 512

Output Layer Units 1

Output Layer Activation Sigmoid
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specific prediction. Our methodology integrates LIME with

superpixel segmentation to improve the clarity and depth of the

explanations offered. This integration facilitates a more nuanced and

thorough comprehension of the elements influencing the model’s

judgments. Figure 4 presents the original MRI image in conjunction

with its LIME interpretation, visually depicting the interpretative

process and emphasizing the critical regions that influence the

model’s classification results.

Superpixel segmentation is a method employed to partition

brain images into smaller, coherent units termed superpixels, which

encapsulate specific features and enhance detailed image

processing. In malignant brain imaging, superpixels facilitate the

interpretation of model predictions by emphasizing critical regions

typically linked to malignancies or certain glioma traits. Our work

identifies three superpixels crucial to the algorithm’s decision-

making process for identifying each cancerous image. This

identification facilitates a focused analysis of the most critical

areas. Integrating the LIME framework enables a precise and

localized comprehension of the model’s decision-making by

separating specific superpixels. LIME concentrates on aspects the

model identifies as significant, such as atypical tissue patterns or

tumor margins, offering enhanced clarity regarding the prediction

mechanism. This method dramatically improves the system’s

transparency and reliability. Emphasizing the most critical

superpixels synchronizes the model’s predictions with medical

knowledge, identifies areas for enhancement, and guarantees the

results are physiologically pertinent. This approach verifies the

predictions, facilitates debugging, and enhances the model’s

performance. Ultimately, it enhances openness, fosters clinical

integration, and bolsters trust in the system’s efficacy in medical

diagnostics. While LIME enhances the transparency of our CNN-

TumorNet model by highlighting three critical superpixels in

glioma MRI images, it has some limitations. LIME uses simpler

models like linear regression to explain predictions, which may

oversimplify the complex patterns learned by the DL model.

Additionally, the perturbations LIME generates to analyze

predictions might not always reflect realistic tumor variations,

which can lead to less accurate explanations. Focusing only on

three superpixels provides localized insights but may miss critical

contexts, such as the relationship between the tumor and

surrounding regions. Lastly, the identified superpixels might not

align perfectly with clinically relevant boundaries based on the

model’s learned features rather than anatomical accuracy. These
Frontiers in Oncology 07
limitations highlight areas for improvement in creating more

reliable and clinically meaningful explanations.
6 Results

Initially, the images were of different sizes, so we changed their

size to 300x300x3 for consistency. We created data generators for

both the training and validation. Furthermore, for data

augmentation, we use various methods, such as rotations, shearing,

zooming, shifting, flips, and rescaling, to standardize the images in

the training set. These augmentations boost model generalization by

exposing it to more varied data. Only rescaling was used on the

validation set to preserve data integrity and ensure fair evaluation.

The MRI images, such as normal and abnormal, were kept in one

directory and divided into training and validation sets. The dataset

was divided in an 80-20 ratio, with 80% utilized for training and 20%

for validation. This division confirms that the model meets a diverse

range of images during training, whereas the validation set offers an

unbiased assessment of the model’s performance. The 80-20 split

reduces overfitting by enabling the model to correctly generalize to

previously unknown data during the validation phase. Figure 5 shows

that the model was trained for 60 epochs with the Adam optimizer

and a learning rate 0.0001. The binary cross-entropy loss function

was chosen as it is suitable for binary classification tasks. We

employed an NVIDIA A100 Tensor Core GPU with 80 GB of
FIGURE 4

Original image and its corresponding predicted image with LIME highlighting key regions influencing the model’s decision.
FIGURE 5

Learning rate progression over epochs during model training.
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memory to perform the brain tumor classification experiment. The

experiment was implemented using TensorFlow 2.9.1 as the primary

deep learning framework. Additional preprocessing and data

handling were done using NumPy, Pandas, and SimpleITK

libraries, ensuring efficient data preparation and model training.

We addressed the class imbalance in the dataset through data

augmentation, significantly improving our model’s performance.

Techniques such as random rotations, elastic deformations,

intensity shifts, and cropping were applied to increase the diversity

of tumor classes. These augmentations reduced the model’s bias

toward dominant courses, leading to a better balance in learning.

Next, we load and preprocess the MRI images to ensure they

meet the specifications of the CNNTumorNet model. The proposed

model achieved outstanding results in the validation phase, as

shown in Figure 6.
6.1 State-of-the-art

Deep learning models have demonstrated exceptional efficacy in

brain tumor detection, attaining accuracies beyond 90% through

using CNNs, ensemble approaches, and sophisticated optimization

techniques, including SVM and genetic algorithms (GA). These

findings underscore the possibility of markedly improving

diagnostic precision in medical imaging (24) utilized CNN and

VGG-16 architectures to classify brain malignancies from MRI

images, implementing transfer learning and feature extraction for

binary classification (tumor versus no tumor). Their methodology

exceeded conventional manual detection techniques employed by

clinical experts, with a remarkable 90% accuracy on the test set and

86% on the validation set. Rajinikanth et al. (2021) created a

computer-aided disease diagnostic (CADD) system for the

detection of brain cancers from MRI images. This system

employed CNN-based segmentation and classification, integrating

feature extraction and selection in its binary classification

procedure. The researchers achieved over 98% accuracy in tumor
Frontiers in Oncology 08
identification via SVM-Cubic and 10-fold cross-validation,

surpassing prior methodologies. Furthermore, a study conducted

by (25) presented a strategy for identifying brain cancers in MRI

images that enhanced current saliency segmentation and feature

selection methodologies. This approach encompassed tumor

preprocessing, improved thresholding for segmentation, and SVM

classification. A genetic algorithm (GA) was employed to optimize

attribute selection, improving the process and augmenting

diagnostic performance. These examples highlight the formidable

possibilities of DL technology in the accurate and efficient diagnosis

of brain cancers. After evaluation, authors obtained over 90%

accuracy (26). enhances brain tumor classification by utilizing a

stacked ensemble DL framework, incorporating VGG19, Inception

v3, and ResNet 10. The model obtained 96.6% accuracy in binary

classification (normal vs. aberrant brains) on a Kaggle dataset. It

finds that the ensemble method outperforms individual models in

tumor prediction (27). proposes a brain tumor classification

approach that uses CLBP and CNN to achieve 95.6% accuracy on

MRI images. It integrates texture feature extraction and CNN

classification to boost diagnostic accuracy. Table 2 compares the

proposed network to existing approaches, and a visual depiction is

provided in Figure 7.
FIGURE 6

Precision and recall curves for training and validation across epochs.
TABLE 2 Comparison of different methods for brain tumor classification.

Author Method Dataset Accuracy

(24) CNN and VGG-16 ImageNet Datadase 90%

(28) SVM-Cubic GBM/LGG 98%

(25) SVM Clinical/Harward dataset 90%

(26) Stacked Ensemble Kaggle MRI dataset 96.6%

(27) CNN MRI dataset 95.6%

Ours CNN-TumorNet Kaggle MRI dataset 99%
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7 Conclusion and future scope

This paper presents CNN-TumorNet, a sophisticated and

resilient approach for categorizing brain tumors in MRI images,

differentiating between tumor and non-tumor conditions. Our

model exhibited remarkable performance on the Kaggle MRI

dataset, indicating a substantial accuracy level and highlighting its

potential for early tumor detection in medical imaging. Our

research primarily addresses the interpretability difficulties

frequently encountered with DL models. Although deep neural

networks excel in numerous domains, their black-box nature poses

a significant obstacle in key areas like healthcare, where

comprehending the decision-making process is vital. To address

this, we incorporated the LIME technique into our framework.

LIME improves our model’s transparency by clarifying the specific

regions of MRI images, which significantly impacts the

categorization decisions for malignant gliomas. This enhanced

interpretability augments the reliability and credibility of CNN-

TumorNet’s predictions and strengthens its adoption within the

healthcare sector. Moreover, using explainability tools such as

LIME enhances user confidence in our AI system, rendering it a

more ethical and pragmatic choice for real-world medical

applications. Looking ahead, this study lays the foundation for

advancing AI-driven medical image processing, with significant

implications for future research and healthcare applications,

particularly in neurology. Refining explainability techniques

remains a key area for development, as it could provide deeper

insights into model decision-making and foster trust among

clinicians. Expanding the model to categorize a broader range of

brain tumor types and neurological conditions could significantly

enhance its utility in clinical practice. Additionally, improving the
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model’s computational efficiency and robustness would facilitate its

integration into automated image processing pipelines, enabling

real-time applications in diverse healthcare environments. These

advancements can potentially revolutionize brain disorders’

detection, diagnosis, and treatment, driving innovation in AI’s

role within neurology and beyond.
8 Limitations of the current study

The CNN-TumorNet model demonstrates remarkable

accuracy in brain tumor segmentation from MRI images and

utilizes the LIME technique to improve interpretability,

guaranteeing that model predictions are comprehensible and

transparent . This methodology val idates the model ’s

applicability in clinical environments; nevertheless, additional

verification with a broader range of clinical datasets would

enhance its reliability and efficacy across various imaging

protocols and institutional procedures. Moreover, although

LIME is crucial for elucidating the model’s decision-making for

specific instances, broadening the interpretability to yield more

extens ive , g loba l ins ights could enhance c l in ic ians ’

comprehension of the model’s predictions across diverse brain

tumor types and patient conditions. Improving these facets of the

model should enable more seamless integration into various

clinical workflows, ensuring it adjusts effectively to differing

condi t ions wi thout incurr ing substant ia l comput ing

requirements. This comprehensive strategy would facilitate the

model’s preparedness for widespread implementation and

practical application across various medical environments.
FIGURE 7

Comparison of CNN-TumorNet with other methods.
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