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Sichuan, China
Gastric cancer (GC) is an exceedingly aggressive disease and ranks as the third

leading cause of cancer-related deaths, which poses a huge health burden

globally. Chemotherapy is commonly employed during the middle to

advanced stages of cancer, although it faces frequent treatment failures

attributed to drug resistance. Thus, it is imperative for researchers to identify

potential targets for overcoming therapeutic resistance, thereby facilitating the

development of novel anti-cancer agents for GC patients with advanced stages.

Long noncoding RNAs (lncRNAs) are a diverse group of transcripts with limited

protein-coding capacity, which have been recognized for functional molecules

for regulating cancer progression including cell proliferation, metastasis, and

drug resistance in GC. In this review, we examine the intricate molecular

networks on the role of lncRNAs in drug resistance of GC. LncRNAs conferred

cancer cell resistance to anti-cancer drug through various molecular

mechanisms, therefore functioning as promising therapeutic targets for GC

patients. Additionally, we discuss current advancements of strategies targeting

lncRNAs in cancer therapy, which may pave the way for lncRNA-mediated

precision medicine for this malignant disease.
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1 Introduction

Gastric cancer (GC) remains the second most prevalent types of gastrointestinal cancers

and ranks the fifth of cancer-related deaths globally in 2022, which significantly contributes to

estimated 6.8% of the overall cancer mortality rate (1). Risk factors of gastric cancer include

infection with Helicobacter pylori, advancing age, unhealthy lifestyle and diets (2). Nowadays,

the disease diagnosis is made histologically following an endoscopic biopsy, and staging is

performed using imaging examinations such as laparoscopy, CT scans, and endoscopic

ultrasound (3). It exhibits significant molecular and phenotypic heterogeneity, which poses

challenges for disease diagnosis and treatment (2). Currently, the primary treatment for early-

stage GC is implicated in the surgical resection (4). But due to concealed symptoms in the

tumorigenesis, most patients are diagnosed at advanced stages with distant metastasis, who

are no longer a suitable candidate for surgical treatment (5). Therefore, chemotherapy,
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radiotherapy, molecular targeted therapy, immunotherapy or a

combination of these methods function as feasible options for

advanced GC patients with distant metastasis (5). Although tumors

enter remission rapidly under standard therapy, they develop

resistance, ultimately leading to treatment failure and disease

relapse (6). Therefore, it is essential for researchers to identify

potential targets for overcoming therapeutic resistance and pave the

way for the developing novel anti-cancer agents in advanced GC.

Long noncoding RNAs (lncRNAs) are a diverse group of

transcripts with limited protein-coding ability that exceed 200

nucleotides in length (7). Initially, lncRNAs were considered as

“noise” produced during the RNA transcription process due to the

lack of protein-coding capability (8). However, with ongoing

research, lncRNAs have been found to possess limited

protein-coding potential and play significant roles in various

pathophysiological processes through complex molecular

mechanisms (9–11). Dysregulated lncRNAs function as

oncogenes or tumor suppressors that regulate cell proliferation,

invasion, migration, metabolic reprogramming, and therapeutic

resistance across multiple types of human cancers (12–15).

LncRNAs are essential for gene regulation, participating in the

regulation of genetic activation and silencing, epigenetic

modifications and post-translational regulation, thus impacting

tumor progression (15, 16). In the context of GC, abnormal

lncRNA expression is closely associated with tumor progression,

and therapeutic resistance, thus targeting lncRNAs hold great

potential for GC treatment (17–19). However, the detailed

molecular mechanisms await further investigations.

In this review, we elaborate the underlying mechanisms

involved in the role of lncRNAs in GC progression. Specifically,

we depict the intricate mechanistic network of lncRNAs in drug re

istance, which indicting that lncRNAs are promising therapeutic

targets for GC therapy. Furthermore, we discuss the emerging

therapeutic strategies that targeting lncRNAs in cancer therapy,

aiming to offer a thorough and structured resource for researchers

focusing on lncRNA-based therapeutic therapies.
2 Overview of lncRNAs

Since the initial identification of lncRNAs through high-

throughput sequencing technologies, their extensive potential to

modulate the gene expression, transcription, and protein translation

has become increasingly evident (20). LncRNAs are synthesized by

the activity of RNA polymerase II and display features commonly

attributed to protein-coding messenger RNAs (mRNAs), including

the presence of a poly-A+ tail and a 5' cap (21). LncRNAs can be

classified as intronic, intergenic, sense, antisense, or bidirectional

RNAs based on their genomic location, function, and structure (22).

This diverse range of genomic locations plays a crucial role in the

functional variety and regulatory functions of lncRNAs, which

could be present in both the cytoplasm and the nucleus, enabling

them to exert their influence and fulfill their functions effectively

(23). LncRNAs can also be classified according to their mechanistic

modes as signals, decoys, guides, and scaffolds (24). As signals, these
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RNAs interact with transcription factors in a spatiotemporal

manner to regulate gene expression (25). In their decoy role,

lncRNAs bind to transcription factors and other proteins,

effectively sequestering them from chromatin or directing them

into nuclear subdomains (26). Additionally, lncRNAs function as

guides by associating with RNA-binding proteins (RBPs) to

facilitate their binding to target genes (26). Finally, lncRNAs serve

as flexible scaffolds that can accommodate various macromolecules,

enable complex formation, and carry out a range of biological

functions (27). LncRNAs regulate post-transcriptional gene

expression levels in the cytoplasm by stabilizing mRNAs,

promoting or inhibiting the translation of target mRNAs through

acting as precursors to mRNAs or functioning as competing

endogenous RNAs (ceRNAs) by sponging specific target

microRNAs (miRNAs) and facilitating mRNA decay (28). In

addition, lncRNAs are involved in alternative splicing, the

formation of subcellular compartments, and the epigenetic

regulation of specific genes (29). Moreover, lncRNAs are found to

participate in regulating numerous signaling pathways and

targeting multiple downstream target genes (7, 30) (Figure 1).
3 Molecular mechanisms of lncRNAs-
mediated drug resistance in GC

3.1 LncRNAs regulate drug resistance by
regulating cell apoptosis

Numerous anticancer agents have been identified to trigger

apoptosis and engage apoptosis-related signaling pathways (31).

Nevertheless, the dysregulation of apoptotic processes frequently

contributes to the development of drug resistance and the failure of

treatment (31). The regulation of the mitochondrial apoptosis

pathway relies on a delicate balance between pro-apoptotic and

anti-apoptotic proteins. Disruption of this balance can lead to drug

resistance in GC (32, 33). LncRNA plasmacytoma variant

translocation 1 (PVT1) induced the expression of anti-apoptotic

protein Bcl-2, thus inhibiting cell apoptosis and thereby enhancing

the resistance of GC cells to 5-fluorouracil (5-FU) (34). Fang et al.

discovered that lncRNA UCA1 sponged miR-27b to promote

adriamycin and cisplatin resistance by increase Bcl-2 expression

and decreased expression of caspase-3 (35). Small nucleolar RNA

host gene (SNHG) encoded a snoRNA and generated a lncRNA,

which can regulate gene expression (36). For example, SNHG5

downregulated Bax and upregulated Bcl-2, thereby inhibiting

apoptosis and facilitating cisplatin resistance (36).

Caspase family plays an essential role in cell apoptosis and drug

resistance. For example, apoptotic protease-activating factor 1

(APAF1)-binding lncRNA (ABL) significantly interacted with the

insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1),

which facilitated the recognition of m6A modifications on ABL,

promoting its stability. Additionally, ABL bound to APAF1,

consequently blocking apoptosome formation and decreasing the

expression caspases-9 and -3. These changes led to multidrug

resistance (MDR) in GC (33). Furthermore, RP11-874J12.4
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functioned as a molecular sponge for miR-397, which further

enhanced the expression of signal sequence receptor subunit 2

(SSR2) that upregulated Bcl-2 expression and downregulated

expression of cleaved caspase-3, caspase-9, and Bax, leading to

resistance to chemotherapeutic drugs in GC (37). LncRNA

FAM84B antisense RNA (FAM84B-AS) augmented cisplatin

resistance by suppressing apoptosis via enhancing the expression

of BCL-2 and BCL-xL and downregulating the expression of

caspase-3, -7, and -9 (38) (Figure 2).
3.2 LncRNAs induce drug resistance by
inducing EMT

Epithelial-mesenchymal transition (EMT) refers to a biological

process whereby epithelial cells undergo a phenotypic transformation

to acquire mesenchymal characteristics (39, 40). In the context of

cancer, EMT is linked to critical metastatic processes such as tumor

metastasis and therapeutic resistance (41, 42). Emerging evidence has

revealed that lncRNAs regulate GC drug resistance through EMT

pathway (43, 44). LncRNAs play a crucial role in mediating EMT-

associated drug resistance by modulating EMT markers and

transcription factors. LncRNA HOTAIR directly sponged miR-17-

5p, leading to downregulation of E-cadherin and upregulation of N-
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cadherin and Vimentin, thus facilitating both EMT and resistance to

multiple drugs including: cisplatin, doxorubicin and 5-FU (45).

LncRNA HNF1A-AS1 was reported to be highly expressed in GC

tissues, which facilitated cell resistance to 5-FU by promoting miR-

30b-5p/EIF5A2 axis-mediated EMT (43). Yang et al. revealed that

cancer-associated fibroblast (CAF)-derived midkine (MK)

significantly upregulated lncRNA ST7-AS1 in the context of GC,

which involved in the cisplatin resistance. Knockdown of ST7-AS1

reversed cisplatin resistance via inhibiting phosphoinositide 3-kinase

(PI3K)/AKT pathway and suppressing EMT (44). In line with this,

LncRNA XLOC_006753 was found to be upregulated in MDR GC

cell lines. The knockdown of XLOC_006753 resulted in decreased

levels of Snail, b-catenin, and Vimentin, which ultimately reversed

the EMT and enhanced the sensitivity of gastric cancer cells to

cisplatin and 5-FU by inactivating PI3K/AKT pathway (46).
3.3 LncRNAs induce drug resistance by
reprogramming metabolism in GC

Cancer cells undergo metabolic reprogramming to support

their survival and cancer progression. This involves heightened

glycolytic dependency characterized by increased glucose uptake

and fermentation to lactate, satisfying their anabolic requirements
FIGURE 1

Molecular mechanisms of lncRNAs.
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FIGURE 2

The role of lncRNAs in the drug resistance of gastric cancer. (A) LncRNAs promote drug resistance by regulating cell apoptosis; (
drug resistance by metabolic reprogramming; (D) LncRNAs promote drug resistance by promoting cell autophagy; (E) LncRNAs p
resistance by promoting cancer stemness; (G) Exosomal lncRNAs promote drug resistance.
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for proliferation (47). This phenomenon, known as the Warburg

effect, has been reported to induce drug resistance in cancers (48).

In the context of GC, emerging evidence has revealed that

dysregulated lncRNAs might contribute to drug resistance via

regulating glycolysis. Research performed by Xu and colleagues

has demonstrated that lncRNA SNHG1 sponged miR-216b-5p and

enhanced expression levels of hexokinase 2 (HK2), which functions

as a critical enzyme in glycolysis. These changes conferred GC cell

resistance to paclitaxel, which provided novel targets for treating

chemoresistant patients (49). Furthermore, lncRNA SNHG16 and

polypyrimidine Tract Binding Protein 1 (PTBP1) were upregulated

in GC cell lines. Mechanistic studies revealed that SNHG16 severed

as a ceRNA for miR-506-3p to target PTBP1, which resulting in

enhanced mRNA stability of multiple glycolysis enzymes including

Glucose Transporter Type 1 (GLUT1), HK2, and lactate

dehydrogenase A (LDHA), thus promoted 5-FU resistance, which

could be reversed by silencing SNHG16 in vivo (50). Bioinformatics

analysis revealed that miR-34a has a potential binding site on

SNHG7, and this negative relationship was validated in cisplatin-

resistant GC tissues. Moreover, LDHA levels could be enhanced by

lncRNA SNHG7/miR-34a axis and knockdown of SNHG7 could

sensitized cisplatin-resistant GC cells by inhibiting LDHA,

suggesting the SNHG7-miR-34a/LDHA-glycolysis axis contributes

to cisplatin resistance (51). LncRNA HAGLR was highly expressed

in GC cell lines and tissues. It sponged miR-338-3p to target LDHA-

mediated glycolysis, thus facilitated 5-FU resistance in the context

of GC (52). DLEU2, was another oncogenic lncRNA that targeted

LDHA-mediated glycolysis to promote paclitaxel resistance by

acting as ceRNA for miR-30c-5p (53). LncRNA HCP5 enhanced

fatty acid oxidation via sequestering miR-3619-5p and modulating

AMPK/PGC1a /CEBPB pathway , thereby fac i l i ta t ing

chemoresistance in GC (54). Recently, Tian et al. reported that

lncRNA OVAAL promoted resistance to 5-FU by enhancing

pyrimidine biosynthesis, thereby counteracting the thymidylate

synthase dysfunction caused by 5-FU (55), indicating that

targeting OVAAL-mediated nucleotide metabolic reprogramming

presents a promising strategy to overcome 5-FU resistance in GC.
3.4 LncRNAs induce drug resistance by
regulating autophagy

Autophagy is a conserved cellular degradation process that

encapsulates portions of the cytosol and damaged organelles

within double-membrane vesicles called autophagosomes (56).

Numerous studies have demonstrated that increased levels of

autophagy not only improve tumor survival but also enhance

drug resistance across various tumor types (56). IL-6 activated

autophagy via the IL-6/JAK2 pathway and contributed to

chemotherapy resistance (57). In GC, chloride channel 1 (CLIC1)

was found to promote the activation of autophagy, thus reducing

cellular sensitivity to cisplatin (58). Furthermore, dysregulated

lncRNAs were found to induce MDR via targeting autophagy. For

example, lncRNA EIF3J-DT was significantly overexpressed in
Frontiers in Oncology 05
drug-resistant GC cells. EIF3J-DT induced ATG14 expression

through directly stabilizing ATG14 mRNA. Additionally, EIF3J-

DT prevented the degradation of ATG14 mRNA by sponging miR-

188-3p, thus promoting chemotherapeutic resistance (18). Hu et al.

demonstrated that lncRNA metastasis-associated lung

adenocarcinoma transcript-1 (MALAT1) functioned as a

molecular sponge for miR-23b-3p, diminishing its inhibitory

effects on the expression of ATG12, which led to the development

of autophagy-mediated -MDR in cancer cells to cisplatin and

vincristine (59). Researchers have demonstrated that MALAT1

sponged miRNA-30b and miR-30e to target ATG5, thus

contributing to cisplatin resistance (60, 61). Furthermore, FEZF1-

AS1 modulated MDR of GC cells by regulating ATG5 (62).

LncRNA NORAD was an oxidative stress-induced lncRNA that

facilitated oxaliplatin resistance by regulating miR-433-3p-ATG5/

ATG12 pathway (63), which uncovered a complex interaction

between cellular stress and lncRNAs in autophagy-mediated

drug resistance.

Additionally, research by Xin et al. has shown that lncRNA

HULC interacted with forkhead box M1 (FOXM1), stabilizing this

protein, which enhances the B-light chain 3 (LC3)-II/LC3-I ratio

and contributes to cisplatin resistance through autophagy.

Consistent with these findings, the silencing of HULC has been

demonstrated to inhibit autophagy and improve the sensitivity of

GC cells to chemotherapy (64). LINC00641 was found to sponge

miR-582-5p, activating autophagy flux by evaluating expression of

microtubule-associated protein 1A/LC3 I/II and p62, thus

conferring cancer cells resistance to oxaliplatin. And silencing

LINC00641 could increase the sensitivity of GC cells to

oxaliplatin (65).
3.5 LncRNAs induce drug resistance by
epigenetic regulation

Epigenetic modifications refer to influence gene expression

without changing the underlying DNA sequences, which have

been extensively explored in tumor progression and drug

resistance (66). Enhancer of zeste homolog 2 (EZH2) is

responsible for the trimethylation of lysine 27 on histone H3

(H3K27me3), serving an essential role in a Polycomb Repressive

Complex 2 (PRC2)-dependent manner, which represses expression

of multiple tumor suppressive genes through the H3K27me3

mediated by EZH2 (67). EZH2 was involved in drug resistance

across various types of human cancers (68). In the context of GC,

lncRNAs induced drug resistance by targeting EZH2. For example,

Dai et al. revealed that lncRNA UCA1 was upregulated in GC cells

and tissues. Furthermore, UCA1 could recruit EZH2 and promoted

PI3K/AKT signaling pathway, which led to cisplatin resistance (69).

LncRNA prostate cancer-associated transcript 1 (PCAT1) was

upregulated in cisplatin-resistant GC tissues, exerting tumor-

promoting effects by interacting with EZH2 and thus

epigenetically silencing phosphatase and tensin homolog deleted

on chromosome ten (PTEN), leading to enhanced H3K27
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trimethylation (70). These changes resulted in GC cell resistance to

cisplatin (70). LncRNA NEAT1 sequestered miR-26, which

diminished the inhibitory effects on EZH2, which led to

oxaliplatin resistance (71). Histone deacetylases (HDACs) plays

essential roles in maintaining balance between epigenetic

modifications, thus exerting greatly impacts on chemotherapeutic

resistance (72). HDAC3 was upregulated in GC cisplatin-resistant

cells, which further promoted transcription of lncRNA

LOC101928316, leading to the activation of PI3K/Akt/mTOR

signaling pathway and enhanced cisplatin resistance (73). m6A

methylation is the most prevalent modification found in both

mRNA and non-coding RNAs, exerting significant effects on

RNA stability, splicing, localization, and translation (74). In

MDR-GC cell lines, METTL3 has been shown to elevate the m6A

levels of ABL, which interacted with IGF2BP1, a member of the

m6A reader family, thus preventing APAF1 from forming apoptotic

bodies. This mechanism inhibited apoptosis and contributes to drug

resistance (33). These results revealed that lncRNA-mediated

epigenetic regulations provide feasible therapeutic targets for

overcoming drug resistance in GC.
3.6 LncRNAs induce drug resistance by
regulating cancer stemness

Cancer stemness is considered a crucial element in tumor

development. Cancer stem cells (CSCs) represent a distinct

population of cancer cells characterized by their capacity for self-

renewal and differentiation, contributing to tumor development

and resistance to therapy (75). The stemness markers of CSCs

primarily encompass cluster of differentiation 24 (CD24), CD133,

SOX2(SRY-box transcription factor 2), SOX9 and c-Myc (76–78).

Emerging evidence has revealed that lncRNAs regulating drug

resistance via targeting stemness-related markers or pathways. For

example, Wang and colleagues reported lncRNA ROR exhibited

increased expression in the gastric cancer stem cells (GCSCs), which

upregulated multiple stemness-related transcription factors

including NANOG, SOX2, CD133 and OCT4. Furthermore, ROR

promoted cell resistance to adriamycin and vincristine (79, 80).

Zhao et al. revealed that lncRNA NONHSAT160169.1 was

upregulated in lapatinib resistant GC cells. Further investigation

into the mechanisms by which NONHSAT160169.1 conferred

lapatinib resistance revealed that it was induced by the signal

transducer and activator of transcription 3 (STAT3) pathway.

NONHSAT160169.1 sponged hsa-let-7c-3p and thereby negating

its suppressive impacts on the expression of SRY-box transcription

factor 2 (SOX2), which suggested a NONHSAT160169.1/hsa-let-

7c-3p/SOX2 axis in understanding lapatinib resistance in GC (81).

LncRNA THOR mediated the mRNA stability of SOX9, thus

enhancing stemness and cisplatin resistance in GC (82). LncRNA

MACC1 antisense RNA 1 (MACC1-AS1) acted as a competitive

antagonist to miR-145-5p, leading to the upregulation of

diacylglycerol cholinephosphotransferase (CPT1) and acetyl-CoA

synthetase (ACS), which enhanced expression of stemness markers
Frontiers in Oncology 06
such as LIN28, SOX2 and OCT4, which contributed to the 5-FU

and oxaliplatin resistance (83).
3.7 Exosomal lncRNAs in the drug
resistance of GC

Exosome plays a vital role in enabling cells to adapt to various

internal and external changes involved in processes including injury

response and tissue homeostasis. Exosome transfer biological mediators

including lncRNA, miRNA, and proteins from donor cells to receipt

cells, representing a specific and tightly modulatory communication,

which significantly impacts on cancer progression (84). LncRNA

CRNDE exhibited highly expression in tumor-associated

macrophages (TAMs) in the context of GC. Further mechanistic

studies have demonstrated that M2-polarized TAMs secreted

exosomes, which transferred CRNDE from TAMs to tumor cells.

This significantly enhanced the ubiquitination of PTEN through

neural precursor cell expressed developmentally downregulated

protein 4-1 (NEDD4-1)-mediated signaling pathways, leading to

cisplatin resistance of GC cells (85). Exosomes derived from GC cells

packaged lncRNA HOTTIP, which mediated high-mobility group A1

(HMGA1)/miR-218 axis to facilitate cisplatin resistance (86) (Table 1).
4 Therapeutic strategies for targeting
lncRNAs

The disruption and function of lncRNAs are progressively being

incorporated into cancer treatment strategies, offering benefits in

both laboratory and clinical settings (87). The application of RNA-

based therapies has emerged as a promising strategy for treating

cancers (87). Certain endogenous lncRNAs can modulate the

expression of genes associated with tumorigenesis, and their

dysregulation may contribute to disease onset, underscoring the

potential of these ncRNAs as targets for drug development (87, 88).

In GC, lncRNAs can function as either oncogenes or tumor

suppressors, leading to the abnormal inhibition or degradation of

their target mRNAs. Consequently, they are considered critical

therapeutic targets for cancer treatment. In this context, the

application of lncRNA-based therapies presents advantages. These

emerging strategies included the use of small interfering RNAs

(siRNAs), antisense oligonucleotides (ASOs), and clustered

regularly interspaced short palindromic repeats (CRISPR)-

CRISPR-associated protein (Cas) 9 gene editing (89–91) (Figure 3).
4.1 siRNAs

SiRNAs are a type of therapeutic agent derived from nucleic

acids, functioning as drugs target cytoplasmic RNAs or to induce

transcriptional silencing through histone modification and

remodeling chromatin within the nucleus by binding to promoter

regions (92). This potential has generated considerable excitement
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TABLE 1 The role of lncRNAs in gastric cancer drug resistance.

LncRNA Mechanism Function Drug Reference

PVT1 Induced the expression of Bcl-2 Inhibited cell apoptosis 5-FU (34)

UCA1 Sponged miR-27b to increase Bcl-2 expression and decreased expression
of caspase-3

Inhibited cell apoptosis Adriamycin
and cisplatin

(35)

SNHG5 Downregulated Bax and upregulated Bcl-2 Inhibited cell apoptosis Cisplatin (36)

ABL Interacted with IGF2BP1, blocked apoptosome formation and
decreasing the expression caspases-9 and -3.

Inhibited cell apoptosis 5‐Fu‐ and paclitaxel (33)

RP11-874J12.4 Sponged miR-397, further enhancing the expression of SSR2 that
upregulated Bcl-2 expression and downregulated expression of caspase-
3, caspase-9, and Bax,

Inhibited cell apoptosis Docetaxel and cisplatin (37)

FAM84B-AS Enhanced the expression of BCL-2 and BCL-xL and downregulated
expression of caspase-3, -7, and -9

Inhibited cell apoptosis cisplatin (38)

HOTAIR Sponged miR-17-5p, leading to downregulation of E-cadherin and
upregulation of N-cadherin and Vimentin.

Induced EMT Cisplatin, doxorubicin
and 5-FU

(45)

HNF1A-AS1 Regulated miR-30b-5p/EIF5A2 axis Induced EMT 5-FU (43)

ST7-AS1 Activated PI3K.AKT pathway Induced EMT Cisplatin (44)

XLOC_006753 Activated PI3K.AKT pathway Induced EMT Cisplatin and 5-FU (46)

SNHG1 Sponged miR-216b-5p and enhanced expression of HK2. Enhanced glycolysis Paclitaxel (49)

SNHG16 Targeted miR-506-3p/PTBP1 axis and enhanced mRNA stability of
GLUT1, HK2, and LDHA.

Enhanced glycolysis 5-FU (50)

SNHG7 Sponged miR-34a to enhanced expression of/LDHA Enhanced glycolysis Cisplatin (51)

HAGLR Sponged miR-338-3p to target LDHA Enhanced glycolysis 5-FU (52)

DLEU2 Sponged miR-30c-5p to regulate LDHA Enhanced glycolysis Paclitaxel (53)

HCP5 Sequestered miR-3619-5p modulated AMPK/PGC1a/CEBPB pathway Enhanced fatty
acid oxidation

Oxaliplatin and 5-Fu (54)

OVAAL Enhanced pyrimidine biosynthesis Nucleotide metabolic
reprogramming

5-FU (55)

CLIC1 Activation of autophagy Activation of autophagy Cisplatin (58)

EIF3J-DT Sponged miR-188-3p and promoted ATG14 expression through
stabilizing its mRNA

Activation of autophagy Oxaliplatin and 5-FU (18)

MALAT1 Sponged miR-23b-3p and increased the expression of ATG12 Activation of autophagy Cisplatin and vincristine (59)

MALAT1 Sponged miRNA-30b and miR-30e to target ATG5 Activation of autophagy Cisplatin (60, 61)

FEZF1-AS1 Enhanced ATG5 expression Activation of autophagy 5-FU and cisplatin (62)

NORAD Regulated miR-433-3p-ATG5/ATG12 pathway Activation of autophagy Oxaliplatin (63)

HULC Interacted with FOXM1, enhancing the LC3-II/LC3-I ratio Activation of autophagy Cisplatin (64)

LINC00641 Sponged miR-582-5p, evaluating expression of microtubule-associated
protein 1A/LC3 I/II and p62 pathway

Activation of autophagy Oxaliplatin (65)

UCA1 Recruited EZH2 and promoted PI3K/AKT signaling pathway Epigenetic regulation Cisplatin (69)

PCAT1 Interacted with EZH2 and epigenetically silenced PTEN. Epigenetic regulation Cisplatin (70)

NEAT1 Sequestered miR-26, diminished the inhibitory effects on EZH2 Epigenetic regulation Oxaliplatin (71)

LOC101928316 HDAC3 promoted transcription of LOC101928316, leading to the
activation of PI3K/Akt/mTOR signaling pathway

Epigenetic regulation Cisplatin (73)

ABL METTL3 elevated the m6A levels of ABL, which interacted with
IGF2BP1, thus preventing APAF1 from forming apoptotic bodies.

Epigenetic regulation 5‐Fu‐ and paclitaxel (33)

(Continued)
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in the field of gene therapy. For example, MALAT1 was implicated

in GC progression and drug resistance, functioning as a potential

target for GC treatment. Experimental assays demonstrated that

siRNA-mediated silencing of MALAT1 effectively inhibited the
Frontiers in Oncology 08
migration and invasion of GC cells (93). Exosomal MALAT1

derived from TAMs was found to enhance chemotherapy

resistance. MALAT1 could be transferred from TAMs to cancer

cells, while the dual silencing of MALAT1 in tumor cells and TAMs
TABLE 1 Continued

LncRNA Mechanism Function Drug Reference

ROR Upregulated NANOG, SOX2, CD133 and OCT4 Enhanced
cancer stemness

Adriamycin
and vincristine

(79, 80)

NONHSAT160169.1 STAT3 pathway induced expression of NONHSAT160169.1, which
sponged hsa-let-7c-3p and regulated SOX2 expression.

Enhanced
cancer stemness

Lapatinib (81)

THOR Mediated the mRNA stability of SOX9. Enhanced
cancer stemness

Cisplatin (82)

MACC1-AS1 Acted as a competitive antagonist to miR-145-5p, upregulated CPT1
and ACS, which enhanced expression of LIN28, SOX2 and OCT4.

Enhanced
cancer stemness

5-FU and oxaliplatin (83)

CRNDE M2-polarized macrophages secreted exosomes, which transferred
CRNDE from macrophages to tumor cells, which enhanced the
ubiquitination of PTEN through NEDD4-1-mediated pathways

Exosome Cisplatin (85)

HOTTIP Exosomes derived from cancer cells packaged lncRNA HOTTIP, which
mediated HMGA1/miR-218 axis

Exosome Cisplatin (86)
FIGURE 3

Therapeutic strategies for targeting lncRNAs in cancer therapy. (A) CRISPR/Cas 9 technique, antisense oligonucleotides (ASOs), and small interfering
RNAs (siRNAs) are capable of degrading lncRNAs, thus providing novel insights into gastric cancer treatment. (B) Nanomedicine functions as
essential nanocarrier for specifically delivering RNA-based drugs in gastric cancer treatment.
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by transferring siRNAs via exosomes significantly enhanced

chemosensitivity in the setting of GC (94). Bahar et al.

demonstrated that knockdown of PVT1 by specific siRNA could

reverse paclitaxel resistance and suppress tumor growth, which

suggested a promising approach for GC treatment (95).
4.2 ASO

Oligonucleotide technology has been advanced to selectively

modify the expression of critical genes involved in terminal illnesses,

including human cancers (96). ASOs are chemically modified single-

stranded nucleic acid sequences, which could bind complementarily to

RNA sequences, thus modulating the functions of mRNA (96). ASOs

facilitate the degradation of lncRNAs through the action of RNase H,

thereby enabling the silencing and regulation of lncRNAs (97). These

characteristics render ASOs a valuable asset in modern medicine,

offering high target specificity for treating diseases (98). LncRNA

p53-upregulated-regulator-of-p53-levels (PURPL) contributed to

chemotherapy resistance, while ASO-based knockdown significantly

reduced the expression of PURPL, leading to induced cell apoptosis

and sensitized cancer cell to chemotherapeutic agents (99).

Furthermore, LNA gapmeR, a specially designed ASO, has found

extensive application in preclinical studies. This LNA gapmeR ASO

directly induces the degradation of MALAT1, demonstrating

remarkable antitumor activity and eliciting cytotoxic effects in a

mouse models (100). ASOs that targeted the lncRNA MALAT1 in

triple-negative breast cancer has been demonstrated to alleviate

malignant characteristics by reshaping tumor microenvironment

(101). And ASOs-based silencing of MALAT1 led to reduced cancer

metastasis and reversed therapeutic resistance in various types of

human cancers (102–104). Given the oncogenic role of MALAT1 in

the progression and drug resistance in GC, the suppression of

MALAT1 by ASOs hold immense therapeutic potential for GC

treatment, which await further investigation both in the preclinical

and clinical settings in the context of GC (105–107).
4.3 CRISPR/Cas 9

Recent advancements in the CRISPR-Cas9 technique have shown

promising results in the precise modification of genes, potentially

offering new avenues for cancer treatment (108). Studies employing

CRISPR-Cas9 technology have shown encouraging, safe, and effective

cancer therapies, marking a significant step forward in the field of

precision oncology (109). Emerging preclinical studies have utilized

CRISPR- Cas 9 system to target oncogenic lncRNAs, thus inhibiting

tumor progression. The knockdowns of RP11-93B14.5, PANDAR,

and NEAT1 lncRNAs have demonstrated great effects on the

inhibition of cell proliferation, growth, metastasis and therapeutic

responses in GC (110–112). In the context of GC, Liu et al. revealed

that CRISPR/Cas9-knocknout system-mediated silences of lncRNA

CCAT5 significantly impeded tumor growth in vivo (113). Moreover,

a strategy utilizing CRISPR/Cas9 system to target the lncRNA
Frontiers in Oncology
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GMAN led to a significant decrease in the number of metastases

generated from GC cells in vivo (114). These findings highlight the

significant potential of CRISPR-Cas9 technique for translating

lncRNA research into clinical applications, which may pave the

way for GC treatment.
4.4 Nanomedicine-mediated strategies for
targeting lncRNAs

Synthetic nanocarriers have long been employed for drug delivery

purposes. They have the capacity to encapsulate both hydrophobic and

hydrophilic drugs, and their formulations can be modified to enhance

stability (115). Emerging evidence has revealed that nanocarriers serve

as feasible platforms that can deliver lncRNAs to tumors, potentially

enhancing therapeutic results for cancer patients (115). Wang and

colleagues reported that lncRNA ABL promoted MDR and tumor

growth in GC, and encapsulated liposomal siRNA targeting ABL could

markedly increase the sensitivity of GC cells to chemotherapeutic

agents (33). The nanocarrier chitosan-gelatin-EGCG (CGE) has been

reported to delivery siRNA that targeted TMEM44‐AS1, which

significantly abrogated 5-FU resistance in GC (116). The therapeutic

delivery of lncRNA LINC00589 via polyethyleneimine-modified

mesoporous silica nanoparticles demonstrated significant efficacy in

attenuating peritoneal metastasis in GC experimental models (117),

offers a promising strategy for enhancing therapeutic efficacy against

variousmalignancies. The capability to modify polymeric nanoparticles

facilitates accurate customization of lncRNA delivery systems.

However, the intricate nature of these structures presents challenges

for maintaining consistent production. Accordingly, progress in

polymerization techniques is crucial for enhancing the therapeutic

effectiveness of lncRNA-based cancer therapies.
4.5 Current evidence in lncRNA-based
targeting strategies for GC drug resistance

Existing evidence has revealed that lncRNAs play an essential

role in GC drug resistance. Bahar et al. reported that siPVT1

significantly enhanced chemosensitivity to paclitaxel in GC cells

(95). Moreover, using siRNA silencing CCAT1 could reversed drug

resistance in cisplatin-resistant GC cells by affecting the PI3K/AKT

pathway (118). Cells subjected to LINC00665-shRNA treatment

exhibited a marked decrease in trastuzumab responsiveness relative

to other experimental cohorts (119). The combined application of

siRNA-mediated DLGAP1-AS2 knockdown and oxaliplatin

significantly enhanced the chemosensitivity of GC cells, reducing

the effective dose of oxaliplatin, which markedly induced apoptosis

while simultaneously suppressing cell proliferation, and metastatic

potential compared to monotherapy (120). Additionally, several

studies have revealed that targeting lncRNA NEAT1 (121),

NONHSAT160169.1 (81), FUAT1 (122), HOTAIR (123) also

reversed drug resistance in GC, providing promising therapeutic

strategies in cancer therapy.
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5 Challenges in targeting lncRNAs for
therapeutic applications

Nucleic acid-based therapies have received considerable

attention as treatments for a range of diseases, including cancer;

nevertheless, caution is necessary in their application. The

implementation of nucleic acid-based therapies in vivo studies

encounters several challenges. Inefficient delivery methods and

the low bioavailability of siRNA observed in animal models limit

their therapeutic efficacy (124). In addition, ASOs can become

trapped within endosomes, which significantly diminishes their

bioavailability (125). As a result, it is vital to establish that

oligonucleotides have minimal or absent off-target effects (126).

Moreover, when utilizing CRISPR/Cas9 technology, it is important

to carefully evaluate potential off-target effects, as they could result

in unintended consequences (127). Enhancing the stability of these

therapies, prolonging their pharmacokinetics, and improving

overall drug stability are therefore critical considerations (128).

However, given the multiple roles of lncRNAs in various biological

activities, thus modulating the expression of specific lncRNAs may

trigger a cascade of reactions, potentially resulting in additional side

effects during drug application, which await further investigations

in clinical settings.

Although nanoparticle-enhanced delivery of lncRNAs holds

significant promise in the field of oncology, there are still

considerable challenges related to the scalable and cost-effective

manufacturing of these nanoscale systems (129). The complexities

involved in achieving desired characterist ics such as

biocompatibility, stability, and targeted specificity necessitate a

meticulous design process (130). The intricate regulatory

networks involving lncRNAs require additional research to clarify

their specific roles and interactions with other molecular pathways.

Furthermore, while specific inhibitors targeting lncRNAs have

shown promising anti-cancer effects in preclinical studies, their

safety and effectiveness in human clinical trials are still uncertain

(131). This highlights the need for enhanced targeting strategies and

delivery systems to ensure accurate and effective modulation of

lncRNAs. In addition, lncRNA-based therapeutic approaches are

faced by tolerance issues, particularly immunogenicity, arising from

pathogen-associated molecular pattern receptors that recognize

RNA structures, which can trigger immune responses (132, 133).

Further research should focus on addressing these challenges, which

may contribute to the further exploration of cancer treatment

strategies.
6 Conclusions and future perspectives

LncRNAs represent a class of functional RNA transcripts

present in human genomes. Mounting evidence has highlighted
Frontiers in Oncology 10
the diverse functions and mechanisms through which many

lncRNAs operate, increasingly associating them with the onset

and progression of cancers. Nonetheless, the exploration of many

lncRNAs remains limited. In the context of GC, lncRNAs exert

regulatory functions on chromatin remodeling, histone

modification, sponging miRNAs, stabilizing mRNA and

regulating translation of various proteins, thus significantly

impacting cancer progression and drug resistance. Moreover,

lncRNAs serve as essential biomarkers for early detection and

monitoring of GC. LINC01133 was reported to be decreased in

the serum of GC patients. Furthermore, expression of LINC01133

was associated with tumor markers such as CEA and CA19-9 along

with various clinicopathological parameters, including tumor size,

the tumor-node-metastasis (TNM) stage, and distant metastasis

(134), indicating that LINC01133 was an independent prognostic

factor for the disease. Research by Jiang et al. has revealed that

lncRNA FAM87A served as an independent biomarker for the

overall survival of GC patients (135). Further research performed by

Liang et al. indicated that the expression levels of lncRNA XIST and

ZFPM2-AS1 were significantly elevated in the plasma of GC

patients. Additionally, the area under the receiver operating

characteristic curve (AUC) was calculated to be 0.62 for ZFPM2-

AS1 and 0.68 for XIST, which suggested that these lncRNAs could

be used as candidate plasma biomarkers for GC patients (136).

Overall, these findings indicate that lncRNAs are associated with

various clinical characteristics of GC and could sever as essential

biomarkers for early detection and diagnosis of GC. However, a

common limitation in these studies is the relatively small sample

size. To identify a lncRNA as a potential new biomarker, it is

essential to have a sufficiently large study population that can

reliably support the candidature of lncRNAs for biomarker

development.

Moreover, lncRNAs play an essential role in regulate drug

resistance, which includes multiple mechanisms including

regulating cell apoptosis, EMT, metabolic reprogramming,

autophagy, stemness, and mediating epigenetic regulation.

Therefore, targeting lncRNAs may be feasible strategies for

overcoming drug resistance and paving the way for GC

treatment. Notably, strategies such as siRNAs, ASOs, and

CRISPR/Cas 9 technique significantly exhibit remarkable tumor

regression effects in the preclinical setting. But there is lacking of

investigations on the anti-cancer effects in the clinical settings.

Furthermore, concerns have been raised regarding the therapeutic

potential of targeting individual lncRNAs, as well as the

effectiveness of current targeting strategies, which underscores the

necessity for improved targeting strategies and delivery systems to

facilitate precise and effective modulation of lncRNAs. Future

research should focus on these challenges and promote the

translation of current findings into clinical applications, which

may improve the prognosis of chemotherapy-resistant GC patients.
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